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ABSTRACT
Edge data centers are expected to become prevalent provid-
ing low latency computing power for 5G mobile and IoT ap-
plications. This article develops two models for the complete
cooling system of an edge data center: one model based on
the laws of thermodynamics and one data-driven model based
on LSTM neural networks. The models are validated against
an actual edge data center experimental set-up showing root
mean squared errors (RMSE) for most individual components
below 1 °C over a simulation period of approximately 10
hours; which compares favourably to state-of-the-art models.

Index Terms— Edge, Data center, LSTM, Cooling Sys-
tem, Thermal Energy Storage

1. INTRODUCTION

In recent years, data center (DC) energy efficiency has re-
ceived increasing attention due to the rapid increase in the
number of DCs and their energy usage worldwide [13]. In
a data center, it is common for approximately a third of the
energy usage to be spent on cooling [2], which is essentially
wasted energy. Cooling systems are often only static or reac-
tive, attempting to hold a constant air temperature in the DC.
Further optimization could be achieved using proactive con-
trol algorithms, such as the model predictive control (MPC)
method. These methods use mathematical models to predict
the response of the system, but it is challenging to create accu-
rate models of the thermodynamics of a DC cooling system.

The state-of-the-art methods in mathematical modeling of
data center cooling system are physical modeling, Compu-
tational Fluid Dynamics (CFD) modeling [11, 20], and re-
cently also data-driven modeling including neural networks
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[1, 6, 8]. CFD models target the air flow and heat transfer
in data centers, but usually only for the air interactions in the
server room. Physical models make broad simplifications in
describing the dynamics of the cooling system, such as with
the chiller and dry cooler, in for example [3, 21], or with the
chilled-water heat exchanger [18], compact models that ad-
ditionally include the thermal mass for room, plenum, walls,
floor, ceiling and a water storage tank [9], or use networks
of thermal nodes to model the internal dynamics of servers
[14]. Moreover, neural networks have been used to directly
predict the effectiveness of DC cooling systems [6, 16], and
more rarely the system thermal responses [1].

An edge data center provides cloud computing and stor-
age services at the edge of a network, for example at the
crossing point between a mobile network and the wired in-
ternet. It is expected that edge data centers will be widely
distributed and located close to the users to reduce the latency
for mobile/internet-of-things (IoT) applications that rely on
computation/storage outside of the devices. For easier inte-
gration in urban environments and with power distribution
systems they may be equipped with batteries, renewable en-
ergy sources and thermal energy storage [4].

A motivation for this work is to investigate how to con-
struct accurate models for small edge data centers with ther-
mal energy storage using the existing modeling approaches
- where such accurate models can give insight to the internal
states of the entire cooling system and contribute to the design
of more efficient facilities and control systems.

Our contribution is a direct comparison of a physical
model and a data-driven model for the cooling systems of a
small data center equipped with thermal energy storage.

2. EXPERIMENTAL SET-UP

The EDGE data center is a small data center laboratory built
at the RISE ICE data center research facilities at Luleå, Swe-
den, which functions as a test bed for the edge data center



Fig. 1. EDGE lab: (1) The data center module, a container for the data center. (2) Two server racks. (3) CRAH (mounted above
the racks). (4) The coolant water storage tank. (5) Chiller. (6) Coolant pipes going to the roof. (7) Cooling tower (on the roof).
(8) Batteries. (9) The measurement and control system. (10) Picture of the solar panels (on the roof). (11) Microgrid inverter.

concept. In addition to 10 kW of IT, the RISE EDGE lab
is equipped with a thermal energy storage (TES) tank and
a micro-grid with photo-voltaic cells and batteries allowing
experimentation on using alternative energy sources, reliabil-
ity and partial self-sufficiency for micro-grid connected data
centers. We use an experimental set-up reported earlier [4],
which is briefly summarized below. Figure 1 shows the ex-
perimental set-up where the main components are labeled in
the caption. The cooling system consists of components 1 to
7.

1. Data center module. A sheet metal container, which is
separated into a cold and hot aisle (full containment).

2. Two server racks are positioned between the aisles with
38 Dell PowerEdge R430 servers each. The servers
have a total idle load of about 9 kW, and a maximum
load of roughly 11.5 kW.

3. An air-to-water heat exchanger sits above the racks
providing cooling air in the closed loop between the
hot and the cold aisle.

4. The storage tank has a capacity of 2000 liters and is
filled with water that is circulated through the module
heat exchanger and chiller. Flow diffusers and nozzles
(red cones in picture) help reduce internal currents in
the tank.

