
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Mohagheghi, Parastoo; Lassenius, Casper; Bakken, Ingrid Omang
Enabling team autonomy in a large public organization

Published in:
Agile Processes in Software Engineering and Extreme Programming – Workshops - XP 2020 Workshops,
Revised Selected Papers

DOI:
10.1007/978-3-030-58858-8_25

Published: 01/01/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Mohagheghi, P., Lassenius, C., & Bakken, I. O. (2020). Enabling team autonomy in a large public organization.
In M. Paasivaara, & P. Kruchten (Eds.), Agile Processes in Software Engineering and Extreme Programming –
Workshops - XP 2020 Workshops, Revised Selected Papers (pp. 245-252). (Lecture Notes in Business
Information Processing; Vol. 396 LNBIP). Springer. https://doi.org/10.1007/978-3-030-58858-8_25

https://doi.org/10.1007/978-3-030-58858-8_25
https://doi.org/10.1007/978-3-030-58858-8_25

Enabling Team Autonomy in a Large Public
Organization

Parastoo Mohagheghi1(&), Casper Lassenius2,3,
and Ingrid Omang Bakken1

1 The Norwegian Labour and Welfare Administration, Oslo, Norway
{parastoo.mohagheghi,ingrid.omang.bakken}@nav.no
2 Simula Metropolitan Centre for Digital Engineering, Oslo, Norway

casper@simula.no
3 Aalto University, Aalto, Finland

Abstract. This paper describes how autonomy emerged in a team in a large
public organization and which factors were important in this process. The
organization has back sourced software development and abandoned a stage-
based software development process with many handovers between business, IT
and vendors. We collected data in four semi-structured interviews and analyzed
information on changes in the structure and responsibilities of the team. The
team has refined its portfolio for better cohesion, stepwise taken over the
responsibility for software development from the vendor and in parallel
recruited software developers, UX designers and testers. Product owners have
joined the team as well. Supported by changes to the financing model, the team
has transformed from mediating between business and vendors to a cross-
functional product team with autonomy over its budget, backlog and software
development process. As a result, the team can better balance between deliv-
ering new features and quality improvements, continuously deliver software
with less overhead and focus on its mission to deliver user-friendly services with
increased involvement of domain experts. Defining a clear product boundary
and reducing dependencies on other teams, developing necessary skills and
changing the financing model are recognized as the main success factors, as well
as the main challenges in the transition process.

Keywords: Agile � Autonomous team � Backsourcing � Outsourcing

1 Introduction

Agile software development has become the norm in the industry and is increasingly
getting a foothold in the public sector, albeit so far not as an exclusive approach [1].
Public sector organizations adopt agile to solve several problems, including faster value
delivery, better end-user satisfaction, better collaboration between business and IT, and
cost reduction [2]. However, several factors in the government sector, such as lack of
experience with agile methods, IT megaprojects and reliance on traditional procure-
ment have been reported to make the adoption difficult [2]. When agile method
adoption is combined with a change from outsourcing to insourcing, additional chal-
lenges arise such as recruiting, competence transfer and contractual negotiations [3].

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 245–252, 2020.
https://doi.org/10.1007/978-3-030-58858-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_25

In this paper, we present a single case study of a team in the Norwegian Labour and
Welfare Administration (NAV) that adopted agile methods while taking ownership of
previously outsourced IT systems. We describe how the team evolved from supporting
product owners for the acquisition of systems from an external vendor to an autono-
mous agile team with full ownership of the applications it is responsible for.

2 Related Work

A systematic literature review on agile methods in the public sector citing 17 primary
studies reported several benefits, including faster value delivery, increased end-user
satisfaction, lower cost, better collaboration between business and IT, reduced
dependency on contractors, and improved team morale. Factors making adoption dif-
ficult included an unsuitable organizational culture, lack of experience with agile
methods, the ingrained use of prescriptive approaches, and big bang deliveries. In
addition, the public sector often runs “IT megaprojects” and relies heavily on tradi-
tional procurement and contracts, which make agile adoption challenging [2].

The 1990s and early 2000s saw a wave of outsourcing when organizations, often in
the pursuit of cost savings, outsourced IT, oftentimes to low-cost countries. Lack of
client involvement and competence is reported as a major challenge. A more recent
trend, spurred by factors such as the recognition of IT as a core competence, unmet
goals with outsourcing, and the need for better control of the IT systems, is back-
sourcing (or insourcing), i.e. bringing the outsourced components back in-house [3].

