
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Lintusaari, Jarno; Blomstedt, Paul; Rose, Brittany; Sivula, Tuomas; Gutmann, Michael U.;
Kaski, Samuel; Corander, Jukka
Resolving outbreak dynamics using approximate bayesian computation for stochastic
birth–death models

Published in:
 	Wellcome Open Research

DOI:
10.12688/wellcomeopenres.15048.1

Published: 01/01/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Lintusaari, J., Blomstedt, P., Rose, B., Sivula, T., Gutmann, M. U., Kaski, S., & Corander, J. (2019). Resolving
outbreak dynamics using approximate bayesian computation for stochastic birth–death models. Wellcome Open
Research , 4, Article 14. https://doi.org/10.12688/wellcomeopenres.15048.1

https://doi.org/10.12688/wellcomeopenres.15048.1
https://doi.org/10.12688/wellcomeopenres.15048.1


METHOD ARTICLE

   Resolving outbreak dynamics using approximate 

Bayesian computation for stochastic birth–death models 

[version 2; peer review: 2 approved]

Jarno Lintusaari 1, Paul Blomstedt1, Brittany Rose 2,3, Tuomas Sivula1, 
Michael U. Gutmann 4, Samuel Kaski1*, Jukka Corander 2,5,6*

1Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland 
2Helsinki Institute for Information Technology (HIIT), Department of Mathematics and Statistics, University of Helsinki, Helsinki, 
Finland 
3Department of Infectious Diseases Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway 
4School of Informatics, The University of Edinburgh, Edinburgh, UK 
5Department of Biostatistics, University of Oslo, Oslo, Norway 
6Infection Genomics, The Wellcome Trust Sanger Institute, Hinxton, UK 

* Equal contributors

First published: 25 Jan 2019, 4:14  
https://doi.org/10.12688/wellcomeopenres.15048.1
Latest published: 30 Aug 2019, 4:14  
https://doi.org/10.12688/wellcomeopenres.15048.2

v2

Abstract 
Earlier research has suggested that approximate Bayesian 
computation (ABC) makes it possible to fit simulator-based intractable 
birth–death models to investigate communicable disease outbreak 
dynamics with accuracy comparable to that of exact Bayesian 
methods. However, recent findings have indicated that key 
parameters, such as the reproductive number R, may remain poorly 
identifiable with these models. Here we show that this identifiability 
issue can be resolved by taking into account disease-specific 
characteristics of the transmission process in closer detail. Using 
tuberculosis (TB) in the San Francisco Bay area as a case study, we 
consider a model that generates genotype data from a mixture of 
three stochastic processes, each with its own distinct dynamics and 
clear epidemiological interpretation.  
     
We show that our model allows for accurate posterior inferences 
about outbreak dynamics from aggregated annual case data with 
genotype information. As a byproduct of the inference, the model 
provides an estimate of the infectious population size at the time the 
data were collected. The acquired estimate is approximately two 
orders of magnitude smaller than assumed in earlier related studies, 
and it is much better aligned with epidemiological knowledge about 
active TB prevalence. Similarly, the reproductive number R related to 
the primary underlying transmission process is estimated to be nearly 
three times larger than previous estimates, which has a substantial 

Open Peer Review

Reviewer Status   

Invited Reviewers

1 2

version 2

(revision)
30 Aug 2019

report report

version 1
25 Jan 2019 report report

Jakub Voznica , C3BI USR 3756 Institut 

Pasteur & CNRS, Paris, France 

Olivier Gascuel, C3BI USR 3756 Institut 

Pasteur & CNRS, Paris, France 

Anna Zhukova , C3BI USR 3756 Institut 

Pasteur & CNRS, Paris, France

1. 

Mark Beaumont , University of Bristol, 

Bristol, UK

2. 

 
Page 1 of 26

Wellcome Open Research 2019, 4:14 Last updated: 20 OCT 2020

https://wellcomeopenresearch.org/articles/4-14/v2
https://wellcomeopenresearch.org/articles/4-14/v2
https://orcid.org/0000-0002-6938-3076
https://orcid.org/0000-0002-7676-5275
https://orcid.org/0000-0002-5329-9910
https://orcid.org/0000-0002-7752-1942
https://doi.org/10.12688/wellcomeopenres.15048.1
https://doi.org/10.12688/wellcomeopenres.15048.2
https://wellcomeopenresearch.org/articles/4-14/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://wellcomeopenresearch.org/articles/4-14/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-0530-5837
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0002-8773-2743
http://crossmark.crossref.org/dialog/?doi=10.12688/wellcomeopenres.15048.2&domain=pdf&date_stamp=2019-08-30


Corresponding author: Jukka Corander (jukka.corander@medisin.uio.no)
Author roles: Lintusaari J: Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; Blomstedt P: Formal 
Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Rose B: Writing – Review & Editing; Sivula T: Formal Analysis, 
Writing – Original Draft Preparation, Writing – Review & Editing; Gutmann MU: Methodology, Writing – Original Draft Preparation, 
Writing – Review & Editing; Kaski S: Methodology, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; 
Corander J: Methodology, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Academy of Finland (Finnish Centre of Excellence in Computational Inference 
Research, COIN; grants 294238 and 292334), the ERC (grant 742158), and the Wellcome Trust (grant 206194). 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2019 Lintusaari J et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Lintusaari J, Blomstedt P, Rose B et al. Resolving outbreak dynamics using approximate Bayesian 
computation for stochastic birth–death models [version 2; peer review: 2 approved] Wellcome Open Research 2019, 4:14 
https://doi.org/10.12688/wellcomeopenres.15048.2
First published: 25 Jan 2019, 4:14 https://doi.org/10.12688/wellcomeopenres.15048.1 

impact on the interpretation of the fitted outbreak model.

Keywords 
Approximate Bayesian computation, outbreak dynamics, stochastic 
birth–death process, tuberculosis.

 

This article is included in the Wellcome Sanger 

Institute gateway.

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 2 of 26

Wellcome Open Research 2019, 4:14 Last updated: 20 OCT 2020

mailto:jukka.corander@medisin.uio.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.15048.2
https://doi.org/10.12688/wellcomeopenres.15048.1
https://wellcomeopenresearch.org/gateways/sanger
https://wellcomeopenresearch.org/gateways/sanger
https://wellcomeopenresearch.org/gateways/sanger


1. Introduction
Birth–death processes are flexible models used for numerous 
purposes, in particular for characterizing the spread of infections 
under the so-called Susceptible–Infectious–Removed (SIR)  
formulation of an epidemic process1. Under circumstances 
where a disease outbreak occurs but where daily, weekly or 
even monthly incidence counts are not directly applicable or  
available, the estimation of key epidemiological parameters,  
such as the reproductive number R, has to be based on alter-
native sources of information. This can be the case when the  
disease demonstrates large variability between the times of 
infection and onset, such as with Mycobacterium tuberculosis,  
or in retrospective analyses where some information is no 
longer available. In such situations, aggregate measures of the 
clusteredness of cases (for instance, genotype fingerprints)  
can be used as alternative sources of information. In the 
case of tuberculosis, which generally mutates on a timescale 
much longer than that of a single outbreak, it is reasonable to 
assume that new cases arising from transmission during that  
outbreak will all belong to a single cluster. Likelihood-based 
inference could provide an alternative to standard outbreak 
investigations relying solely on incident count data, but it is  
often considerably more challenging.

