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Asymmetric Complex-Vector Models With

Application to VSC–Grid Interaction
Lennart Harnefors, Fellow, IEEE, Xiongfei Wang, Senior Member, IEEE, Shih-Feng Chou, Member, IEEE,

Massimo Bongiorno, Senior Member, IEEE, Marko Hinkkanen, Senior Member, IEEE, and

Mikko Routimo, Member, IEEE

Abstract—The properties of complex space-vector models for
asymmetric three-phase systems are investigated in this paper.
Most importantly, three alternative methods for stability analysis
of asymmetric closed-loop systems are presented. The end results
avoid the usage of matrix manipulations. It is shown how the
theory can be applied to modeling and stability analysis of a
grid-connected voltage-source converter (VSC). The methods are
compared using numerical examples.

Index Terms—Complex space vectors, complex transfer func-
tions, converter control, passivity, stability.

I. INTRODUCTION

S
YMMETRIC (balanced) three-phase dynamic systems can

be modeled using complex space vectors together with

complex transfer functions [1]. This allows a single-input

single-output (SISO) notation, even though the system in

reality is multi-input multi-output (MIMO), since each space

vector has two components.

Conversely, the input admittance of a grid-connected

voltage-source converter (VSC), as seen from the point of

common coupling (PCC), has in general asymmetric (also

called unsymmetric or imbalanced) properties [2]. This tra-

ditionally necessitates MIMO models using real space vectors

and 2 × 2 transfer function matrices [3]–[5]. Such modeling

methods are well established [6]–[9]; yet, they add complexity

relative SISO models. For stability analysis, the conventional

Nyquist criterion (NC) is replaced by the generalized Nyquist

criterion (GNC) [10], [11]. Matrix modeling of the grid

impedance is needed, which is inconvenient particularly for

a symmetric grid, where a SISO model suffices.

Steps toward generalizing complex-vector theory to asym-

metric models, including VSC modeling and analysis, have

been taken. In [1], it is shown how a 2×2 transfer function ma-

trix can be decomposed into two complex transfer functions,

respectively for the (here called) symmetric and antisymmetric

This work was supported in part by ABB.
L. Harnefors is with ABB AB, Corporate Research, Västerås, Sweden (e-
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parts. An asymmetric complex-vector SISO model is obtained.

In [12], it is suggested to neglect the antisymmetric part.

Avoiding this simplification, a MIMO scheme is considered

in a series of papers by Rygg et al., [13]–[16]. The scheme

is in [13] called modified sequence domain, but is here,

for consistency with the aforementioned SISO model, called

an asymmetric complex-vector MIMO model. Compared to

the real-vector MIMO model, certain benefits are gained,

including the usage of SISO techniques for stability analysis

and grid-impedance modeling. A similar model, but in the

stationary αβ frame rather than in the synchronous dq frame,

is proposed in [17].

In this paper, further results for the asymmetric complex-

vector SISO and MIMO models are presented in Section II.

They include expressions for cascading two SISO models and

certain properties of the generic transfer function matrix of

the MIMO model. The method for modeling of grid-connected

VSCs of [12] is revisited and clarified concerning the antisym-

metric part. In addition, the principles of [2] for dissipation and

passivity of a MIMO model are briefly reprised. It is shown

that the measure of passivity, here called the passivity index,

can be conveniently expressed in the transfer functions of the

asymmetric complex-vector SISO model.

The most important contribution is the consideration in Sec-

tion III of three alternative methods for closed-loop stability

analysis using the asymmetric complex-vector models. Method

1 extends the approach of [12] by taking also the antisym-

metric part into account. The closed-loop system is separated

into a symmetric inner loop and an antisymmetric outer loop.

Stability is analyzed by applying the NC to both loops.

(Another method using cascaded loops for stability analysis of

grid-connected VSCs—but not relying on complex vectors—is

proposed in [18], [19].) Methods 2 and 3 respectively utilize

the eigenvalue and determinant GNC variants applied to the

asymmetric complex-vector MIMO model. Expressions which

solely use the transfer functions of the corresponding SISO

model are derived, thereby obviating matrix manipulations.

Methods 2 and 3 are close in spirit to the SISO approach

for stability analysis in [15], but they are generic for any

asymmetric system, whereas in [15] the interconnection of two

impedances is considered. Although grid-connected VSCs are

the foremost application, there are potentially many other, such

as subsynchronous-oscillation studies [20].

In Section IV, finally, the three methods for stability anal-

ysis of Section III are compared using illustrative numerical

examples (one of them verified experimentally), as applied to

.



the VSC model of Section II. It is verified that all methods

give identical results concerning stability vs. instability, while

they have different properties regarding how the information

is presented. Whereas Method 2 may be the most straight-

forward to use, Method 1 provides valuable insight into the

mechanisms causing instability and the risk thereof. Method 3

is found to be less desirable, since the resulting Nyquist curve

often is difficult to interpret, and can tentatively be dismissed

from further studies.

