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Lightweight Privacy-preserving Raw Data
Publishing Scheme
Jingxue Chen, Gao Liu, and Yining Liu

Abstract—Data publishing or data sharing is an important part of analyzing network environments and improving the Quality of
Service (QoS) in the Internet of Things (IoT). In order to incentives data providers (i.e., IoT end-users) to contribute their data, privacy
requirement is necessary when data is collected and published. In traditional privacy preservation techniques, such as k-anonymity,
data aggregation and differential privacy, data is modified, aggregated, or added noise, the utility of the published data are reduced.
Privacy-preserving raw data publishing is a more valuable solution, and n-source anonymity based raw data collection is most
promising by delinking raw data and their sources. In this paper, a lightweight raw data collection scheme for publishing is proposed, in
which the rawness and the unlinkability of published data are all really guaranteed with Shamir’s secret sharing, and shuffling
algorithm. Moreover, it is lightweight and practical for the IoT environment by the performance evaluation.

Index Terms—data collection, privacy, rawness, unlinkability, lightweight
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1 INTRODUCTION

W ITH the rapid development of the Internet of Thing
(IoT), various IoT devices are used in many applica-

tions [1], such as smart grid [2], vehicle network [3], body
area network [4]. These IoT devices really facilitate daily life,
however, data privacy [5] [6] concerns should be addressed
since the data from IoT devices consist of the sensitive
information [7].

In past decades, k-anonymity [8] [9] and differential pri-
vacy [10] are widely researched to guarantee privacy when
data is published. Specifically, k-anonymity guarantees that
each person cannot be distinguished from at least other
k − 1 individuals by modifying corresponding attributes,
meanwhile, differential privacy adds noise to the published
data to avoid the disclosure of private information records.

However, both k-anonymity and differential privacy are
used to protect the privacy of the data that has been col-
lected and stored in data center, in fact, it is under the
assumption that the data center is fully trusted since it owns
or knows all stored data. However, the assumption that a
data center or edge nodes connecting to IoT devices are fully
trusted is not practical. Therefore, the edge nodes and data
center should not directly obtain raw data from IoT devices,
instead, the raw data collected with IoT devices should be
masked before it is sent to other nodes. Two requirements
are necessary, namely data privacy and utility.

Data aggregation allows a data center to obtain the
average, maximum or minimum of data in an area without
knowing individual data [11]. However, in some applica-
tion scenarios, the average, maximum or minimum of data
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cannot meet the needs, a variety of fine-grained data is
required. Recently, a privacy-preserving computing function
library is designed based on Intel Software Guard Exten-
sions (SGX) [12]. However, Intel SGX may suffer from attack
such as side-channel attack [13]. For data utilization, n-
source anonymity is a feasible solution by delinking data
and its source [14], where a piece of data is protected from
an n-member group and simultaneously the rawness of data
is ensured. Current n-source anonymity based raw data
collection schemes mainly use virtual rings [15], a trusted
third party (TTP) [14] and shuffling [16] to reserve slots for
loading data. However, the sensitive data of an IoT device
in virtual rings can be derived due to the collusion attack
of its upstream and downstream devices. In addition, it is
hard to deploy a TTP in practice. Hence, shuffle is used
to replace the role of TTP, and simultaneously to ensure
the rawness and unlinkability. Unfortunately, when n IoT
devices construct a group for masking their data, in [15]
each IoT device of virtual ring reserves n/2 slots on average,
and in [14], [16], n slots are reserved. As a consequence, the
heavy storage cost is brought to each IoT device when n is
large.

In this paper, a lightweight raw data publishing scheme
is proposed using secret sharing and shuffle, and two con-
tributions are achieved as follows.

• Data privacy and utility are balanced by guaranteeing
the unlinkability and the rawness.

• The lightweight requirement is achieved to make it
more suitable for IoT devices.