As a solution to such a setting, Tanaka et al.2 proposed fit-
ting birth–death (BD) models to tuberculosis (TB) outbreak 
data using approximate Bayesian computation (ABC). Later 
on, the same setting was used in numerous ABC studies while 
the ABC methodology was being developed3–8. Stadler9 and  
Aandahl et al.10 also tested the ABC procedure against an exact 
Bayesian inference method based on an elaborate Markov Chain 
Monte Carlo (MCMC) sampling scheme. These investigations 
considered TB outbreak data from the San Francisco Bay area  
originally collected by Small et al.11, who reported results from 
extensive epidemiological linking of the cases, as well as from 
the corresponding classical IS6110 fingerprinting genotypes. 
Such genetic data from the causative agent Mycobacterium  
tuberculosis are natural to characterize using the infinite  
alleles model (IAM), where each mutation is assumed to result 
in a novel allele in the bacterial strain colonizing the host. When 
lacking precise temporal information about the infection and  
the onset of the active disease, the numbers and sizes of  
genotype clusters can be used to infer the parameters of the BD 
model, as shown by Tanaka et al.2 and Aandahl et al.10.

Lintusaari et al.12 demonstrated an issue with the nonidenti-
fiability of R for the TB outbreak model in cases when both 
the birth and the death rates were unknown in the underlying 
birth–death process. This was visible as a nearly flat approxi-
mate likelihood over the parameter space of R. Additionally, 
they found that in cases when R was identifiable, the acquired  
estimate was dependent on the assumed population size  
n. In an earlier investigation by Tanaka et al.2, a large infec-
tious population size of n = 10,000 was required for the BD  
simulator to produce similar levels of genetic diversity to those 
observed in the San Francisco Bay data. Because it has not been  
observed, this assumption is difficult to justify when the  
acquired estimates depend on it.

Here we introduce an alternative formulation of the BD model  
that resolves the identifiability issue of R.

The proposed model does not require any assumptions about 
the underlying infectious population size, instead provid-
ing an estimate for that value as a byproduct of the inference. 
The model incorporates epidemiological knowledge about 
the TB infection and disease activation processes by assum-
ing that the observed genotype data represent a mixture of three  
birth–death processes, each with clearly distinct character-
istics. The new formulation depends on partially different 
parametrization, for which estimates can be found in the  
literature. By evaluating the ABC inference results of our model  
against the backdrop of the epidemiological information avail-
able in Small et al.11, we see that both the significantly reduced 
infectious population size n and the increased R for the main  
driver component of the model make good sense. Our model 
thus provides a drastically different interpretation of these  
parameters than the ones offered by earlier studies.

In the new model, we consider latent and active TB infections 
separately, as only the latter lead to new transmission events. 
Transmission clusters are formed by recent infections that  
rapidly progress to active TB and spread further through the  
host population. Due to the rapid onset of symptoms in a new 
active case, the fingerprint of the pathogen remains the same 
throughout the transmission process, and its patients conse-
quently form an epidemiological cluster. If, on the other hand,  
an infection remains latent, the pathogen undergoes mutations 
and thus acquires a new genetic fingerprint over the years11. 
Through this and other epidemiologically motivated model-
ling choices, we show that the model becomes identifiable.  
Due to the rather modest requirements for the available data 
and the flexibility of modelling in ABC, our BD model could 
be applied to many similar settings beyond the case study  
considered in this article.

2. The model
Our model is based on a birth–death (BD) process in which 
a birth event corresponds to the appearance of a new case of 
active TB and a death event corresponds to any event that makes  
an existing host non-infectious. Such events include death,  
sufficient treatment, quarantine, and relocation away from 
the community under investigation. The model incorporates 

            Amendments from Version 1

This version of the article has been updated to reflect the 
clarifications and changes requested by our two reviewers. 
Among other things, we have added details and discussion about 
our inference process, the selection of summary statistics, cluster 
formation, coverage analysis and the identifiability of parameters. 
The text has also been edited for grammar, clarity and flow. The 
aforementioned changes were made by a new member of this 
project, B. Rose, who has consequently been added to the author 
list.

Any further responses from the reviewers can be found at the 
end of the article.
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two BD processes and one pure birth process that have  
epidemiologically based interpretations. As in a standard BD  
process, these events are assumed to be independent of one 
another and to occur at specific rates. The time between two 
events is assumed to follow the exponential distribution speci-
fied by the rate of occurrence, causing the number of events to 
follow the Poisson distribution. The timescale considered here 
is one calendar year. The evolution of the infectious population  
is simulated by drawing events according to their rates. 

Building upon the BD process, the simulated population car-
ries auxiliary information. At birth, each case is assigned a 
cluster index that represents the specific genetic fingerprint 
of the pathogen and determines the cluster the case belongs 
to. The simulated output includes the cluster indexes that are  
recorded when cases are observed.

We will now explain our model in more detail and point out  
differences between it and the model of Tanaka et al.2.

First, we assume that observations are collected within a given 
time interval that matches that of the observed data. In the case 
of the San Francisco Bay data, the length of this interval is two 
years11. Observations are collected from the simulated proc-
ess after a sufficient warmup period so that the process can be 
expected to have reached stable properties. This procedure is  
visualized in Figure 1.

In the figure, the dashed lines are the balance values. The popu-
lation sizes fluctuate around them after the process has matured. 
Both populations surpass their balance values at least once by 
the 22-year mark. The observation period is the green patch. 
The grey line shows the number of observations collected dur-
ing each year of the simulation. The number of observations 
from the observation period and the clustering structure of the 
observations are used in the inference of the epidemiological  

parameters. A patient becomes observed in the study with prob-
ability p

obs
. Our model makes the simplifying assumption that 

both being observed and ceasing to be infectious are com-
bined under the death event in the simulation. This is based on 
the assumption that a typical patient is treated promptly after 
being diagnosed13, but we still allow for the possibility that  
some patients do not comply with treatment and remain infec-
tious (see below). In contrast to the model of Tanaka et al.2, 
there is no separate observation sampling phase, nor is there a  
prior estimate for the underlying population size.

We introduce a burden parameter β that reflects the rate at 
which new active TB cases with a previously unseen patho-
gen fingerprint appear in the community. This is the pure  
birth process of the model, and it represents reactivation of 
TB from latent cases as well as new pathogen fingerprints 
introduced by immigration. In the simulation, each such case 
receives a new cluster index that has not been assigned to any 
earlier case. Unlike Tanaka et al.2, we do not explicitly model  
mutations. Instead, we assume they occur during the latent phase 
of infection over the years11. This decision was partially moti-
vated by the fact that Aandahl et al.10 found the mutation rate  
parameter from 2 to be non-identifiable from the fingerprint  
data, and they consequently fixed that value to a constant.