II. COMPLEX-VECTOR MODELING OF ASYMMETRIC

SYSTEMS

Complex space vectors and their associated complex trans-

fer functions (denoted by bold letters) facilitate modeling of

symmetric systems. Assuming modeling in the dq frame, with

the generic input and output vectors u = ud + juq and

y = yd + jyq and the generic transfer function G(s) =
Gd(s) + jGq(s), we have1

y = G(s)u. (1)

Despite that each vector accounts for two signals, the d and

q components, a SISO notation is facilitated. By resolving

the d and q components, the MIMO correspondence to (1) is

obtained, using two-row real space vectors and a 2×2 transfer

function matrix (denoted by italic letters) as
[

yd
yq

]

︸ ︷︷ ︸

y

=

[
Gdd(s) Gdq(s)
Gqd(s) Gqq(s)

]

︸ ︷︷ ︸

G(s)

[
ud

uq

]

︸ ︷︷ ︸

u

(2)

with

Gdd(s) = Gqq(s) = Gd(s) Gqd(s) = −Gdq(s) = Gq(s).
(3)

By lifting the restriction (3), allowing four unique matrix

elements, asymmetric systems—such as VSCs and salient-pole

synchronous machines—can be modeled as well. However,

then (1) no longer suffices, which precludes modeling using

complex vectors and a SISO notation.

A. Asymmetric Complex-Vector SISO Model

In [1] it is proposed to extend the SISO model (1) to

asymmetric systems by using two parts, here called symmetric

and antisymmetric, each having its own transfer function. The

antisymmetric part takes the conjugated input signal, denoted

by (·)∗. With a cleaner notation than in [1], in the sense that

subscripts are avoided, the model is expressed as

y = G(s)u+ G̃(s)u∗. (4)

The block diagram in Fig. 1(a) illustrates (4) graphically (the

dashed feedback loop is, at this stage, disregarded). With

G̃(s) = G̃d(s) + jG̃q(s) in addition to G(s), (4) has four

degrees of freedom. In [21], it is demonstrated how this model

can be applied to various asymmetric systems.

The effect of the conjugation made in the antisymmetric

part is illustrated particularly well for a steady-state frequency

1The Laplace variable s shall be considered as the operator s = d/dt,
where appropriate.

Fig. 1. (a) Asymmetric complex space-vector SISO model. (b) Corresponding
MIMO model. The dashed lines show optional feedback loops which are
considered in Section III.

component in u which rotates counterclockwise, say Uejωt.

The conjugation gives rise to a mirror component U∗e−jωt,

rotating clockwise. Filtered through G̃(s), the mirror compo-

nent adds to the output signal.

The model (4) can be extended in various ways. Of partic-

ular importance is the cascade connection of two asymmetric

systems, e.g., asymmetric admittance and impedance

i = Y(s)u+ Ỹ(s)u∗ (5)

Y = Z(s)i+ Z̃(s)i∗. (6)

Substituting (5) in (6) yields

Y = Z(s)[Y(s)u+ Ỹ(s)u∗]+ Z̃(s)[Y(s)u+ Ỹ(s)u∗]∗ (7)

which simplifies to (4) with

G(s) = Z(s)Y(s) + Z̃(s)Ỹ∗(s) (8)

G̃(s) = Z(s)Ỹ(s) + Z̃(s)Y∗(s). (9)

In a similar fashion, the input–output description of any

asymmetric system or circuit, no matter how complex, can

be reduced to the SISO model (4).

Remark 1: In the sequel, some equations explicitly involve

the d and q components of a complex transfer function. They

can be extracted according to [1]

Gd(s) =
G(s) +G∗(s)

2
Gq(s) =

G(s)−G∗(s)

2j
. (10)

Remark 2: Observe that, when conjugating a complex trans-

fer function as in (10), s is to be considered real. This means

that care must be exercised when computing the frequency

response of a conjugated transfer function, e.g., G∗(jω). Nu-

merically, conjugation is more conveniently applied to the full

frequency response, denoted as [G(jω)]∗. From the rules of

conjugation we have that G∗(s) = [G(s∗)]∗, and specifically

for s = jω

G∗(jω) = [G(−jω)]∗. (11)



This is straightforward to implement, e.g., in MATLAB. A

vector representing G(jω) is first computed, with points

symmetrically distributed for positive and negative ω. The

vector representing [G(−jω)]∗ is then obtained by applying

the commands fliplr and conj.

B. Asymmetric Complex-Vector MIMO Model

Suppose that there is a mirror component already in the

input signal. This is the case particularly when closing the

feedback loop in Fig. 1(a), see Section III. The SISO model

(4) then does not immediately reveal the couplings between

the two components. To facilitate this, an extension to a corre-

sponding MIMO model can be made by first conjugating (4)

as Y∗ = G∗(s)u∗+G̃∗(s)u. The asymmetric complex-vector

MIMO model (denoted by bold–italic letters) is then formed

by combining (4) and its conjugate, collecting the original and

conjugated (mirror) components in two-row vectors as [see

Fig. 1(b)]

[
y

y∗

]

︸ ︷︷ ︸

y

=

[
G(s) G̃(s)

G̃∗(s) G∗(s)

]

︸ ︷︷ ︸

G(s)

[
u

u∗

]

︸ ︷︷ ︸

u

. (12)

Models in the form (12) are extensively studied in [13]–[16].

Among other things, it is shown in [13] that G(s) can be

obtained from G(s) of the original real-vector MIMO model

(2) via the linear transformation

G(s) = TG(s)T−1, T =
1√
2

[
1 j
1 −j

]

. (13)

T is unitary, i.e., T−1 = TH , where the superscript H
indicates transpose–conjugate (Hermitian conjugate). Trans-

formation (13), although with the matrix T → T /
√
2, was

introduced already in the mid-1970s [20].

Some benefits of (12) relative (2) are stated in [13]–[16],

among them that the off-diagonal elements of G(s) quantify

the level of asymmetry. For the special case of a symmetric

system they vanish, reducing (12) to (1) and its conjugate.