The rest of this paper is organized as follows. Prelim-
inaries are introduced in Section 2, problem definition is
discussed in Section 3, our scheme and its analysis are
presented in Section 4 and Section 5 respectively. Finally,
the paper is concluded in Section 6.
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2 PRELIMINARIES

2.1 Bilinear Pairings

The p order cyclic additive group G1, and p order cyclic
multiplicative group G2, and a mapping ê : G1 × G1 →
G2 (ê is a bilinear pairing) are defined. Assume that P is a
generator of G1, which satisfies:
(1) Bilinearity: ∀a, b ∈ Z∗p , ê : (aP, bP ) = ê(P, P )ab;
(2) Non-degeneracy: ê : (P, P ) 6= 1G1

;
(3) Computability: For any P,Q ∈ G1, exists an efficient

algorithm to compute ê : (P,Q).

2.2 Shuffle

In [16], a shuffle algorithm is used to allocate slot lo-
cations, in which a ciphertext is re-randomized without
changing the corresponding plaintext. The shuffle algorithm
is defined as follows:

(1) Input ci, (i ∈ [1, n]) that is then encrypted into c∗i ,
and rearranged using random permutation;

(2) Output the new permutated list.
More details can refer [16].

2.3 Shamir’s secret sharing

In [17], assuming there are n users {U1, U2, ..., Un}, and
a trusted dealer D.

Shares generation
D chooses t − 1 random numbers a1, a2, . . . , at−1 and

generates a polynomial f(x) = s+ a1x+ · · ·+ aix
i + · · ·+

at−1x
t−1 over a finite field Fp, where p is a prime number,

s is a secret, and t is a threshold value. D sends yi = f(xi)
to Ui, (i ∈ [1, n]) via a secure channel.

Secret reconstruction
The secret is recovered by computing

s = f(0) =
t∑
i=1

t∏
j=1,j 6=i

0− xj
xi − xj

yi.

2.4 Secret sharing homomorphism

Secret sharing homomorphism [18] is a useful tool for
privacy-preserving computation. For example, in e-voting,
an election center obtains the sum of voters’ ballots without
knowing individual ballots [19]. Assume there are two
polynomials f(x) and g(x), and s1, s2 are their secrets to
be shared respectively.

(1) Dealer D sends f(i) and g(i) to the corresponding
user Ui, where i ∈ [1, n].

(2) Ui computes and sends f(i) + g(i), (i ∈ [1, n]) to D.
(3) D recovers the secret s1 + s2 due to the additive

homomorphism.

3 PROBLEM DEFINITION

3.1 System model

As shown in Fig.1, the system model consists of Cloud
Server (CS), Fog Node (FN) and users Ui, (i ∈ [1, n]) in
group.
(1) CS sends a data collection request to FN, then FN

forwards the request to Ui, (i ∈ [1, n]).

Fig. 1. System model

(2) After receiving the request, Ui, (i ∈ [1, n]) collects and
masks the data, then sends the masked data to FN.

(3) The raw data collected from Ui, (i ∈ [1, n]) are extracted
by FN, then sent to CS, meanwhile the relation between
data and its source is privacy for all.

3.2 Assumptions and threat model

Only privacy issues are concerned under the assumption
that secure communication channels have been established
using cryptographic techniques among these entities [11]
[16], and the semi-honest model is followed, i.e., CS, FN
and users follow the protocols, meantime, they are curious
to know the source of a piece of data.
• Data collectors (CS, FN) want to infer the data source

from the information they received.
• Besides the data collectors, other users also attempt to

collude to infer a user’s data.

4 OUR SCHEME

Our scheme consists of Configuration Phase and Data
Collection Phase. Details are as follows.

4.1 Configuration phase

Key generation
Step1: CS selects a security parameter γ and generates

{p, P,G1, G2, ê}, where G1, G2 are p order cyclic groups, P
is a generator ofG1, and ê is a bilinear pairing ê : G1×G1 →
G2.

CS chooses two secure cryptographic hash functions,H :
Z∗p → Z∗p and H1 : {0, 1}∗ → G1.

CS publishes {p, P,G1, G2, ê, H,H1}.
Step2: Each entity selects a random number skentity ∈

Z∗p as its secret key, then calculates and publishes
PKentity = skentityP .