5. The chiller unit has three modes of operation: the
chiller mode, the free cooling mode, and a partial free
cooling mode. The first two modes cool the incoming
water by vapor-compression technology or liquid-to-
liquid heat-exchange technology, respectively, and the
third mode uses both methods. The free cooling mode
is used when the outside temperature is low and vapor-
compressor is not required to increase the temperature
difference between the water and glycol.

6. Cooling tower pipes carry the glycol-mixture from the
chiller to the drycooler and back again.

7. The cooling tower is an air-liquid dry-cooler, where
outside air is forced through the heat exchanger, re-
moving some of the heat in the liquid received from
the chiller.

8. Lead-acid batteries with capacity to hold 30 kWh of
electrical energy.

9. A measurement and control system collects sensor data
and sends it downstream for storage, visualisation,
analysis and input to control algorithms.

10. The solar panels on the roof of the facility have a max-
imum capacity of 10 kW.

11. The microgrid inverter connects the DC system with
the external power grid, solar panels and batteries.

The inputs used to control the system are:
• IT load setpoint determines the synthetic load placed

on servers by the stress-ng software.
• Chiller output setpoint is the temperature of the water

the chiller outputs to the storage tank.
• Pump setpoint controls the pump between the storage

tank and module heat exchanger.
• Fan setpoint for the module heat exchanger fan.
Data from the sensors in the hardware equipment as well

as data hosted natively by the chiller and microgrid controller
are sampled approximately every 30 seconds by a common
data collection system (built on the Zabbix software) before
being passed into a time series database (KairosDB) for long-
term storage that allows access by the visualization (Grafana
API) and analysis (Jupyter/Python or Matlab) tools. The data
collection solution used in the lab is designed for scalability
and is described in previous work [7].

Experiments were conducted to create the training and
validation data for the models by running predetermined se-
quences that alter set-points over time. The first four experi-
ments changed only one set-point in isolation while the other
inputs were kept constant. Three more complex experiments
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Fig. 2. The EDGE cooling system.

allowed all of the inputs to change throughout a day: from
these one was used as validation data, while the other two to-
gether with the first four were used for model training. Details
for the seven experiment sequences can be found in [17].

2.1. Physical Model

The physical model represents each of the system compo-
nents as its own model, which are then joined as is done in
the block diagram of Figure 3 to create the complete sys-
tem model. This method of dividing the model to sections
is widely used in state-of-the-art solutions [3, 5, 19, 21], and
often implemented in Matlab Simulink for simulations and
analysis [3, 21]. The method assumes ideal heat transfer, and
uses natural constants, nameplate values and qualified esti-
mates based on system dimensions for model parameters such
as surface areas, volumes, and equipment weights.

The complete description of the model does not fit in this
article (with only the equations running into several pages).
Therefore we only state the equations for the data center hot
aisle dynamics as an example. For the other components in
the heat rejection system we only present a brief summary
of the modeling and assumptions - for detail we refer to the
original thesis work by Siltala [17].

Data center module. The energy balance equations for the
hot aisle and cold aisle are based on the simplified steady-flow
equation, the convection heat transfer rate equation and the
internal thermal energy change rate equation. The net thermal
energy outflow rate is equal to the convection losses through
the walls to the ambient air, and the change in the internal
thermal energy. Additionally, the IT equipment is assumed
to input thermal energy to the hot aisle by the first law of
thermodynamics. We then have for the hot aisle

ρairVhotc
air
p

dThot
dt

= qIT + ṁair
modulec

air
p (Tcold − Thot)

− hhotAhot(Thot − Tambient)

− hITAIT (Thot − TIT )

where the first term on the right hand side describes the IT
heat injection, followed by the thermal energy flow, and con-
vective and conductive heat transfer. Model parameters like
surface area, Ahot, and volume, Vhot, of the hot aisle are esti-
mated, while the specific heat capacity, cairp , air density, ρair,
and heat transfer coefficient over a thin wall, hhot, are taken
from physical handbook tables.

There is a corresponding differential equation for the cold
aisle temperature, Tcold, but without the thermal interactions
with the IT equipment. Forward Euler discretization is used
to approximate the differential equations for numerical sim-
ulation. For the heat transfer between the equipment and the
hot aisle air we use the lumped heat capacity equation

mIT c
IT
p

dTIT
dt

= hITAIT (Thot − TIT )

where AIT and mIT are the estimated effective surface area
and mass of the IT equipment, cITp the specific heat capac-
ity of the servers (assuming steel), and hIT the heat transfer
coefficient into air.