Another benefit of (12) is that G(s) has a restricted struc-

ture. Whereas the elements of G(s) in (2) can be arbitrary, the

diagonal and the off-diagonal elements of G(s) are identical,

but conjugated. This fact is pointed out in [22], but yet it does

not seem to be fully embraced in the literature. The reason

for the restriction is that the information of the SISO model

is duplicated in the MIMO model; the second row of (12)

is the conjugate of the first row. The asymmetric complex-

vector SISO and MIMO models are therefore complementary

and carry exactly the same information. The main purpose

of the MIMO model is as a tool for calculating results that

cannot be obtained using the SISO model, as exemplified in

the sequel.

As (12) is generic for any asymmetric system, it is not sur-

prising that the restricted structure of G(s) is invariant under

the basic matrix manipulations. For adding or subtracting two

matrices this is obvious. For G(s) = Z(s)Y (s) it follows

from (5) and (6) that (8) and (9) are the resulting elements of

Fig. 2. VSC circuit diagram and control system.

G(s). Inverting a matrix in the form (12), e.g., to obtain the

admittance corresponding to an impedance, yields

G
−1(s) =

[
G−1(s) G̃−1(s)

G̃∗

−1(s) G∗

−1(s)

]

(14)

where G−1(s) = G∗(s)/[G(s)G∗(s) − G̃(s)G̃∗(s)] and

G̃−1(s) = −G̃(s)/[G(s)G∗(s)−G̃(s)G̃∗(s)]. Finally, trans-

posing a matrix in the form (12) gives G̃(s) → G̃∗(s) and

corresponds to trading places between the blocks (·)∗ and

G̃(s) in Fig. 1(a).

C. Application to Modeling of Grid-Connected VSCs

A grid-connected VSC can be modeled as an asymmetric

input admittance as observed from the PCC [2], [12]. From the

control laws that normally are used for grid-connected VSCs,

the admittance parts Y(s) and Ỹ(s) can be derived without

intermediately using a real-vector MIMO model (as done in

[2]). This modeling closely follows [12]. Yet there is the need

for clarification, since in [12] attention is paid only to the

derivation of Y(s), not Ỹ(s); see the Appendix for details.

1) Control-System Structure: The VSC control system un-

der consideration is depicted in Fig. 2. The ac-side circuit

is referred to the αβ frame—denoted by the superscript s—

whereas the control system is implemented in the dq frame.

The quantities correspond as is = ejθi, etc., where θ is

the dq-frame angle and i is the converter input current. The

converter input filter is approximated as purely inductive,

with inductance L. Four control loops are incorporated: the

current controller (CC), the phase-locked loop (PLL), the

direct-voltage controller (DVC), and the alternating-voltage

controller (AVC).

The CC is given by the control law

vref = Fc(s)(i− iref)− jω1Li+H(s)E (15)

where vref is the reference for the converter-voltage v, the two

related by the linear model v = Gl(s)vref for the converter

latency [24], iref = irefd + jirefq is the reference for i, term

−jω1Li is the dq decoupler, and ω1 is the fundamental angular

frequency. Unlike [12], but similar to [2], feedforward through

the low-pass filter H(s) [with H(0) = 1] of the PCC voltage

E is included. A proportional (P) controller Fc(s) is the core



to which an integral (I) part and/or resonant parts can be added,

as desired.

The PLL computes the dq-frame angle as

θ =
1

s
[Fp(s)Im{E}+ ω1] (16)

where a PI controller Fp(s), possibly cascaded with a low-pass

filter to suppress disturbances such as harmonics, is generally

employed.

The DVC controls the direct (dc-link) voltage vdc via the

dc-link energy Wdc = (Cdc/2)v
2
dc, where Cdc is the dc-link

capacitance, using the control law

irefd = Fd(s)(W
ref
dc −Wdc). (17)

Controller Fd(s) is often structurally similar, perhaps even

identical, to Fp(s).
The AVC controls the PCC-voltage magnitude via the law

irefq = Fa(s)(E0 − |E|) (18)

where E0 is the PCC-voltage magnitude reference. Fa(s) may

be a PI controller, possibly purely P or purely I, depending

on the situation. A low-pass filter can—or, rather, should—be

included in cascade, particularly if a P part is used.

2) Input Admittance: From the control laws (15)–(18),

expressions for the input admittance parts Y(s) and Ỹ(s)
can be derived by adding up the individual contributions, as

detailed in the Appendix. The result is

Y(s) = Yc(s) +Yp(s) +Gc(s)Yd(s) +Ya(s) (19)

Ỹ(s) = −Yp(s) +Gc(s)Y
∗

d(s) +Ya(s) (20)

where

Gc(s) =
Gl(s)Fc(s)

sL+ jω1L[1−Gl(s)] +Gl(s)Fc(s)
(21)

Yc(s) =
1−Gl(s)H(s)

sL+ jω1L[1−Gl(s)] +Gl(s)Fc(s)
(22)

Yp(s) = −1

2
[Yc(s)−Gc(s)i0/E0]Gp(s) (23)

Yd(s) = −1

2
[Yc(s) + i∗0/E0]Gd(s) (24)

Ya(s) = −j
1

2
Gc(s)Fa(s). (25)

Here, Gc(s) and Yc(s) are respectively the closed-loop

system and the input-admittance contribution of the CC.