Setup for data collection
Ui selects βi partners in a group, generates a session

key kij with each partner Uj , and obtains its session list
{ki1, ki2, ..., kiβi}, (βi ∈ [1, n − 1]), (i, j ∈ [1, n], i 6= j). For
example, three users {U1, U2, U3} are in a group, U1 and U2

share the session key k12, U1 and U3 share the session key
k13.

4.2 Data collection phase

Each user is assigned a position using shuffle [16], and
this position corresponds to a coefficient in n-order degree
polynomial f(x) = a0 + a1x + a2x

2 + ... + anx
n, and the

data from U ′is is placed in this position. Ui only knows its
position, meanwhile knows nothing about others.

Data collection initialization
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CS sends a data collection request Req =
{IDCS , IDFN , T, ωCS} to FNs, where IDCS and
IDFN are identities of CS and FN, T is timestamp
and ωCS = skCSH1(IDCS ||IDFN ||T ) .

Forwarding request
FN checks the timestamp T and the equation

ê(ωCS , P ) = ê(H1(IDCS ||IDFN ||T ), PKCS). If yes, FN
broadcasts the request.

Masking raw data
Step1: Ui, (i ∈ [1, n]) generates its polynomial

fi(x) = ai,0+λi,1x+· · ·+(RDi+λi,`)x
`+· · ·+λi,nxn, (1)

where ai,0 is a random number selected by Ui, RDi rep-
resents the data from Ui, and the masking information
λi,`,(` ∈ [1, n]) is computed as follow:

λi,` =

βi∑
j=1,j 6=i

(IDi − IDj)H(kij |`). (2)

Step2: Ui generates n + 1 shares Yi,j = fi(IDj), (j =
1, ..., n), Yi,FN = fi(IDFN ), where IDi is U ′is identifica-
tion. Ui keeps Yi,i and sends Yi,j to Uj , (j = 1, ..., n, j 6= i),
sends Yi,FN and ai,0 to FN .

Step3: Ui and FN obtain the masked data MSDi and
MSDFN by adding the received shares.

Extracting raw data
FN checks if the equation

ê(P,
n∑
i=1

ωi) =
n∏
i=1

ê(PKi, H1(MSDi||IDi||IDFN ||Ti||ai,0))

(3)
holds, then recoveries

f(x) = a0 + aix
i + · · ·+ anx

n (4)

using (ID1,MSD1), (ID2,MSD2),· · · , (IDFN ,MSDFN ).
{a1, . . . , an} are collected by FN, when the equation

a0 =
∑n
i=1 ai,0 holds. Moreover, {a1, . . . , an} are raw,

which is not aggregated or averaged, not added noise,
not modified. Nobody can link the element in two sets
{a1, . . . , an}, {Ui, ..., Un}.

An example of raw data collection
Assume that p = 137, U1, U2, U3 and FN (their identi-

fications are 1, 2, 3, 4) collaborate to collect the heartbeats,
U1, U2, U3 correspond to three coefficients of a 3-degree
polynomial after shuffling, such as x2, x and x3, U1 and
U2 share k12 = 2, U1 and U3 share k13 = 3.

U1 calculates Y1,1 = f1(1), Y1,2 = f1(2), Y1,3 = f1(3)
and Y1,FN = f1(4), then keeps Y1,1 secret and sends Y1,2 to
U2, Y1,3 to U3, and Y1,FN to FN. The similar computation
is for U2, U3. The shares received by each user and FN are
listed in TABLE 1.

TABLE 1
The shares distribution

Receiver
U1 U2 U3 FN

Sender
U1 Y1,1 Y1,2 Y1,3 Y1,FN

U2 Y2,1 Y2,2 Y2,3 Y2,FN

U3 Y3,1 Y3,2 Y3,3 Y3,FN

Ui computes its masked data MSDi = Y1,i+Y2,i+Y3,i,
and sends {MSDi, IDi, IDFN , Ti, ai,0} to FN, where Ti is

a timestamp and ωi = skiHi(MSDi||IDi||IDFN ||Ti||ai,0),
(i = 1, 2, 3).