Module heat exchanger. We assume that there is negligi-
ble heat transfer between the heat exchanger and its surround-
ings, negligible potential and kinetic energy changes, there is
no phase change and the specific heats are constant [10], and
use the steady-flow thermal equation for both of the two me-
dia, where the net rate of thermal energy removed from the
air equals to the net rate of thermal energy output to the wa-
ter. The Logarithmic Mean Temperature Difference (LMTD)
equations complete the description of the counter-flow heat
exchanger.

The value of the heat exchanger thermal conductance is
unknown and nonlinearly affected by the air and water flow
rates and temperatures. Therefore a polynomial of degree 2
in the pump set-point and fan set-point are fitted to experi-
mental data, later to be used as input to the simulations. The
dependence on changing temperature is assumed to be weak
and neglected in the regression.

Thermal energy storage. Since the storage can have a



Fig. 3. The Edge data center cooling system block diagram.

temperature difference between the top and bottom, the tank
is horizontally divided into two imaginary sections along the
middle, and the heat flows are calculated for both. The en-
ergy balance equations then assume that the temperature is
uniform in these two sections.

Chiller. Two sets of equations are required to represent
the dynamics of the chiller, since it has two operating modes:
chiller mode and free cooling mode (see also greyed area in
Figure 2). In free cooling mode the exchange of heat happens
at a water-to-glycol heat exchanger, described by the LMTD
equations similarly to the module heat exchanger. In chiller
mode the refrigeration loop is defined by the coefficient of
performance (COP), the thermal energy flow and the lumped
heat capacity.

Cooling tower. The last component of the heat rejection
system is the dry cooler on the roof, where the heat is expelled
from the system. This component is again a heat exchanger,
and the dynamics are solved again using the LMTD equations
assuming a counterflow liquid-to-air heat-exchanger, where
the heat radiated to the outside air equal to the heat removed
from the glycol.

Mass flow rates. There are five mass flow rates that are
required to be solved for the system as visualised in Figure 3.
Two of these were assumed constant based on observations,
and three assumed variable: 1) data center module air-flow
rate, which depends on the fan set-point, 2) storage to heat
exchange water-flow, which depends on the pump set-point,
and 3) chiller to tower glycol-flow in free cooling mode, de-
pending on the chiller control signal regulating a 3-way valve.
For these, the functional relations were determined by poly-
nomial regression (details in [17]).

Transport delays. Estimating the transport delays in
the system can be calculated for the sections where fluid is
pumped through pipes by comparing the volume of the pipe
and the flow rate.

2.2. Data-driven model

The Long Short-Term Memory (LSTM) neural network ar-
chitecture which can model time series with correlation over
long time spans was chosen for the data-driven model [15],
because such dependencies and time delays were observed in

the system.

Modular architecture. The data-driven models should at-
tempt to model the individual components of the cooling sys-
tem, as well as the entire system. The system is divided into
five sections as is illustrated in Figure 3, where the IT module
is considered jointly as one component. Mass flows are not
modeled explicitly. The outputs of one model are therefore
used as inputs for other models, creating a dependency be-
tween the models. The model components have two types of
inputs: inputs which are not dependent on the other models,
such as the system set-points, and inputs which are the output
of some other model components. The training of the models
is therefore possible separately.

Initialization. The internal state of the model can not be
directly inferred from observation data. Therefore the initial-
ization is provided by running the simulation with an initial-
ization sequence before predictions can be made.

Training data. The training data was chosen so that it
contains all but one of the experiments that were conducted
with the system. The remaining experiment was used as the
validation data.

Neural network configuration. The first layer of the net-
work is the input layer, followed by a number of hidden
LSTM cells, connected to a dense-layer that predicts the out-
put. The tested networks had 1, 2 or 3 LSTM layers, with
number of neurons being powers of two between 2 and 1024.

Training procedure. The temperature prediction error was
used in the Mean Squared Error (MSE) loss function. The
ADAM optimiser by Kingma and Ba [12] was used for loss
minimization to find the model parameters. Models were
trained for a hundred epochs to determine the best network
configuration; the 2-layered models had the best results, and
a layer size of 32 provided a high speed per epoch joined with
good performance. Further models were trained with 2 layers
of 32 neurons each (with about 13000 trainable parameters).

The final models were trained for up to a thousand epochs
(roughly 15 hours) to find further performance increases.
Early stopping was practised, by which the epoch with the
best validation MSE were saved to be analyzed further.



3. RESULTS

Simulation results were obtained in four sets: both for the
physical model and the data-driven model, and for each con-
ducting the simulation both jointly and for each component in
isolation. Naturally all these can not fit into the article format;
instead only a summary of the simulation results are presented
for the entire system. For visual validation, we also include
example plots of simulated time series for the hot aisle tem-
peratures.

RMSE (°C) Physical Data-driven
Comp. Join. Comp. Join.