Equations (23), (24), and (25) quantify the input-admittance

contributions of the PLL, DVC, and AVC, respectively. In (23)

and (24), Gp(s) and Gd(s) are respectively the closed-loop

systems of the PLL and the DVC, given as

Gp(s) =
E0Fp(s)

s+ E0Fp(s)
Gd(s) =

κE0Fd(s)

s+ κE0Fd(s)
(26)

where κ = 3/(2K2) and K is the space-vector scaling

constant.2 Normally, the controllers are designed so that the

bandwidths of Gp(s) and Gd(s) are substantially lower than

that of Gc(s).

2κ = 1 for power-invariant scaling (K =
√

3/2) or normalization to
per-unit quantities.

In (19) and (20) it can be noted that, being symmetric, the

CC affects only Y(s). Neglecting the latency, i.e., Gl(s) = 1,

Gc(s) and Yc(s) become real for a real Fc(s). This property

is fundamental for reducing the complexity of real MIMO

models, since a diagonal admittance matrix with relatively

simple expressions is obtained [2]. Complex models obviate

this issue; a complex Fc(s)—resulting, e.g., from the addi-

tion of reduced-order generalized integrators [12]—poses no

further difficulties.

Conversely, the PLL, DVC, and AVC, having an asymmetric

impact, affect both Y(s) and Ỹ(s).
Remark 3: Equations (19) and (20) simplify under certain,

but often realistic, assumptions. First, since Gc(s) has high

bandwidth, Gc(s) ≈ 1 within the much lower bandwidths of

Gp(s) and Gd(s). This allows putting Gc(s) = 1 in (19),

(20), and (23). Second, converters are often operated at or

near unity power factor, allowing iq0 = 0 to be assumed.

Third, the PLL and DVC closed-loop bandwidths are often

selected in the same range. So, with the final assumption that

Gd(s) = Gp(s), we get Yp(s) = −[Yc(s)− id0/E0]Gp(s)/2
and Yd(s) = −[Yc(s) + id0/E0]Gp(s)/2, giving

Y(s) = Yc(s)[1−Gp(s)] +Ya(s) (27)

Ỹ(s) = −(id0/E0)Gp(s) +Ya(s). (28)

A considerable simplification is obtained. It can be noted that

Y(s) becomes operating-point independent, because the PLL

and DVC contributions that are proportional to id0 cancel in

(19), whereas in (20) they add constructively.

D. Passivity Properties and Passivity Index

Studying the passivity (dissipative) properties of an asym-

metric system is particularly useful for the input admittance

of a grid-connected VSCs [2]. For Y (s) in the real-vector

MIMO model (2), they are quantified via the eigenvalues

pY (ω) of A(ω) = (1/2)[Y (jω) + Y H(jω)] [23]. If the mini-

mum eigenvalue pmin
Y (ω)—here called the passivity index3—

is nonnegative, Y (s) is dissipative for that ω. From (13) it

follows that Y (jω)+Y H(jω) = T−1[Y (jω)+Y H(−jω)]T .

Consequently, for the complex-vector MIMO model,4 the pas-

sivity index is found as the minimum eigenvalue of A(ω) =
(1/2)[Y (jω) + Y H(−jω)], whose elements are given as

A(ω) =
1

2

[
Y(jω) +Y∗(−jω) Ỹ(jω) + Ỹ(−jω)

Ỹ∗(jω) + Ỹ∗(−jω) Y∗(jω) +Y(−jω)

]

.

(29)

After simplification, the following expression in the compo-

nents of Y(s) and Ỹ(s) is obtained:

pmin
Y (ω) =Re{Yd(jω)}

−
√

[Im{Yq(jω)}]2 + [Re{Ỹd(jω)}]2 + [Re{Ỹq(jω)}]2.
(30)

From the standpoint of closed-loop stability, see Section III,

it is generally beneficial if the regions of negative passivity

3Note the difference relative [23], where the passivity index is instead
defined as the ultimate minimum minω pY (ω).

4A way of calculating the passivity index for the complex-vector SISO
model is yet to be found.



Fig. 3. Closed-loop system in Fig. 1(a) redrawn as a symmetric inner loop
and an antisymmetric outer loop.

index are as narrow as possible [2]. In this respect, (30) is

instructive, as it shows explicitly that only the d component

of the symmetric part, more specifically the real part thereof,

can contribute to a positive passivity index. All other parts can

only contribute negatively.

Remark 4: Equations (27) and (28) are illustrative concern-

ing the VSC input-admittance passivity properties under the

assumptions stated in Remark 3. They show that only the

CC, via Yc(s), can contribute to a positive passivity index.

The minus sign of Gp(s) in (27) indicates that the PLL and

the DVC contribute negatively, increasingly so with higher

bandwidth [2]. As Gc(s) is predominantly real, Ya(s) is

predominantly imaginary and, thus, adds to Yq(s) and Ỹq(s),
implying a negative contribution from the AVC. Somewhat

different properties are obtained when Gd(s) 6= Gp(s), on

the other hand. For example, (23) and (24) indicate that, by

making the bandwidth of Gp(s) much larger than that of

Gd(s), a positive contribution in rectifier mode (id0 > 0)

can be obtained. Conversely, the opposite selection of the

bandwidths gives a positive contribution in inverter mode

(id0 < 0).

III. CLOSED-LOOP STABILITY ANALYSIS

By including the dashed lines in Fig. 1, a closed-loop system

is obtained. This is a generic model for any asymmetric system

that uses negative feedback, but grid-connected VSCs are

the foremost application. Three alternative stability analysis

methods are considered in this section.