Table 2 illustrates the following computation:
(1) The heartbeats of U1, U2 and U3 are 78, 60 and 85

respectively.
(2) a1,0 = 5, a2,0 = 2, and a3,0 = 1.
(3) λ1,1 = (1− 2) ·H(2|1) + (1− 3) ·H(3|1)=80,

λ1,2 = (1− 2) ·H(2|2) + (1− 3) ·H(3|2)=52,
λ1,3 = (1− 2) ·H(2|3) + (1− 3) ·H(3|3)=106,
λ2,1 = (2− 1) ·H(2|1)=27,
λ2,2 = (2− 1) ·H(2|2)=69,
λ2,3 = (2− 1) ·H(2|3)=114, and
λ3,1 = (3− 1) ·H(3|1)=30,
λ3,2 = (3− 1) ·H(3|2)=16,
λ3,3 = (3− 1) ·H(3|3)=54.

(4) 94, 24, 34 are the sum of the received shares of
U1, U2, U3, they are sent to FN.

FN recovers the polynomial f(x) = 8 + 60x + 78x2 + 85x3

mod 137, and ensures {60, 78, 85} is the heartbeats set of
{U1, U2, U3}when the equation a1,0+a2,0+a3,0 = a0 holds,
namely 5+2+1=8.

5 ANALYSIS

In this section, the proposed scheme is analyzed to really
achieve the rawness and unlinkability. Moreover, the perfor-
mance in terms of storage and computational burdens are
evaluated, and the comparison with the excellent techniques
are shown in TABLE 3.

5.1 Security analysis

Rawness
Raw data RDi can be obtained by reconstructing secrets

on public shares.
Proof: Assuming that Ui is assigned an unique coefficient

of x`, (l = 1, ..., n) after shuffling, before no masking infor-
mation is added, the polynomial is

fi(x) = ai,0 +RDix
`, (i = 1, ..., n) (5)

Then, the set of coefficient of a1, · · · , an of
∑n
i=1 fi(x) =

a0+a1x+a2x
2+ · · ·+anxn corresponds the raw data RDi,

(i = 1, ..., n) from Ui, (i = 1, ..., n).
When masking information is added, U ′is polynomial is

fi(x) = ai,0+λi,1x+· · ·+(RDi+λi,`)x
`+· · ·+λi,nxn, where

λi,` =
∑βi

j=1,j 6=i(IDi − IDj)H(kij |`) and
∑n
i=1 λi,` = 0.

The shares of each user’s polynomial are generated and
sent to others, which guarantees that the sum of received
shares MSD1, . . . ,MSDn,MSDFN of Ui, (i = 1, ..., n)
and FN to correctly recover a0 + a1x + · · · + anx

n that
is same as Equation 5 using secret sharing homomorphism
[18].
{a1, . . . , an} are ensured to be the raw data from

{Ui, (i = 1, ..., n)} by FN when a0 =
∑n
i=1 ai,0.

Unlinkability
Nobody can link Raw data RDi and its source Ui, (i =

1, ..., n), even if one honest partner exists.
Proof: Ui generates n + 1 shares with its polynomial

fi(x) = ai,0 + λi,1x + · · · + λi,`−1x
`−1 + (RDi + λi,`)x

` +
· · · + λi,nx

n, where n − 1 shares are sent to other users
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TABLE 2
An example over Fp, and p = 137

ID polynomial p1 p2 p3 FN

p1 1 f1(x) = 5 + (80)x+ (78 + 52)x2 + (106)x3 (1,47) (2,26) (3,30) (4,10)

p2 2 f2(x) = 2 + (60 + 27)x+ 69x2 + 114x3 (1,135) (2,131) (3,126) (4,119)

p3 3 f3(x) = 1 + 30x+ 16x2 + (85 + 54)x3 (1,49) (2,4) (3,15) (4,94)

MSDi (1,94) (2,24) (3,34) (4,86)

in the group, and ai,0 and one share are sent to FN. In
our hypothesis, there is at least one honest partner (except
Ui) in the group who as a user will not betray Ui. Even if
other n−2 users collude with FN to recover fi(x), however,
n−degree polynomial cannot be recovered only with them,
since at least n + 1 points are necessary. Therefore, fi(x) is
still unknown for all.