We introduce two distinct birth–death processes for cases 
that are either compliant or non-compliant with treatment. 
These birth–death processes are parametrized with birth rates  
τ

i
 and death rates δ

i
, where i = 1 denotes the non-compliant 

population and i = 2 the compliant population. A signifi-
cant number of cases in the largest clusters observed by Small  
et al.11 corresponded to non-compliant patients who stayed  
infectious for several months and belonged to subgroups under 
increased risk of rapid development of active TB due to con-
ditions such as AIDS and substance abuse. Patients who  
are compliant with therapy typically cease being infectious 

Figure 1. An illustration of simulated compliant and non-compliant populations as observed at the end of each year. Note that 
sampling can be done at any point once the model has stabilized; the drop in population sizes at the sampling point in this figure is purely 
coincidental.
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quickly and do not transmit the disease as effectively as before 
diagnosis and treatment. Meta-analysis of typical time delays  
before diagnosis can be found in Sreeramareddy et al.13.

We assume that a new TB case is non-compliant with therapy 
with probability p

1
. At transmission (birth event in the simula-

tion), this probability is used to determine the patient type of 
the new case. We also assume that the epidemic is at a steady 
state (Figure 1) by requiring that compliant cases have a  
reproductive number R

2
 = τ

2
/δ

2
 < 1 and that the reproductive 

number R
1
 of the non-compliant cases is constrained such that 

the population does not grow without limit. The steady state 
assumption is motivated by the tuberculosis incidence counts 
in the United States during the data collection period14. In the  
next section, we identify the subspace of parameter values  
R

1
 and R

2
 that conform to this assumption.

3. Statistical analysis of the model
Let subscript i = 1 denote the non-compliant subpopula-
tion and i = 2 the compliant subpopulation. We can analyze 
the sizes of these subpopulations by investigating the param-
eters of the three birth–death processes in the model. First, we 
notice that the size of a subpopulation follows a compound 
birth–death process whose birth rate is a linear function of the 
burden rate and of the birth rates of the two subpopulations at  
their respective present sizes. For instance, the birth rate of 
the non-compliant subpopulation is p

1
(β + τ

1
n

1
 + τ

2
n

2
), where 

n
1
 and n

2
 are the current subpopulation sizes and p

1
 is the  

probability of a case being non-compliant. The correspond-
ing death rate is δ

1
n

1
. Using this approach, we can determine 

the balance sizes b
1
 and b

2
 of the subpopulations—that is, the  

values of n
1
 and n

2
 that make the birth rate equal to the death 

rate in each subpopulation. In this steady state, the subpopula-
tion sizes neither shrink nor grow. We obtain expressions for  
b

1
 and b

2
 by solving the following set of linear equations:

                               
1 1 1 2

2 2 1 2

( )

( ),

δ β τ τ
δ β τ τ

b p b b
b p b b

1 1 2

2 1 2

= + +

= + +                             
(1)

where p
2
 = 1 – p

1
 is the probability of a new case being  

compliant. The linear equations yield the following solution:

                               

1
1

2 1 2

1 1 1
2

1

– –

– –
1 2 1 1

1

βδ
δ δ τ δ τ

δ τ β
τ

2

2

1

2

( )
.

p
b

p p
b p p

b
p

=
δ

=
                            

(2)

Given this solution, the balance values b
1
 and b

2
 exist when

                                           1 11/R p<                                           (3)

                                                and

                                   2 1 1 2(1– ) /R p R p< .                                    (4)

Assuming, for instance, that p
2
 = 0.95 (as in 11), we would  

have R
1
 < 20.

Equations (2) also allow us to approximate the mean number  
of observed cases per year. We define this approximation as

                                  2 1ˆ ( )obs obsn p b bδ δ .= +2 1                               (5)

Figure 1 illustrates how the population sizes fluctuate near their  
balance values in the simulation after a sufficient warmup period.

3.1 Parameter inference
We used approximate Bayesian computation to carry out 
parameter inference due to the unavailability of the likelihood 
function. This is the same approach used by Tanaka et al.2  
with the original model. The result is a sample from the  
approximate posterior distribution p(R

1
, t

1
, R

2
, β | y

0
) (see e.g. 18).

We used the Engine for Likelihood-Free Inference (ELFI) 
software15 to perform our inference. Using rejection sam-
pling, we selected 1000 parameter values from a total of 6M 
simulations. This large number of simulations was possible 
due to the fact that we implemented a computationally effi-
cient, vectorized version of the simulator in Python. When we  
began this project, it was not possible to perform Baye-
sian optimization with non-uniform priors in ELFI, and so 
we utilized rejection sampling in order to incorporate priors  
appropriate to our model structure. A visualization of our 
ELFI model can be found in Figure S1 in this article’s  
Supplementary material. The observed data are available in 
11. We have released the source code of our simulator and 
the corresponding ELFI model on GitHub1. These resources  
allow for replication of our study.

3.1.1 Priors. We set priors over the burden rate β, reproduc-
tive numbers R

1
 and R

2
, and the net transmission rate t

1
 = τ

1
 − δ

1
 

of the non-compliant subpopulation. For the compliant popu-
lation, we fix the death rate to an estimated δ

2
 = 5.95 (the total 

delay estimate; see 13). This value is used to calculate the net 
transmission rate t

2
 = δ

2
(R

2
−1). Given the severity of the symp-

toms of active TB and bearing in mind the stringent protocols  
followed by public health officials, it is expected that  
virtually all active cases in the San Francisco Bay area were 
documented during the outbreak described in 11. Those data  
contained 585 confirmed cases of TB, of which 487 were included 
in that study. To account for the cases that were excluded, we 
fix the probability of being observed to p

obs
 = 0.8. We set the 

probability of a new case being non-compliant to p
1
 = 0.05  

(see p. 1708 of 11).

We give the burden rate β an informative prior that is able to 
produce a sufficient number of clusters with respect to the  
observed data. Specifically, we choose

                                     (200,30)β .∼ N                                       (6)

We give the net transmission rate t
1
 a uniform prior over a large 

interval from 0 to 30. Given the condition imposed by Inequality 
(3), we assign R

1
 and R

2
 uniform priors over a subspace  

that ensures the process has a steady state. More specifically, 

1https://github.com/lintusj1/tb-model
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1

2 1 1

Unif(1.01,20),

| Unif(0.01,(1– 0.05 )/0.95),

∼
∼

R
R R R⋅

                                and                                                                (7)

1 Unif(0.01,30),t ∼

Given the observed data, we set the following additional  
constraints to optimize computation:

ˆ 350,obsn <

                                                 and                                               (8)

401τ < .
 

We verified that these constraints have a negligible effect on 
the acquired estimates. Their function is to prevent simula-
tions with extremely unlikely parameter values, which saves 
a considerable amount of computation time. As a result of 
these constraints, all obtained estimates of R

1
 are smaller  

than 15. Figure 2 shows the samples drawn from the priors  
under these conditions.

3.1.2 Summary statistics. The summary statistics used in ear-
lier approaches (e.g. 2 and 12) are not directly applicable to 
our model. This is due to differences between the models that 
cause, for example, the number of observations in the sample 
to vary rather than being fixed. However, the previous studies’  
summaries did prove to be a good starting point for the 

Figure 2. A scatter matrix of samples from the prior.
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development of a more comprehensive set of summaries for  
our setting.

To that end, we ran extensive test simulations, performing infer-
ence on synthetic data generated by our model. From these sim-
ulations, we identified which summary statistics corresponded 
to appropriate behavior and ultimately selected eight of them. 
This decision was informed by observations about summary 
statistic behavior in 12, which presented a different model but  
utilized the same data that we use here.