A. Method 1, Two-Loop Representation of the SISO Model

Fig. 1(a) can be redrawn as two cascaded feedback loops,

as shown in Fig. 3. These loops are mathematical abstractions

rather than physical control loops, but they allow the stability

impacts of G(s) and G̃(s) to be analyzed separately. Closing

the symmetric inner loop forms the sensitivity function [11]

S(s) =
1

1 +G(s)
. (31)

The stability of (31) can obviously be evaluated by applying

the NC to the return ratio G(s). For a complex transfer

function, the response for ω > 0 is not generally the conjugate

of that for ω < 0. Consequently, evaluation for s = jω over

−∞ < ω < ∞ is required, giving a Nyquist curve which

generally is not symmetric about the real axis.

The antisymmetric outer loop can be further simplified as

shown in Fig. 4(a), giving u = −Ga(s)u
∗, where

Ga(s) = G̃(s)S(s) =
G̃(s)

1 +G(s)
. (32)

Fig. 4. (a) Antisymmetric outer loop with Ga(s) = G̃(s)S(s). (b)
Equivalent symmetric outer loop with Gs(s) = −Ga(s)G∗

a(s).

Conjugating u = −Ga(s)u
∗ yields u∗ = −G∗

a(s)u, and,

thus, by eliminating u∗ among the two relations, u =
Ga(s)G

∗

a(s)u. That is, the antisymmetric outer loop can be

resolved into a symmetric loop as illustrated in Fig. 4(b). The

stability of this loop can be assessed by applying the NC to

the return ratio

Gs(s) = −Ga(s)G
∗

a(s). (33)

Note that Ga(s)G
∗

a(s) has real coefficients, which is why

Gs(s) does not have bold-letter notation.

Method 1 offers some valuable insight. Poor stability mar-

gins of G(s) give a small minimum distance from the Nyquist

curve to the critical point −1, the inverse being the sensitivity

peak |S(jω)|max. Since S(s) appears as a factor in Gs(s), the

sensitivity peak expands the Nyquist curve of Gs(s), likely

reducing its stability margins. Thus, if G(s) and G̃(s) can be

shaped, primary focus should be the stability margins of G(s),
since they affect both loops. Examples are given in Section IV.

Remark 5: If G(s) and G̃(s) both are stable, the total

closed-loop system is guaranteed to be asymptotically stable

if the Nyquist curves for G(s) and Gs(s) both avoid encir-

clement of −1. This requirement is conservative, however, as

there may be cases where the inner loop is unstable [i.e., the

Nyquist curve for G(s) encircles −1 clockwise], but the total

system is stabilized by the outer loop [i.e., the Nyquist curve

for Gs(s) encircles −1 counterclockwise]. An example thereof

is given in Section IV.

B. Method 2, Eigenvalue GNC Variant Applied to the MIMO

Model

By considering the MIMO model (12), the stability of

the closed-loop system obtained by the dashed lines in Fig.

1(b) can be analyzed by applying the GNC. The eigenvalue

GNC variant [10] is closest in spirit to the NC and involves

evaluating the eigenvalues λ(s) of the matrix return ratio G(s).
Plotting them for s = jω gives the so-called characteristic

loci, which, taken together, form the Nyquist curve. Solving

for λ(s) in the characteristic equation |λ(s)I − G(s)| = 0,

where I is the identity matrix, yields

λ(s) = Gd(s)±
√

G̃(s)G̃∗(s)−G2
q(s)

= Gd(s)± j Gq(s)

√

1− G̃(s)G̃∗(s)

G2
q(s)

︸ ︷︷ ︸

G′

q
(s)

. (34)

Since G̃(s)G̃∗(s) has real coefficients, so has G′

q(s). Let

λ1,2(s) respectively correspond to the plus and minus signs



in (34). We have λ1(−jω) = Gd(−jω) + jG′

q(−jω) =

G∗

d(jω) + jG
′
∗

q (jω) = [Gd(jω) − jG′

q(jω)]
∗. This is the

mirror image in the real axis of λ2(jω) = Gd(jω)−jG′

q(jω).
Consequently, instead of evaluating both characteristic loci for

ω > 0, it is sufficient to evaluate λ1(jω), i.e., the plus sign in

(34), for −∞ < ω < ∞—the same crossings of the Nyquist

curve with the real axis are obtained, but symmetry about the

real axis is lost. For this sake, bold-letter notation is used in

the following equivalent expression for λ1:

λ(s) = G(s) + jGq(s)

[√

1− G̃(s)G̃∗(s)

G2
q(s)

− 1

]

. (35)

This expression is instructive, as it involves adding a term to

G(s), i.e., the return ratio of the inner loop in Method 1. The

mentioned term vanishes for G̃(s) = 0. Unlike Method 1, it

is sufficient to plot one Nyquist curve, that for λ(s).

C. Method 3, Determinant GNC Variant Applied to the MIMO

Model

Here, stability is verified if the Nyquist curve for the

determinant of the return difference I+G(s) does not encircle

the origin [11]. This is equivalent to avoidance of encirclement

of −1 by the Nyquist curve for

γ(s) = |I +G(s)| − 1. (36)

We immediately obtain

γ(s) = [1 +G(s)][1 +G∗(s)]− G̃(s)G̃∗(s)− 1

= G(s) +G∗(s) +G(s)G∗(s)− G̃(s)G̃∗(s). (37)

As in Method 2, an addition to G(s) is made, but it is such

that γ(s) has real coefficients; hence, its notation in italics.