There is an extensive amount of literature on autonomous teams and different types
of autonomy such as autonomy over product, people and planning decisions [4].
Autonomy has some pre-conditions, among them having the right skills in the team as
well as a redundancy of skills (since it affects the team’s capability to adapt to changing
situations), culture such as team orientation, sharing of information and management
support in order to create the right environment for the teams [4, 5]. Team autonomy
has furthermore been identified as a success factor for agile transformations [8].

3 Context and Method

NAV was founded in 2006 by merging three large organizations in the public sector.
NAV has 19000 employees including an IT department of over 700 employees and
administers a third of the Norwegian national budget through various benefit schemes
such as pension, unemployment and child-care benefits. The end-users of IT applications
are twofold: organizations and individuals in Norway on the one hand, and the
employees of NAV who manage the benefits on the other. Since the establishment of
NAV, IT development and maintenance has mainly been outsourced to several vendors,
with NAV responsible for requirements specification, acceptance testing and operation
of services. In 2017, due, e.g., to high development costs and the growing need for
digitalization of services, NAV decided to backsource most of the IT development. In
addition, the organization has gradually adopted agile development to achieve better
commitment, motivation to perform and desire for responsibility in the organization.

246 P. Mohagheghi et al.

In previous work [7], we described a pilot study on autonomous agile teams at
NAV. The experience described therein was considered successful and encouraged the
organization to initiate a move towards increased cross-functionality, and to have NAV
employees and vendor resources working shoulder to shoulder.

The team in this case study develops and maintains the information and user
interfaces intended for the general population provided via the organization’s main
website nav.no, apps and in other channels. The team is also responsible for developing
organization-wide guidelines for publishing information online.

The research presented here is a single qualitative case study and part of a larger
study into agile adoption and backsourcing in NAV. We selected the case due to the
insights it provides on enabling team autonomy in a complex setting. We collected data
through four semi-structured interviews [6], which forms the main unit of analysis. We
interviewed the team leader, one product owner, a member of the team performing test,
and a representative from the vendor; all being involved in the team since 2017. The
interviews lasted between 60 and 90 min and were recorded and transcribed for
analysis. In addition, we had a workshop with the team leader to analyze changes in the
team structure and responsibilities and validated our findings with her.

4 Results and Discussion

In this section, we present the results, first discussing the transition of the team, fol-
lowed by discussing factors that enabled the transition towards an agile autonomous
team.

4.1 Steps in the Transition Process

Before backsourcing, over 50 applications covering a broad range of user interfaces
were managed by a group of employees organized in an office in the IT department.
The office managed the contract with the vendor, provided support to the business side,
and followed testing, deployment, and operations of the applications. The employees of
the office had roles such as functional experts, technical experts, team leaders and
project leaders. Functional experts had deep domain knowledge, while technical
experts focused on non-functional aspects and technology. The business side, orga-
nized in other departments in NAV, specified the requirements, prioritized the backlog,
financed changes (often via projects), evaluated the estimations and design, and tested
the final applications. The vendors estimated the costs of changes and designed and
developed the solutions. The process thus required many handovers between business,
IT and vendors. Changes were often delivered in a few large deliveries per year to
manage dependencies between services.

In the first step in the backsourcing process, the portfolio covered by the office was
divided and assigned to multiple teams. In this process, the team “Self-services” was
established, consisting of a team leader, six functional experts and one technical expert.
The vendor had its own team collocated at NAV, with seven developers and one team

Enabling Team Autonomy in a Large Public Organization 247

leader. Figure 1 shows the changes in the team structure and roles from 2017 to 2020.
The term “IT team” refers to a team managed by the IT department which has an own
budget for maintenance, but depends on the business side for prioritization and
financing of major changes.

The situation was changed gradually, through the following steps:

1. Building internal development capability. Before backsourcing, the team consisted
of functional and technical experts while the developers were on the vendor side.
The business department owning the applications financed recruiting 3 developers
in 2018, the first one starting in February. This was considered a major step towards
insourcing software development.

2. Competence transfer. The team had little knowledge of the code prior to the
backsourcing. The IT-team and the vendor team started working together on soft-
ware development for the purpose of competence transfer; including working
shoulder to shoulder and pair-programming.

3. Analyzing the applications and planning the handover. The outsourcing contracts
included steps for handover to other vendors but not to NAV. The team and the
vendor performed an analysis of applications regarding their status (functionality,
technical debt, security concerns and remaining failures) and developed a roadmap
with milestones and actions for a stepwise handover of applications.