These summary statistics aim to capture meaningful prop-
erties of the observed data given the new model. The first  
summary is the number of observations, which is here allowed 
to vary. Five of the summaries are related to the clustering struc-
ture, where a cluster is defined as a group of TB cases with  
the same genetic fingerprint: the total number of clusters, the 
relative number of singleton clusters, the relative number of 
clusters of size two, the size of the largest cluster, and the 
mean of the successive differences in size among the four larg-
est clusters (see Table 1). These were chosen specifically  
to emphasize the most stable properties of the clustering 
structure. For instance, there is a substantial number of clus-
ters of sizes one and two compared to those of other sizes. The 
relative number is used to remove the effect of variability in  
the numbers of observations and clusters between simulations.

The remaining two summaries are related to the observation 
times of the largest cluster. Observation times were not included 
in earlier studies, and here they prove useful for identifying 
the net transmission rate t

1
. The summary statistics in ques-

tion are the number of months from the first observation to the  
last and the number of months in which at least one obser-
vation was made from the largest cluster. It was possible to 
extract these data from figure 2 in 11. With these summaries,  
we aim to capture the span and rate at which transmissions occur.

It should be noted that the summaries chosen here do not 
consider global sufficiency (see e.g. 16). In cases where 
the dataset is very different from the San Francisco data, a  

modified set of summaries should probably be considered. Our 
distance function is the Euclidean distance between the weighted  
summary statistics of the observed and simulated data (Table 1).

We weighted our summary statistics to adjust for and even 
out differences in their magnitudes. The final summary statis-
tics and weights perform well in the evaluation of the model 
in subsection 4.1. The resulting acceptance/rejection threshold 
is ε = 31.7, while the smallest distance observed in our simula-
tions is 12.5. Like our summary statistics, this threshold was  
selected from our trial runs of inference on synthetic data. We 
chose a value that struck a good balance between run time,  
acceptance rate, and the resulting Monte Carlo error rate.

4. Results
Figure 3 shows a sample of 1000 values from the joint approxi-
mate posterior distribution p(R

1
, t

1
, R

2
, β | y

0
). The pairwise 

sample clouds seem reasonably concentrated, do not extend 
to the edges of the axes, and are located inside the support of  
the prior (Figure 2). The histograms and scatter plots are 
fairly normally shaped, with the only minor exception being  
that the net transmission rate of the non-compliant popula-
tion t

1
 has a slight tail towards high values. A visual compari-

son of the posterior against the prior, together with the above 
observations, suggests that the model is identifiable for the San  
Francisco dataset.

The posterior means, medians and 95% credible intervals are 
given in Table 2. The means and medians are similar to one 
another, which indicates that the posterior distributions are  
symmetrical. t

1
 has the largest discrepancy due to the presence  

of the small tail mentioned above.

4.1 Evaluating the model identifiability
To further evaluate the reliability of the acquired estimates, 
we compute the mean and median absolute errors (MAE and 
MdAE) of the mean as well as the coverage property17. These 
results include the ABC approximation error (see e.g. 18)  
caused by the summary statistics and the threshold of 31.7.

Table 1. The summary statistics, their weights, and their values for the observed data y0.

Summary 
statistic Explanation Weight y0

nobs Number of observations. 1 473

nclusters Number of clusters. 1 326

rc1
Relative number of singleton clusters. Computed as rc1 = nc1/nobs, where nc1 is 
the number of clusters of size 1. The value of rc2 is computed likewise. 100/0.60 0.60

rc2 Relative number of clusters of size 2. 100/0.04 0.04

largest Size of the largest cluster. 2 30

mean_largest_diff Mean of the successive differences in size among the four largest clusters. 10 6.67

month_period Number of months from the first observation to the last in the largest cluster. 10 24

obs_months The number of months in which at least one observation was made from the 
largest cluster. 10 17
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Table 2. Posterior summaries.

Parameter Mean Median 95% CI

R1 5.88 5.79 (3.68, 8.16)

t1 6.74 6.25 (1.57, 12.9)

R2 0.09 0.09 (0.03, 0.15)

β 192 192 (170, 216)

Figure 3. Posterior sample of size 1000 from the approximate posterior distribution p̃(R1, t1, R2, β | y0) plotted as a scatter matrix. 
Compare to the prior in Figure 2.

Table 3 lists the MAE and MdAE with the 95% error upper 
percentile for each parameter estimate. This information is  
useful for quantifying how much each estimate deviates from 
the actual parameter value on average. The burden rate (β) 
and the reproductive number of the non-compliant population  
(R

1
) have the smallest relative MAEs: 4.0% and 14.9%, respec-

tively. The reproductive number of the compliant population 
(R

2
) and the net transmission rate of the non-compliant  

population (t
1
) have MAEs of 29.5% and 44.2%, respectively. 
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Table 3. Mean and median absolute errors for 1000 trials with synthetic data 
from the posterior.

Parameter MAE Relative MAE2 MdAE Relative MdAE 95% percentile

R1 0.85 14.9% 0.72 12.6% 2.00

t1 2.68 44.2% 1.98 32.1% 7.66

R2 0.024 29.5% 0.018 21.9% 0.07

β 7.6 4.0 % 6.1 3.1% 19.8

The MAE of the latter seems rather high. The 95% percen-
tile indicates that in 5% of the trials, the error was substantial.  
Further investigation of this issue shows that for some of 
the synthetic datasets, t

1
 is not identifiable, meaning that  

the synthetic data in those cases is not informative enough 
to produce a clear mode for the parameter. R

2
 suffered 

slightly from the same problem. This kind of situation, where  
some of the synthetic datasets turn out uninformative, is rather 
common when little data is available. Because of these excep-
tions, the MdAE might be a more appropriate measure than the 
MAE, as the former is not as heavily influenced by the results  
of non-identifiable datasets in trials. The relative MdAE errors  
for R

2
 and t

1
 were 21.9% and 32.1%, respectively.

Figure 4 visualizes the estimated vs. actual values of each  
of the parameters.

Though t
1
 is only weakly identifiable, the results of our simu-

lations indicate that the set of epidemiological parameters we 

have analyzed is identifiable for the San Francisco Bay data-
set. Our simulations suggest that a structural model issue 
could be at fault for the weak identifiability of t

1
, as this can 

arise as a consequence of the generating stochastic process  
producing a relatively flat cluster distribution. Fortunately, β, 
R

1
 and R

2
, all of which provide more valuable epidemiological  

insight than t
1
, are robust against this identifiability issue.

The coverage property17 is used to assess the reliability of the 
inference by checking whether the spreads of the acquired  
posterior distributions are accurate. Given a critical level α, the  
true parameter value should be outside the 1−α credible interval 
of the posterior with probability α. We carried out our coverage 
analysis as follows.