Remark 6: Interestingly, (37) can be derived from Fig. 4(b)

as follows. The characteristic equation for the closed-loop

system is given by 1 + Gs(s) = 1 −Ga(s)G
∗

a(s) = 0, with

Ga(s) = G̃(s)/[1 +G(s)]

1− G̃(s)G̃∗(s)

[1 +G(s)][1 +G∗(s)]
= 0. (38)

Multiplying by [1+G(s)][1+G∗(s)] now yields 1+γ(s) = 0,

with γ(s) given by (37).

D. Application to Stability Analysis of Grid-Connected VSCs

Connecting a VSC, with input-admittance parts given by

(19) and (20), to an asymmetric grid, with impedance parts

Z(s) and Z̃(s), gives the circuit model shown in Fig. 5. The

grid voltage Vg is considered constant. Since the VSC input

admittance is obtained via linearization and is operating-point

dependent, a constant current source i0 is added to i. The

circuit is represented by the complex-vector SISO model

i = Y(s)E+ Ỹ(s)E∗ + i0 (39)

E = Vg − [Z(s)i + Z̃(s)i∗] (40)

This is an impedance–admittance cascade connection similar

to (5) and (6), with the additions of i0 and Vg . Transfer func-

tions G(s) and G̃(s) of the cascade connection are obtained

Fig. 5. VSC with asymmetric input admittance connected to a grid with
asymmetric impedance.

according to (8) and (9). Since Vg and i0 are constant, they

do not impact the system stability. Considering Vg = i0 = 0
reduces the closed-loop system to the SISO and MIMO models

illustrated in Fig. 1 (dashed lines included).

1) Passive Grid Impedance: In many cases, the grid

impedance is resistive–inductive–capacitive, implying that it

is passive, i.e., it has a nonnegative passivity index for all

frequencies. Then, as shown in [23], the Nyquist curve for

the MIMO return ratio G(s) = Z(s)Y (s) cannot encircle −1
for ω where pmin

Y (ω) ≥ 0. Consequently, in all three stability

analysis methods under consideration, evaluation for ω where

pmin
Y (ω) < 0 is sufficient. In addition, for Method 1, while a

high sensitivity peak may lead to diminishing stability margins

of the outer loop, it does not pose an instability risk if located

where pmin
Y (ω) ≥ 0.

IV. NUMERICAL EXAMPLES

To compare the three methods for stability analysis of

Section III, a VSC as modeled in Section II-C is considered.

The grid impedance is considered as symmetric and, unless

noted otherwise, purely inductive, Z(s) = (s+ jω1)Lg, with

Lg = 1 per unit (p.u.), i.e., a short-circuit ratio of 1. This

represents a difficult operating condition for which instability

phenomena easily occur.

For the converter filter, L = 0.1 p.u., which is reasonable, at

least for converters of higher power and voltage ratings. The

CC, PLL, and DVC use pure P controllers, parametrized as

Fc(s) = αcL Fp(s) =
αp

E0
Fd(s) =

αd

κE0
(41)

respectively giving the closed-loop systems Gc(s) = αc/(s+
αc), Gp(s) = αp/(s + αp), and Gd(s) = αd/(s + αd). The

PCC-voltage feedforward filter is selected as H(s) = Gc(s).
In the three examples that follow, αc = 5 p.u., whereas αp, αd,

and the AVC are detailed in the later in the text. The operating

points E0 = 1 p.u. and i0 = id0 = 0.8 p.u. are considered.

The latency is neglected, i.e., Gl(s) = 1, since the properties

at higher frequencies are not studied.

A. Example 1: Identical PLL and DVC Dynamics, Without

AVC

Here, Fa(s) = 0, while two different values of αd = αp are

considered: 0.4 p.u. and 0.588 p.u. The following observations

can be made by inspecting Figs. 6 and 7.

• All three methods correctly show that αd = αp = 0.588
p.u. gives the boundary to instability. For Method 1, the

outer loop turns unstable.
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Fig. 6. Example 1: Nyquist curves for (solid) αd = αp = 0.4 p.u. and
(dashed) αd = αp = 0.588 p.u.

• Method 1 gives continuous Nyquist curves which are easy

to interpret.

• Method 2 results in a discontinuous Nyquist curve. A

comparison indicates that this curve incorporates infor-

mation from both curves of Method 1.

• Method 3 gives a convoluted Nyquist curve with numer-

ous crossings of the negative real axis, making interpre-

tation more difficult.

• The top plot of Fig. 7 indicates that the root cause for

destabilization of the outer loop in Method 1 is the

significant increase of the sensitivity peak obtained when

changing αd = αp from 0.4 p.u. to 0.588 p.u., accounting

for the expansion of the Nyquist curve for the outer loop.

• The bottom plot of Fig. 7 shows that the negative-

passivity-index region about ω = 0 widens when αd =
αp is increased from 0.4 p.u. to 0.588 p.u. This has the

effect that the sensitivity peak falls into the negative-

passivity-index region—an indication of stability prob-

lems [2].

To compare λ(jω) as given by (35) with the characteristic

loci λ1,2{G(jω)} (all evaluated for −∞ < ω < ∞), the latter

are overlayed the former in Fig. 8(a) and the displayed area

is enlarged relative Fig. 6. As can be observed, both curves

convey the same information, the latter with symmetry about

the real axis.