4. Defining the product boundary in steps. The old contract model put many appli-
cations to be developed by a single vendor in the same contract. As a result, the
contract included over 50 applications, all related to user interfaces but managed by
different stakeholders. By September 2017, the portfolio of applications was divided
between two teams with a shared team leader: “Team A” (services for unemploy-
ment) and “Team B” followed here, named “Team Insight”. Some applications were

Fig. 1. Changes in the team structure and roles for enabling team autonomy.

248 P. Mohagheghi et al.

handed over to other teams as well. The purpose was to separate concerns and avoid
communication with multiple product owners.

5. Transfer of ownership and responsibility; becoming self-sufficient competence-wise.
By June 2018, the team had the full responsibility for software development. A User
experience (UX) designer was recruited in addition to getting support from two
external UX designers. A new tester, who used to be a functional expert, was added
to the team as well. Thus, the team included all necessary skills for software
development. The team changed its name to “Personal users” to highlight its focus.
Some functionality was left out to be handled by “Team C”.

6. Becoming an autonomous product team. By January 2019, the team was fully
financed by the business side and one functional expert became a product owner,
enhancing his competence by taking courses and participating in product owners’
fora. This type of team is called a “cross-functional product team” (in short Product
Team) and the team owns its budget, product backlog and its prioritization.

7. Enhancing the portfolio. In January 2020, the team merged with an IT team
responsible for the information on web pages, which had backsourced its applica-
tions as well (“Team D” in Fig. 1). The whole team working receives a yearly
budget covering the personnel costs in full, instead of receiving funds for the
changes to be implemented. The team covers two areas of functionality with team
members almost 50-50 divided between these two and the possibility to assist each
other when needed.

The focus of this paper has been on “Team B” and its evolution. For information,
“Team A” and “Team C” are still IT Teams with some changes in their portfolio as
well.

4.2 Factors Important for Enabling Team Autonomy

The transition from an IT team mediating between product owners and vendors towards
an autonomous team required several changes. We identified the following seven
factors that were necessary to enable team autonomy:

1. Full product ownership. NAV had made a strategic decision to backsource the
development of its systems and decided not to renew the contract with the vendor.
Taking ownership of both the systems and the teams developing them was a pre-
cursor to creating autonomous teams. The case team has full ownership of its
product and prioritizes, implements, and delivers features based on urgency and
capacity.

2. An agile mindset and way of working. Teams can now choose their own devel-
opment processes and tools, and the whole organization is developing an agile
mindset, which is a profound change. The case team started to use Kanban almost
overnight in September 2017. The whole team sits together and delivers
continuously.

3. Building all needed competences. Building all the skills necessary for working
autonomously was a major challenge for the organization. This included recruiting
software developers in a highly competitive market, and knowledge transfer and
continued collaboration with the vendor. NAV has recruited over 130 software

Enabling Team Autonomy in a Large Public Organization 249

developers since 2017 by improving its image as a high-skilled software devel-
opment organization and emphasizing its role in the society. After the contract
expired, a transition period was necessary for knowledge transfer and preparing the
NAV team for taking charge of software development. In the team discussed here,
newly recruited software developers applied pair-programming with peers from the
vendor for six months. Some employees in the IT department have changed their
roles and developed skills to become product owners, testers, software developers
and coaches. The team leader is, e.g., now a coach for this team and other teams.
The relation with the vendor was and continues to be professional with good
collaboration. A new contract type is now in place to hire resources from 2–3
vendors when necessary by paying per hour.

4. Empowerment and trust. Without trust between the team and the surrounding
organization, as well as empowerment to make and execute product and process
related decisions, a team cannot function autonomously. Developing this in a large
organization with a long history of traditional management can be extremely
challenging.

5. Resource-based financing. The organization is gradually abandoning large projects
and its traditional portfolio management process, and giving some teams, such as
the team in this case their own budgets, which facilitates their autonomy.

6. A manageable team portfolio. The old contract model put many pieces to be
developed by a single vendor in the same contract. It was necessary to focus the
portfolio to reduce dependencies and give the team autonomy over the product.

7. The right team size. Like many organizations, NAV had challenges cutting the team
size down to the optimal one, which their experience is 7–9 people, just in line with
most recommendations in the team and agile literature.

4.3 Benefits and Challenges

The team leader, product owner and the team member participating in this research
reported many subjective benefits of the autonomy. The feeling of ownership and
mastery had led to increased employee satisfaction. The team could now respond faster
to changes since there are no handovers in the development process. Since they have
product ownership, the team members can think strategically, and better balance
between functional and technical improvements. This has made it possible to signifi-
cantly reduce the technical debt. Cost-wise an internal employee costs less than half of
an external one, and the savings are invested in new technology and in further
development.