First, we used rejection sampling to produce a sample for 
the posterior from the observed data. From this posterior, we  
sampled 1000 parameter vectors (with replacement) for the  
trials. For each of these 1000 vectors, we simulated synthetic 

Figure 4. The estimates from the 1000 trials plotted against their true values. The black dashed line shows the 1:1 correspondence.
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Figure 5. Mean estimates for the critical level α at different levels. The estimates are computed from 1000 synthetic datasets from the 
posterior. At α = 0.05, the estimates obtained for the parameters in the legend are, in order, 0.030, 0.028, 0.020 and 0.041.

data and performed rejection sampling in order to acquire  
posterior samples for that data. We then calculated the MAE  
for these 1000 trials. Finally, we applied the coverage property 
by determining in how many of the 1000 trials the original 
parameter was in the credible interval of the marginal posterior  
acquired from the synthetic data.

The estimated α values from the 1000 marginal posteriors with 
known true parameter values appear satisfactory (Figure 5). 
For the critical level α = 0.05, the estimated α values are 
(α

R2
, α

R1
, αβ ,  α

t1
) = (0.03, 0.03, 0.02, 0.04). The overall  

performance for different values of α was similar to this case  
in the sense that αβ suffered from a larger error than the  
other parameters’ estimates (Figure 5). Note that ABC cover-
age is not expected to be perfect due to the need for a credible  
interval.

5. Discussion
We have proposed a stochastic birth–death model to expand 
on several previous studies examining the use of simulator-
based inference to investigate the spread of active TB within a 
community. Outbreaks of TB are characterized by epidemio-
logically linked clusters of patients with active TB that emerge 
within a relatively short time interval. The construction of  
our extended model was motivated by several observations 
made by Small et al.11 concerning the San Francisco Bay  
transmission cluster data. There, the largest clusters tended to 
be founded by non-compliant patients. In the largest cluster, one  
such patient apparently infected 29 additional patients.

Earlier approaches2,10 suffered from the inability to reproduce 
these large clusters with an appropriate level of heterogene-
ity in cluster sizes without the prior assumption of a very large 
infectious population (to the order of 10,000 individuals)2,12. 
This assumption has a considerable effect on the estimate of the 
reproductive number R. However, epidemiological knowledge of  
TB does not support the existence of such a large infec-
tious population in the study region during the observation 
period. Under our model, a prior estimate of the infectious 
population size is not needed. This model has a different  
parametrization for which estimates can be found from the 
literature. As a byproduct of the inference, the model also 

yields estimates for the infectious population size at the end 
of the data collection period. For the San Francisco Bay  
data, we found that the mean and median sizes of the compli-
ant subpopulation were 48.4 and 48, respectively. The equivalent 
estimates for the non-compliant subpopulation were 13.5 and  
11. These values are consistent with the findings of Small et al.11.

For each subpopulation, the basic reproductive number  
(R

1
 or R

2
) represents the average number of infections caused 

by a single infectious case that rapidly progresses to active 
TB. This value excludes latent infections, which are indirectly  
captured via the burden rate parameter β. We estimate that the 
basic reproductive number of non-compliant patients is R

1
 = 5.88 

with a 95% credible interval (CI) of (3.68, 8.16); see  
Table 2. This estimate is nearly three times the one obtained 
by Aandahl et al.10 with the same data, R

1
 = 2.10, which 

served as a blanket estimate for the whole infectious popula-
tion (a distinction was not drawn between patient types). Our 
larger value would reasonably explain the formation of large  
clusters over a short time period. We estimate the reproductive 
number of the compliant subpopulation to be R

2
 = 0.09  

with a 95% CI of (0.03, 0.15).

The ability of the proposed model to estimate R
1
 and R

2
 together 

with the infectious population size follows from several impor-
tant changes we implement. One of them is to collect obser-
vations over a time span that matches the length of the actual 
observation period. In earlier work, observations were col-
lected as a snapshot at a single point in time, which required 
that all patients in a large cluster be infectious simultaneously.  
However, in reality, observations are made over time as the  
outbreak evolves, and patients have different infectious periods.  
Figure 2 in 11 shows how patients were diagnosed at differ-
ent times over their observation period. Another improvement 
in our model is the inclusion of a non-compliant patient type,  
which more closely reflects the findings of Small et al.11  
and enables the formation of heterogeneity in cluster sizes.

In our model, being compliant or non-compliant characterizes 
a patient’s type, and the model classifies each case at the time of 
the birth event. In reality, non-compliant patients are often diag-
nosed (i.e. observed) before they cease to be infectious, which 
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implies that this simulator model deviates slightly from the 
real-world observation process. However, considering that this 
discrepancy applies to only roughly 5% of all observed cases, 
we do not expect it to cause significant bias. Furthermore, our  
summary statistics do not depend on exact diagnosis times: they 
rely instead on the span and the rate at which diagnoses occur.

Our model’s identifiability was found to be satisfactory for the 
San Francisco Bay dataset (Figure 3). The relative mean abso-
lute error in the estimate of R

1
 was 14.9% (0.85 in absolute 

terms; see Table 3). The same value for R
2
 was 29.5% (0.024 

absolute). However, as discussed earlier, it is probably more  
sensible to use the median error (21.9%; 0.018 absolute) for  
R

2
. Coverage property analysis17 suggests that the credible inter-

vals produced by this model are reasonable. In future work, it 
would be interesting to evaluate the sensitivity of the model to  
other choices of literature-based parameter estimates.

As IS6110 typing remains in use despite advances in whole-
genome sequencing of TB isolates, our model could be espe-
cially useful for investigations in middle- and low-income 
countries, where TB burden is often the highest. For example, 
the acquired estimates of epidemiological parameters could be 
used to gain insight into the relative efficacy of control programs  
across multiple communities. Given the apparent success of  
resolving the non-identifiability issue for R and removing the 
dubious assumption of an a priori known infectious popula-
tion size by extending the BD model with relevant epidemio-
logical knowledge from the literature, it would be interesting 
to generalize this approach to other pathogens for which 
the sampling process or other factors make simulator-based  
inference the most promising estimation method.
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modelling. My reason for querying this is that, as I understand it, Tanaka had a previous history of 
detailed work on TB epidemiology, prior to the 2006 paper, including co-authorship with Peter 
Small, and so presumably was able to put in the benefit of that experience into the paper. 
Therefore I recommend that this aspect be much better justified and discussed. 
 
On the ABC side, my main query is to what extent the authors are confident about identifiability of 
their parameters. Particularly, since they seem to suggest one of their parameters is not 
identifiable (discussed more in specific points below). In a model-free setting, identifiability is 
demonstrated through simulation, rather than analytically. Obviously, if non-identifiability is 
shown this naturally leads to some questions about the summary statistics etc. as well as the 
structure of the model itself. But, with informative priors, some parameters that are only jointly 
identifiable can appear to be identifiable marginally - in a population genetics context the 
apparent identifiability of N and \mu with informative priors is a case in point, when only their 
product is identifiable. Again, this needs a bit more discussion than in the present paper. 
 
Specific Comments:

Introduction, first paragraph: "genotype fingerprints". Some more discussion of this would 
be useful with regard to my point above. Presumably what concerned Tanaka et al. is that 
multiple outbreaks can involve the same cluster, and that different clusters (due to 
mutation?) could arise from the same outbreak. 
 

○

Model, 4th paragraph: “p_{obs}” - does the assumption of being observed lead to ceasing to 
be infectious fit with the compliant/non-compliant distinction, two paragraphs further 
down? 
 

○

Model, 5th paragraph: Note my main query. 
 