Fig. 8(b) depicts the full plots of λ(jω) and γ(jω), show-

ing that the latter is much wider than the former; roughly

|γ(jω)| ∼ |λ(jω)|2 for large ω. This is the result of term

G(s)G∗(s) in (37), which causes the multiple crossings of

the negative real axis as well.

B. Example 2: Different PLL and DVC Dynamics, With AVC

In this example, the claim of Remark 4 that the PLL can

give a positive contribution to the passivity index for id0 > 0
is put to test by letting αp = 1 p.u. and αd = 0.1 p.u. That

is, the PLL is now ten times faster than the DVC. In addition,

AVC with Fa(s) = Kaαa/(s+αa), Ka = 2 p.u., (i.e., P with
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Fig. 7. Example 1: Sensitivity function and input-admittance passivity index
for (solid) αd = αp = 0.4 p.u. and (dashed) αd = αp = 0.588 p.u.
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Fig. 8. Example 1: Nyquist curves for αd = αp = 0.4 p.u. (a) (solid) λ(jω)
and (dotted) characteristic loci of G(jω). (b) (solid) λ(jω) and (dashed)
γ(jω).

low-pass filter) is included. Two different values of bandwidth

αa are used: 0.1 p.u. and 0.487 p.u., the latter which gives the

boundary to instability. Comparing the solid curves in Fig. 9

to those in Fig. 6, increased stability margins can be observed.

These can be correlated to the reduced width of the negative-

passivity-index region in Fig. 10 relative Fig. 7.

Increasing the bandwidth of the AVC filter gives instability

(dashed curves). For Method 1, now the inner loop turns

unstable (although the outer loop is close to being unstable,

too). This results in an infinite sensitivity peak, see the top

plot of Fig. 10.

C. Example 3: Identical PLL and DVC Dynamics, Without

AVC, With Grid Resonance

The inductive grid impedance is modified to an inductive–

capacitive parallel impedance with the αβ-frame angular res-

onant frequency ωres = 1/
√
LgCg . For the control loops,

αd = αp = 0.4 p.u. and Fa(s) = 0. Two different resonant

frequencies are considered, 5.0 p.u. and 2.36 p.u.

In Fig. 11, all three methods immediately show stability

for ωres = 5.0 p.u. Methods 2 and 3 do so for ωres = 2.36
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Fig. 9. Example 2: Nyquist curves for (solid) αa = 0.1 p.u. and (dashed)
αa = 0.487 p.u.
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Fig. 10. Example 2: Sensitivity function and input-admittance passivity index
for (solid) αa = 0.1 p.u. and (dashed) αa = 0.487 p.u.

p.u. as well. However, Method 1 too shows stability, since

the dashed Nyquist curve for the inner loop encircles −1
clockwise, whereas that for the outer loop makes the en-

circlement counterclockwise. The outer loop stabilizes the

unstable inner loop. This finding is of importance. Since the

PLL and DVC dynamics are identical, Y(s) is operating-point

invariant, whereas Ỹ(s) is proportional to −id0, see (27) and

(28). Consequently, the stability is conditional of the operating

point id0 = 0.8 p.u. For example, if instead id0 = 0, then

Ỹ(s) = 0 ⇒ Ga(s) = 0 ⇒ Gs(s) = 0, and the outer loop no

longer stabilizes the inner loop.

The aggravated situation for the case ωres = 2.36 p.u. can be

correlated to the sensitivity peak coinciding with pmin
Y (ω) < 0,

see Fig. 12. Even though the sensitivity peak for ωres = 5.0
p.u. is higher, it is merely on the boundary of the negative-

passivity-index region.
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Fig. 11. Example 3: Nyquist curves for (solid) ωres = 5.0 p.u. and (dashed)
ωres = 2.36 p.u.
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Fig. 12. Example 3: Sensitivity function and input-admittance passivity index
for (solid) ωres = 5.0 p.u. and (dashed) ωres = 2.36 p.u.

1) Experimental Results: The case ωres = 2.36 p.u. is

verified experimentally using a VSC with ratings 7 kVA, 200 V

(rms), and 50 Hz. The sampling and switching frequencies are

both 10 kHz, using a dSPACE DS1007 system where voltage

and current measurement is made by a DS2004 high-speed

analog-to-digital board. Gate signals are generated using a

DS5101 digital waveform output board. The parameters are

identical to those of the theory; in addition, there are obviously

losses in the circuit that are not accounted for in the model.

Fig. 13 shows the PCC phase voltage and the converter phase

current, for the same phase. (The curve of the latter, which

initially has the larger amplitude, is shown with a sign change.)

As can be observed, initially, where the dc-link load power Pdc

is set so as to give i = 0.8 p.u., the system is stable. In the

center of the displayed time interval, Pdc is zeroed, resulting

in the current decaying to zero. In accordance with the finding

of Method 1 that the stability is conditional of the operating



Fig. 13. Example 3: Experimental verification for ωres = 2.36 p.u. In the
center of the displayed time interval, Pdc is zeroed, resulting in id0 = 0 and
instability.

point id0 = 0.8 p.u., this results in instability and subsequent

tripping of the converter.

Remark 7: In [12], it is argued that stability often can be

(approximately) assessed by considering just the symmetric

part of Fig. 1(a), i.e., the inner loop of Method 1. This is

corroborated by the finding in Section III that the stability

margins of the inner loop, via the sensitivity function S(s),
affect the outer loop as well. In all three examples shown

here, when at or close to instability (dashed curves), indeed

the Nyquist curves for both loops show very poor stability

margins. Examining the inner loop only may give results

that are either slightly optimistic (as in Example 1), exact

(as in Example 2), or slightly pessimistic (as in Example 3)

concerning stability. Yet, it is advisable to examine both loops,

as there may be cases where the results deviate from these

findings.