The reported challenges were mainly related to 1) the people factor; it was difficult
to recruit enough software developers and develop skilled product owners; 2) the
product factor: i.e. defining suitable product teams with fewer dependencies on other
teams and a more coherent portfolio. In this process, it has been challenging to han-
dover legacy applications to other teams with limited budget and capacity; and 3) the
financing model is still not homogenous and creates challenges in prioritization and
planning.

250 P. Mohagheghi et al.

4.4 Discussion

In this paper, we understood team autonomy in agile software development as having
the power to plan and prioritize the work of the team according to budget, resources,
roadmaps and constraints, and to have ownership of the processes and practices
employed. This required several changes in the organizational structure and processes,
and even the financing model. The autonomy to plan and prioritize work was imple-
mented through incorporating the product ownership in the team. In this case, the
organization was able to design the work of the team to have a rather independent
portfolio, making it possible to have a high degree of autonomy. Our findings about
how to enable team autonomy are well in line with what other cases have reported, as
summarized in [8]. In particular, similar results with respect to increased morale was
reported by [9, 10].

Our finding regarding the need for changing the financing model points to the
importance and challenges of portfolio management in large-scale agile development,
an area which currently has a lack of research. Furthermore, our findings indicate that
outsourcing relationships can lead to a high degree of technical debt if there are lack of
financing to remove technical debt and lack of mechanisms to incentivize high code
quality.

The findings in this paper are based on four interviews with practitioners in the
studied team in different roles, as well as of an analysis of other documents such as
presentations. While this limits the generalizability of the findings, they are well in line
with existing literature, and point toward a need for deeper understanding not only of
how autonomous teams can work, but of the surrounding organizational context. Two
of the authors are employees of NAV, which could introduce bias. However, the first
author works in an independent role, and the findings are based on an analysis done
jointly by the first two author.

5 Conclusions and Future Research

We presented a case study of how team autonomy was enabled in a single team in a
large public organization. We discussed that many factors are required to enable
autonomy, both in the team and in the organization. The team members agreed on the
benefits of the transformation that happened over the course of three years and expe-
rience increased employee satisfaction, faster response to changes and more strategic
thinking.

By now, we have interviewed 35 employees in different roles and from different
teams in NAV, as well as representatives from vendors. This paper is based on an
initial analysis of the data from one team. We are extending our analysis to multiple
teams with focus on backsourcing of software development and large-scale agile
development.

We thank NAV and the interviewees for the possibility to perform the research and
for sharing valuable data and insights with us.

Enabling Team Autonomy in a Large Public Organization 251

References

1. Viechnicki, P., Kelkar, M.: Agile by the numbers: a data analysis of Agile development in
the US federal government. In: Kaji, J., Rao, A., Garia, N., Khan, A. (eds.) Agile in
Government: A Playbook from the Deloitte Center for Government Insights, Deloitte,
pp. 42–47 (2017)

2. Vacari, I., Prikladnicki, R.: Adopting agile methods in the public sector: a systematic
literature review. In: The 27th International Conference on Software Engineering and
Knowledge Engineering (2015). https://doi.org/10.18293/seke2015-159

3. Von Bary, B., Westner, M.: Information systems backsourcing: a literature review. J. Inf.
Technol. Manag. 29(1), 62–78 (2018)

4. Moe, N.B., Dingsøyr, T., Dybå, T.: Understanding self-organizing teams in agile software
development. In: 19th Australian Conference on Software Engineering, pp. 76–85 (2008)

5. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 72–78 (2005)

6. Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory and Practice.
SAGE Publications, Thousand Oaks (2014)

7. Lundene, K., Mohagheghi, P.: How autonomy emerges as agile cross-functional teams
mature. In: XP2018, Workshop on Autonomous Agile Teams (2018). https://doi.org/10.
1145/3234152.3234184

8. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

9. Long, K., Starr, D.: Agile supports improved culture and quality for healthwise. In: Agile
2008, pp. 160–165 (2008)

10. Moore, E., Spens, J.: Scaling agile: finding your agile tribe. In: Agile 2008, pp. 121–124
(2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

252 P. Mohagheghi et al.

https://doi.org/10.18293/seke2015-159
https://doi.org/10.1145/3234152.3234184
https://doi.org/10.1145/3234152.3234184
http://creativecommons.org/licenses/by/4.0/