○

Summary statistics, paragraph 2: It might be helpful to emphasise that a 'cluster' here is 
assumed to be a new active TB case. Presumably many of these summary statistics are 
highly correlated with the parameter \beta? 
 

○

Figure 2/3: I wonder whether these might be better in the supp. text, and replaced with a 
single figure with HPD contours for the prior and posterior. 
 

○

Summary statistics, last paragraph: "It is good to note". Do the authors mean that? Or 
rather do they mean "It should be noted"? Presumably it is not good to be not sufficient. 
More generally, is there an argument to use projections as in Fearnhead and Prangle (20121

), which are generally straightforward to apply? I think there are good reasons (Fearnhead 
and Prangle, 20121; Li and Fearnhead, 20182) for expecting the optimal number of 
summary statistics to be the same as the number of parameters, thus reducing the effect of 
the 'curse of dimensionality'. 
 

○

Results, 3rd paragraph: coverage property. The analysis seems fine, but the authors skirt 
some details, worth noting. They use 'true' values from the ABC posterior. The Wegmann et 
al. paper, following Cook et al., simulated 'true' values from the prior, for which coverage is 
indeed uniform. It is not so obvious that coverage from the ABC posterior should also be 
uniform, but this is demonstrated (I think for the first time) in Prangle et al. (20143) (at least 
for any interval in the prior predictive distribution of summary statistics, including the 
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interval from which the ABC posterior is computed). 
 
Results, 4th paragraph: non-identifiability of t_1. This observation seems at variance with 
what is stated in the abstract. Is this a summary statistic issue? Or a structural model issue? 
 

○

Figure 5: These results look convincing. Note that because of the need for a tolerance 
interval ABC coverage is not expected to be perfect (Fearnhead and Prangle, 20121).

○
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Jarno Lintusaari, Aalto University, Espoo, Finland 

We thank the reviewers for their useful comments that allowed us to improve the paper. Below we 
provide detailed responses to the issues brought up. Our responses are written in italics. 
 
This interesting paper covers an area - TB epidemiology - that has been the subject of a 
number of papers that have used approximate Bayesian computation (ABC). These studies 
have also involved some full-likelihood MCMC solutions for the same models. The present 
paper carries out an ABC analysis with an alternative modelling framework, which provides 
some satisfactory solutions to some problems that had been previously noted. 
  
I generally have few quibbles with the ABC analysis. My only main query with the paper, in 
my ignorance of TB epidemiology, is to what extent the new modelling framework gives a 
reasonable representation of the underlying biology. I note that the original Tanaka et 
al.paper explicitly emphasised the importance of modelling the mutational structure of 
clusters (3rd paragraph of the introduction). By contrast the present paper gives no 
justification for dropping the mutational modelling. My reason for querying this is that, as I 
understand it, Tanaka had a previous history of detailed work on TB epidemiology, prior to 
the 2006 paper, including co-authorship with Peter Small, and so presumably was able to 
put in the benefit of that experience into the paper. Therefore I recommend that this aspect 
be much better justified and discussed. 
  
This is a very relevant point. However, the subsequent joint work by the Tanaka et al. authors and 
Tanya Stadler notified that the mutation parameter appears non-identifiable from the fingerprint 
data and used a fixed value obtained from the literature in their most recent paper. We have now 
included a discussion about this and the rationale for excluding an explicit mutation rate 
parameter in our model.  
  
On the ABC side, my main query is to what extent the authors are confident about 
identifiability of their parameters. Particularly, since they seem to suggest one of their 
parameters is not identifiable (discussed more in specific points below). In a model-free 
setting, identifiability is demonstrated through simulation, rather than analytically. 
Obviously, if non-identifiability is shown this naturally leads to some questions about the 
summary statistics etc. as well as the structure of the model itself. But, with informative 
priors, some parameters that are only jointly identifiable can appear to be identifiable 
marginally - in a population genetics context the apparent identifiability of N and \mu with 
informative priors is a case in point, when only their product is identifiable. Again, this 
needs a bit more discussion than in the present paper. 
  
We agree that an additional discussion is in place and have added such in the revision. Our 
simulation experiments reported in the paper suggest that the key epidemiological parameters 
are indeed identifiable for the SF Bay data set, even if the net transmission rate may remain only 
weakly identifiable.  
  
Specific Comments: 
  
    Introduction, first paragraph: "genotype fingerprints". Some more discussion of this 
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would be useful with regard to my point above. Presumably what concerned Tanaka et al. is 
that multiple outbreaks can involve the same cluster, and that different clusters (due to 
mutation?) could arise from the same outbreak. 
  
We have added further discussion. Noting the slow mutation rate of TB, it is highly unlikely that 
multiple clusters would arise from the same outbreak within a relatively short timespan. 
     
    Model, 4th paragraph: “p_{obs}” - does the assumption of being observed lead to ceasing 
to be infectious fit with the compliant/non-compliant distinction, two paragraphs further 
down? 
  
Good point, there was a sloppy phrasing in the 4th paragraph. We have now revised the text to be 
in line with the later paragraph. 
      
    Model, 5th paragraph: Note my main query. 
  
As noted in our response to the main query item, we have now edited the text accordingly. 
     
    Summary statistics, paragraph 2: It might be helpful to emphasise that a 'cluster' here is 
assumed to be a new active TB case. Presumably many of these summary statistics are 
highly correlated with the parameter \beta? 
  
Excellent remarks, we have added further clarification about this. 
     
    Figure 2/3: I wonder whether these might be better in the supp. text, and replaced with a 
single figure with HPD contours for the prior and posterior. 
  
We do appreciate this suggestion, however, as noted in the response to R1, the first author who 
had the main responsibility for all aspects of the presented work has already graduated and left 
academia, as has the second author, so neither of the two are able to contribute to further work 
related to this paper. We would thus prefer keeping the two figures as in their current versions. 
     
    Summary statistics, last paragraph: "It is good to note". Do the authors mean that? Or 
rather do they mean "It should be noted"? Presumably it is not good to be not sufficient. 
  
The reviewer has a correct interpretation, this was a typo and is now fixed. 
  
More generally, is there an argument to use projections as in Fearnhead and Prangle (20121

), which are generally straightforward to apply? I think there are good reasons (Fearnhead 
and Prangle, 20121; Li and Fearnhead, 20182) for expecting the optimal number of 
summary statistics to be the same as the number of parameters, thus reducing the effect of 
the 'curse of dimensionality'. 
  
It is indeed correct that the number of summary statistics is generally expected to match the 
dimensionality of the parameter space. As noted in the response to R1, the summary statistics 
were iteratively defined by trialing inference on synthetic data from the model. The final set of 
statistics was settled on after extensive test simulations showing appropriate behavior. Note also 
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that we had previous experience about the behavior of various summary statistics from the 
earlier Lintusaari et al. Genetics 2016 article examining inference for a different model but the 
same data. 
     
    Results, 3rd paragraph: coverage property. The analysis seems fine, but the authors skirt 
some details, worth noting. 
Detailed description of the simulations used to study the coverage property has been added. 
  