Furthermore, the masking information λi,` =∑βi

j=1,j 6=i(IDi − IDj)H(kij |`) is still private, since at
least one session key cannot be obtained by an adversary
under the assumption that Ui’s honest partner exist.
Therefore, Ui’s masking information, λi,1, · · · λi,`, · · · ,
λi,n is private even if βi − 1 partners collude with FN.
As a consequence, the collected raw data RDi cannot be
obtained by calculating (RDi + λi,`) − λi,`, so that its
privacy is preserved.

5.2 Performance evaluation

The performance of our scheme is evaluated and com-
pared with [14] and [16].

Storage burden
Assume that the size of each data in [14] [16] is L bits,

the masked data <i = e1i |e2i |...|e
slot(i)
i ⊕mi| · · · |eni occupies

nL bits. When n grows, the storage cost increases linearly.
The masked data MSDi of user Ui is the sum of all received
shares, is only L bits.

Computational complexity
Assume that there are n users with an FN, and a sim-

ulation is executed using a laptop with Intel i5 2.5 GHz
CPU and 8.00 GB memory, and computational complexity
in shuffle and data collection is evaluated.

(1) Computational complexity in shuffle
The total computational complexity of shuffle is

O(nlogp), since the shuffle technique adopts the ElGamal
encryption [16]. Ui encrypts its own pseudonym, shuffles a
cipher list, and sends the new cipher list to its successor. The
efficiency in shuffle depends on the length of pseudonym
and users′ position (i.e., the order in a transmission se-
quence) in a group. In our experiment, the position ranges
from [200, 1000], and the length of pseudonyms is 128 bits
and 256 bits respectively. The result is shown in TABLE 4.
When the group size is 1000, the computation time of U1000

is only 394 ms.
(2) Computational complexity in data collection
Only the bilinear pairing operations are counted

in data collection. Specifically, FN needs to execute
two bilinear pairing operations to verify CS’s data

TABLE 4
The computation time of shuffle (ms)

Group size

200 400 600 800 1000

The length of 128bits 106 176 248 320 388

pseudonym 256bits 120 187 262 321 394

collection request, and n + 1 bilinear pairing oper-
ation when checking the equation ê(P,

∑n
i=1 ωi) =∏n

i=1 ê(PKi, H1(MSDi||IDi||IDFN ||Ti||ai,0)) to extract
the raw data. Thus, FN takes n + 3 [20] pairing opera-
tion. In addition, pairing operation execution Tpair is about
2.187ms.

5.3 Comparison

Our scheme is compared with other well known privacy
technique in TABLE 3, including TTP reliance, unlinkability,
rawness, and computational complexity, etc.

6 CONCLUSION

In this paper, a lightweight raw data collection for data
publishing is proposed based on secret sharing and shuf-
fling algorithm, which is proved and evaluated to be more
practical due to the efficiency and the privacy.
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TABLE 3
Comparison of mainstream privacy preservation techniques and our scheme

Mainstream privacy preservation techniques

k-anonymity Differential privacy Data aggregation n-source anonymity

[9] [10] [11] [14] [16] Our scheme

Data center Fully trusted Fully trusted Semi-honest Semi-honest Semi-honest Semi-honest

TTP NO NO NO YES NO NO

Rawness NO NO NO YES YES YES

Unlinkability YES YES YES YES YES YES

Masked data storage - - 2Lbits nLbits nLbits Lbits

Computational complexity 2n hashes nβi hashes nβi hashes

of generating masked data - - - 2nL-bit XORs n(βi − 1)L-bit XORs secret shares generation

Computational complexity (n− 1)nL (n− 1)nL

of extracting raw data - - - -bit XORs -bit XORs Secret recovery
- this is not considered
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