V. CONCLUSIONS

Modeling and analysis of asymmetric systems using

complex-vector SISO and MIMO models was considered.

Both models carry the same information and are, thus, com-

plimentary. The main usage for the MIMO model is for

calculating results that cannot be obtained using the SISO

model.

One benefit of the approach is that direct complex-vector

modeling of asymmetric systems is facilitated, where the real-

and imaginary-part operators give contributions to both the

symmetric and antisymmetric parts.

Another benefit is that complex transfer functions can be

used for closed-loop stability analysis—particularly as applied

to grid-connected VSCs—avoiding matrix manipulations. In

this respect, three candidate methods for stability analysis were

presented and evaluated.

Method 1 (two-loop representation) shows that the stability

margins of the inner loop affect also those of the outer loop,

via the sensitivity function. Two Nyquist curves need to be

plotted; yet, it is in general easy to assess stability. Exceptions

are certain close-to-instability cases, where the curves for the

inner and outer loops may encircle −1 respectively clockwise

and counterclockwise.

In Method 2 (eigenvalue GNC variant), one Nyquist curve

suffices. Its interpretation, including realistic stability margins,

is straightforward.

Method 3 (determinant GNC variant), on the other hand,

is less useful, since the resulting Nyquist curve often is

convoluted with multiple crossings of the negative real axis.

APPENDIX

The input-admittance contributions of the CC, PLL, DVC,

and AVC are here derived.

The effect of the CC can be calculated by combining the

relation (s+ jω1)Li = E− v obtained from Fig. 2 with (15)

and the latency model v = Gl(s)vref , giving

i = Gc(s)iref +Yc(s)E (42)

where the expressions for the transfer functions are given in

(21) and (22).

The PLL gives a dynamic impact via the dq transforma-

tions of is and Es as well as via the αβ transformation

of vref . This impact is nonlinear and the technique for its

linearization is well studied in the literature, e.g., [12]. In brief,

parametrization in operating points and perturbation quantities

is made as is = ejω1t(i0 + ∆i), Es = ejω1t(E0 + ∆E),
and vs

ref = ejω1t(v0 + ∆vref) [since the PLL aligns the dq
frame along Es, E0 is real; evaluating (15) statically gives

v0 = E0 − jω1Li0]. Similarly, θ = ω1t + ∆θ, allowing the

dq and αβ transformations to be linearized according to the

principle i = e−jθis ≈ (1−j∆θ)(i0+∆i) ≈ i0+∆i−ji0∆θ.

This results in the substitutions

i → i− ji0∆θ E → E− jE0∆θ vref → vref + jv0∆θ
(43)

to be made in (15) to account for the PLL impact. Solving for

i results in the addition of j[Gc(s)i0 − E0Yc(s)]∆θ to (42).

Eliminating ∆θ by substituting (43) in (16) yields ω1t+∆θ =
[Fp(s)Im{E0 + ∆E − jE0∆θ} + ω1]/s, from which ∆θ is

solved as

∆θ = Gp(s)Im{∆E}/E0 (44)

where Gp(s), given in (26), represents the closed-loop PLL

dynamics. Since Im{∆E} = Im{E} = (E − E∗)/(2j),
accounting for the PLL impact implies adding Yp(s)(E−E∗)
to (42), where Yp(s) is given in (23).

To calculate the DVC impact, the converter is approximated

as lossless. Fig. 2 yields the power balance Wdc = (P −
Pdc)/s. Substituting this relation in (17) and expressing the

result in perturbation quantities (where ∆W ref
dc = ∆Pdc = 0)

gives

∆irefd = −Fd(s)

s
∆P. (45)

Linearizing the relation P = κRe{Ei∗} for the active input

power yields ∆P = κRe{E0∆i∗ + i∗0∆E} = κRe{E0∆i +
i∗0∆E}, from which ∆i is eliminated by substituting (42) (with

perturbation quantities), giving

∆P = κRe{E0Gc(s)∆iref + [E0Yc(s) + i∗0]∆E}. (46)



In this process, the PLL impact on ∆P is neglected, which

for most purposes represents a minor approximation. The CC

and the DVC are normally tuned so that the closed-loop

dynamics of i are much faster than those of Wdc. Yet, owing

to the control law (17), irefd evolves on the time scale of Wdc.

This motivates considering Gc(s) = 1 in (46), which yields

the simplification Re{E0Gc(s)∆iref} = E0∆irefd . Now, by

substituting (46) in (45), the following simple solution of ∆irefd

is obtained:

∆irefd = −Gd(s)Re{[Yc(s) + i∗0/E0]∆E} (47)

where Gd(s) is given in (26). An equivalent expression for

(47) is ∆irefd = Yd(s)∆E + Y∗

d(s)∆E∗, where Yd(s) is

given in (24). Substitution in (42), dropping the distinction

of perturbation quantities, it is found that the DVC impact is

accounted for by adding Gc(s)[Yd(s)E+Y∗

d(s)E
∗] to (42).

For the AVC, in (18), |E| ≈ Re{E}, since the dq frame is

aligned with Es. Thus, (18) in perturbation quantities becomes

∆irefq = −Fa(s)Re{∆E}, so the AVC impact is found simply

by adding Ya(s)(E + E∗) to (42), where Ya(s) is given in

(25).
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