They use 'true' values from the ABC posterior. The Wegmann et al. paper, following Cook et 
al., simulated 'true' values from the prior, for which coverage is indeed uniform. It is not so 
obvious that coverage from the ABC posterior should also be uniform, but this is 
demonstrated (I think for the first time) in Prangle et al. (20143) (at least for any interval in 
the prior predictive distribution of summary statistics, including the interval from which the 
ABC posterior is computed). 
  
Good point, we have added reference to Prangle et al. in the relevant part of the text. 
     
    Results, 4th paragraph: non-identifiability of t_1. This observation seems at variance with 
what is stated in the abstract. Is this a summary statistic issue? Or a structural model issue? 
  
We have edited the text to clarify the potential weak identifiability of t_1. Our simulations suggest 
that it is a structural model issue such that the parameter sometimes becomes only weakly 
identifiable when the generating stochastic process happens to result in a particularly flat 
distribution of clusters. Encouragingly, the other parameters, which are the most relevant ones 
from the epidemiological perspective, do appear fairly robustly identifiable even if t_1 would have 
a flat posterior.  
     
    Figure 5: These results look convincing. Note that because of the need for a tolerance 
interval ABC coverage is not expected to be perfect (Fearnhead and Prangle, 20121). 
  
Good point, we have added a remark about this to the revised text.  
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Article summary 
  
The article describes a new model of TB outbreak in San Francisco Bay area that overcomes the 
non-identifiability/dependency on the assumed population size of the reproductive number R in 
the generic birth-death-mutation model by Tanaka et al.  The new model considers two 
compartments, for compliant and non-compliant subpopulations, and combines two birth-death 
processes (for each of the compartments) with a pure-birth process that creates new TB 
transmission clusters (i.e. a new individual with a new RFLP pattern that is further transmitted). 
This pure-birth process replaces mutation in Tanaka’s model and corresponds to migration or 
reactivating of a latent TB. The rate corresponding to the pure-birth process is referred as the 
burden rate. At each (non-burden) birth event (i.e. TB transmission) the compartment of the newly 
infected individual is assigned to non-compliant or compliant with the probability p1 or (1 - p1) 
correspondingly. At each death (i.e. becoming non-infectious) event the individual is sampled with 
the probability p-obs. 
  
Overall, the proposed model has 7 parameters: the burden rate, 2 birth rates, 2 death rates, and 2 
probabilities (p1 and p-obs). However, 3 of them (compliant death rate, p-obs and p1) were fixed 
based on the estimates from the literature, therefore leaving 4 parameters to be estimated, 
expressed in terms of two reproductive numbers, i.e. birth to death rate ratios for the 
corresponding compartments, the non-compliant net transmission rate (difference between the 
birth and the death rates), and the burden rate. Priors and additional constraints on the rates 
were set to avoid biological meaningless of the simulations. 
  
The simulator was implemented for the proposed model and parameter estimation was 
performed for the data collected in SF Bay area in 1991-92 (Small et al.) with ABC, based on 1000 
parameter values sampled with rejection from 6M simulations, using 8 (weighted) summary 
statistics:   
1.    the number of observations 
2.    the total number of clusters 
3.    the relative number of singleton clusters 
4.    the relative number of clusters of size two 
5.    the size of the largest cluster 
6.    the mean of the successive difference in size among the four largest clusters 
7.    the number of months from the first observation to the last 
8.    the number of months when at least one observation was made. 
  
The new model not only allowed for estimation of the aforementioned parameters (posteriors are 
well concentrated within but far from the edges of the priors) but also of the balance 
subpopulation sizes (at the equilibrium state when infected subpopulations neither shrink nor 
grow). The estimates differ from those done with the birth-death-mutation model, and are 
potentially better aligned with the epidemiological knowledge on TB in the area. 
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The coverage property (accuracy of the spread of the acquired posterior) of the estimator was 
further tested on 1000 parameter values drawn from the posterior, giving satisfactory results for 
the critical level of .05 (the true parameter values were outside of the .95 credible interval of the 
posterior with probability less than .05). 
 
General comments 
 
The article reads well, the model, rationale behind it, its assumptions and advantages over the 
previous TB model are explained in a clear and convincing way. It is a valuable addition to TB 
research, and we believe that the article should be accepted. 
  
Having little knowledge on TB (but on ABC), we feel like the article could benefit from a more 
detailed discussion of the obtained estimates. For example, is there any literature/other data 
supporting the estimated subpopulation sizes? 
  
We also point out a few technicalities that could be explained in more detail (see below). 
 
Technical comments 
 
A flow diagram of the model could facilitate the model understanding for the reader. 
  
Additional sensitivity analysis of the model while varying pre-fixed parameter values (of compliant 
death rate, p-obs and p1) might add confidence in author’s findings. 
  
Page 4: “The observations are collected from the simulated process after a sufficient warm-up period, so 
that the process can be expected to have reached stable properties (exemplified in Figure 1).” 
In Figure 1 the warm-up seems to be achieved already after 15 years, however the observation 
period is chosen around 45 years, where there is a drop of population sizes. Is it a coincidence? 
How is the start of the observation period selected? 
  
Page 5: “We used the Engine for Likelihood-Free Inference (ELFI)...” 
The authors might detail what kind of inference was used: Is it a pure distance/rejection-based 
approach? Or do you use some regression tool, random forest, LASSO, neural network or other? 
How was the technique selected? 
  
Page 5: “Based on the details in Small et al. describing the San Francisco Bay area TB data, there were 
585 confirmed cases of TB of which 487 were included in the study. To account for the cases that were 
not included in the study, we fix the probability of becoming observed to p-obs = 0.8” 
If we understand correctly the p-obs is calculated as 487/585, but what about potentially unknown 
cases of TB in the SF Bay area? Is it assumed that all the existing TB cases are known? 
  
Page 5: It is not very clear why these particular summary statistics were selected, e.g. “the mean of 
the successive difference in size among the four largest clusters” 
Why not 3 or 5, etc.? Were for example other statistics tested, which performed worse? 
The name of the last statistic (“the number of months when at least one observation was made”) is 
rather confusing. In table 1 it has a slightly different name: “the number of months that at least one 
observation was made from the largest cluster”. Does it mean the time when the first observation from 
the largest cluster was made? 
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Page 7: “The chosen summary statistics and weights were found to perform well in the evaluation of the 
model in Subsection .” 
The subsection number is missing. 
  
Page 7: “The resulting threshold for the acquired sample was ∈ = 31.7 with the smallest distance being 
12.5.” 
How were the threshold and distance values selected?
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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Jarno Lintusaari, Aalto University, Espoo, Finland 

We thank the reviewers for their useful comments that allowed us to improve the paper. Below we 
provide detailed responses to the issues brought up. Our responses are written in italics. 
  
R1: 
  
The article describes a new model of TB outbreak in San Francisco Bay area that overcomes 
the non-identifiability/dependency on the assumed population size of the reproductive 
number R in the generic birth-death-mutation model by Tanaka et al.  The new model 
considers two compartments, for compliant and non-compliant subpopulations, and 
combines two birth-death processes (for each of the compartments) with a pure-birth 
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process that creates new TB transmission clusters (i.e. a new individual with a new RFLP 
pattern that is further transmitted). This pure-birth process replaces mutation in Tanaka’s 
model and corresponds to migration or reactivating of a latent TB. The rate corresponding 
to the pure-birth process is referred as the burden rate. At each (non-burden) birth event 
(i.e. TB transmission) the compartment of the newly infected individual is assigned to non-
compliant or compliant with the probability p1 or (1 - p1) correspondingly. At each death 
(i.e. becoming non-infectious) event the individual is sampled with the probability p-obs. 
  
Overall, the proposed model has 7 parameters: the burden rate, 2 birth rates, 2 death rates, 
and 2 probabilities (p1 and p-obs). However, 3 of them (compliant death rate, p-obs and p1) 
were fixed based on the estimates from the literature, therefore leaving 4 parameters to be 
estimated, expressed in terms of two reproductive numbers, i.e. birth to death rate ratios 
for the corresponding compartments, the non-compliant net transmission rate (difference 
between the birth and the death rates), and the burden rate. Priors and additional 
constraints on the rates were set to avoid biological meaningless of the simulations. 
  
The simulator was implemented for the proposed model and parameter estimation was 
performed for the data collected in SF Bay area in 1991-92 (Small et al.) with ABC, based on 
1000 parameter values sampled with rejection from 6M simulations, using 8 (weighted) 
summary statistics:  
1.    the number of observations 
2.    the total number of clusters 
3.    the relative number of singleton clusters 
4.    the relative number of clusters of size two 
5.    the size of the largest cluster 
6.    the mean of the successive difference in size among the four largest clusters 
7.    the number of months from the first observation to the last 
8.    the number of months when at least one observation was made. 
  
The new model not only allowed for estimation of the aforementioned parameters 
(posteriors are well concentrated within but far from the edges of the priors) but also of the 
balance subpopulation sizes (at the equilibrium state when infected subpopulations neither 
shrink nor grow). The estimates differ from those done with the birth-death-mutation 
model, and are potentially better aligned with the epidemiological knowledge on TB in the 
area. 
  
The coverage property (accuracy of the spread of the acquired posterior) of the estimator 
was further tested on 1000 parameter values drawn from the posterior, giving satisfactory 
results for the critical level of .05 (the true parameter values were outside of the .95 credible 
interval of the posterior with probability less than .05). 
  
General comments 
  
The article reads well, the model, rationale behind it, its assumptions and advantages over 
the previous TB model are explained in a clear and convincing way. It is a valuable addition 
to TB research, and we believe that the article should be accepted. 
  

 
Page 23 of 26

Wellcome Open Research 2019, 4:14 Last updated: 20 OCT 2020



We thank the reviewers for their highly positive comments about our work. 
 
  
Having little knowledge on TB (but on ABC), we feel like the article could benefit from a 
more detailed discussion of the obtained estimates. For example, is there any 
literature/other data supporting the estimated subpopulation sizes? 
  
The estimates are well aligned with the epidemiological discussion in the original NEJM paper 
introducing the fingerprint data. We now point this out more carefully in the revised version. 
 
  
We also point out a few technicalities that could be explained in more detail (see below). 
  
Technical comments 
  
A flow diagram of the model could facilitate the model understanding for the reader. 
  
A flow diagram has been added as a supplementary figure to accompany the final version. 
 
  
Additional sensitivity analysis of the model while varying pre-fixed parameter values (of 
compliant death rate, p-obs and p1) might add confidence in author’s findings. 
  
We feel that the current sensitivity analysis is quite sufficient and fulfils its purpose to 
demonstrate stability of the estimates for data akin the San Francisco Bay observations. The first 
author who had the main responsibility for all aspects of the presented work has already 
graduated and left academia, so he is not able to contribute to further work related to this paper 
which limits our possibilities for performing extensive additional simulations.  
 
  
Page 4: “The observations are collected from the simulated process after a sufficient warm-
up period, so that the process can be expected to have reached stable properties 
(exemplified in Figure 1).” 
In Figure 1 the warm-up seems to be achieved already after 15 years, however the 
observation period is chosen around 45 years, where there is a drop of population sizes. Is 
it a coincidence? How is the start of the observation period selected? 
  
Figure 1 is intended only as a schematic numerical example to assist the reader in understanding 
the underlying logic of the model and the sampling assumptions. The drop is thus coincidental. 
This is now properly noted in the revision. 
 
  
Page 5: “We used the Engine for Likelihood-Free Inference (ELFI)...” 
The authors might detail what kind of inference was used: Is it a pure distance/rejection-
based approach? Or do you use some regression tool, random forest, LASSO, neural 
network or other? How was the technique selected? 
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As stated in the paper, we used pure rejection sampling (we sampled 1000 parameter values with 
rejection sampling from a total of 6M simulations). The main reasons for choosing this basic ABC 
approach were: 1) we implemented a computationally efficient vectorized Python version of the 
simulator which facilitated the use of a large number of simulations, 2) at the time the project 
was initiated, ELFI had yet no implementation of the Bayesian optimization procedure for non-
uniform priors. Such a prior was essential for the model structure and straightforward to 
consider in a pure ABC rejection sampler, hence the choice for inference method was well 
motivated. These reasons are now more clearly stated in the revision. 
 
  
Page 5: “Based on the details in Small et al. describing the San Francisco Bay area TB data, 
there were 585 confirmed cases of TB of which 487 were included in the study. To account 
for the cases that were not included in the study, we fix the probability of becoming 
observed to p-obs = 0.8” 
If we understand correctly the p-obs is calculated as 487/585, but what about potentially 
unknown cases of TB in the SF Bay area? Is it assumed that all the existing TB cases are 
known? 
  
For epidemiological reasons it is unlikely that any substantial numbers of active TB cases were 
unknown to the public health officials, hence it is unlikely that these would have a non-negligible 
contribution to the observed outbreaks. Given the severity of TB and the protocols followed by 
public health officials most active cases are expected to have been traced. We have now stated 
this more explicitly in the revision. 
 
  
Page 5: It is not very clear why these particular summary statistics were selected, e.g. “the 
mean of the successive difference in size among the four largest clusters” 
Why not 3 or 5, etc.? Were for example other statistics tested, which performed worse? 
The name of the last statistic (“the number of months when at least one observation was 
made”) is rather confusing. In table 1 it has a slightly different name: “the number of 
months that at least one observation was made from the largest cluster”. Does it mean the 
time when the first observation from the largest cluster was made? 
  
We have edited the text to make the summary statistic definitions unambiguous. The summary 
statistics were iteratively defined by trialing inference on synthetic data from the model. The final 
set of statistics was settled on after extensive test simulations showing appropriate behavior. 
Note also that we had previous experience about the behavior of various summary statistics from 
the earlier Lintusaari et al. Genetics 2016 article examining inference for a different model but 
the same data. 
 
  
Page 7: “The chosen summary statistics and weights were found to perform well in the 
evaluation of the model in Subsection .” 
The subsection number is missing. 
  
The subsection number was missing due to the submission template and will be visible in the final 
typeset version. 
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Page 7: “The resulting threshold for the acquired sample was ∈ = 31.7 with the smallest 
distance being 12.5.” 
How were the threshold and distance values selected? 
  
As for the summary statistics, the threshold was settled by extensive trialing of inference on 
synthetic data from the model to identify a threshold striking a good balance between runtimes 
and acceptance rate and the resulting Monte Carlo error rate. This is now more appropriately 
reported in the revision.  
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