Hot aisle 0.43 1.68 1.72 2.30
Cold aisle 0.19 1.70 0.48 1.72
HE to storage 0.14 1.76 0.39 1.82
Storage to HE 0.66 1.70 0.63 1.55
Storage to chiller 0.39 1.27 0.35 1.09
Chiller to storage 1.93 2.64 1.20 2.55
Chiller to tower 2.13 3.25 0.97 4.31
Tower to chiller 3.55 3.89 1.46 4.08
Mean 1.18 2.24 0.90 2.43

Table 1. Validation RMSE from simulations.

Physical model validation. As can be seen from Table 1
(leftmost column), the RMSE of the hot aisle temperature is
quite low for the individual component of the physical model,
which is also reflected in the first panel in Figure 4 that tells
that this model simulation agrees quite well with observa-
tions. The largest discrepancy occurs towards the end of the
time series, when the fan set-point is changed, and the temper-
ature change is almost instant without thermal lag. A possible
cause is that the heat transfer coefficients are assumed static,
but in reality they are dependent on the flow rate of air and the
temperature difference.

For the joint simulation, illustrated in the second panel
of Figure 4, only the initial temperatures are provided to the
physical model that is now tasked to simulate all the com-
ponents together based on the recorded sequence of set-point
changes, ambient and outside temperatures. Poorer perfor-
mance is expected as errors of each component get propagated
back to the system, and indeed Table 1 shows that the RMSE
is larger for the joint simulation than for its components.

Data-driven model. The third panel of Figure 4 with hot
aisle temperatures shows that the module component takes
roughly 1.5 hours to fully converge, after which the estimate
is fairly accurate for the first half of the simulation, and then
deteriorates towards the long prediction horizon.

In the joint data-driven model (fourth panel on Figure 5)
the first hour of data is used as the initialization period, and
during the rest of the simulation the estimates are fed back to
the models. The errors for hot aisle temperatures are some-
what larger for the same reasons as with the physical model.

4. ANALYSIS

Judging by the performance metrics in Table 1, overall the
physical models are more often the more accurate model, with
lower RMSE than those of the data-driven model.

The whole row for tower-to-chiller temperatures in Table
1 stands out by showing the largest inaccuracies overall, e.g.
with a RMSE of 3.55 for the individual physical model com-
ponent. After the experiments it was discovered that the tem-
perature sensor often receives too high temperature measure-
ments during the morning, when the sun shines on the side of
the cooling tower where the sensor is located. For compari-
son, when a temperature time series recorded by the Swedish
Meteorological and Hydrological Institute (SMHI) was used
instead, the RMSE drops to 0.85 for the same model.

The physical models outperform their data-driven coun-
terparts for the server and heat exchanger components. For
the storage tank on the other hand, accuracies are very close
for the two models, with a slight edge to the data-driven
approach according to the RMSE in Table 1. The chiller
and cooling tower however were more accurately modeled
by the data-driven approach. These observations indicate
that components which can be represented using thermody-
namic equations can perform well, while components with
more complex dynamics that are difficult to capture in simple
equations can benefit from a data-driven approach.

A closer look at the simulation time series for the remain-
ing components1 show that the data-driven model fails to cap-
ture the mode-switching behaviour of the chiller unit. These
errors, as well as the cooling tower measurement error with
the outside air temperature, appear to propagate to the other
components and slowly increase the errors for the entire sim-
ulation.

The mean average errors (MAE) reported for state-of-the-
art physical models is 1.1 °C [21] or 1.7 − 0.5 °C [3] for
the cold aisle temperature, and 1.15 °C [21] for the hot aisle
temperature. The present work gives MAE of 1.45 °C for
the cold aisle, and 1.35 °C for the hot aisle with the joint
physical model, and with the joint data-driven model 1.44 °C
and 1.84 °C, respectively.

One should note that although the simulation horizons are
comparable, the modeled set-ups are not identical, and the
present experimental set-up cycles a number of different set-
points, while only IT load is changed in the previous work
used for comparison [3, 21]. Additionally, the state-of-the-art
models do not simulate the entire cooling system or assume
some ideal behavior for components further from the servers.
A direct comparison of performance scores is therefore not
possible, but ,in comparison with the state-of-the-art models,
the present models can give insight to the internal states of the
entire cooling system.

A state-of-the-art artificial neural network (ANN) model
that estimates the cold aisle temperature for individual discon-

1not included for space constraints; ref to Fig 29 and 30 in [17]



Fig. 4. Hot aisle temperature as estimated individually by the physical model (panel 1), by the joined physical model (panel 2),
individually by the server component of the data-driven model (panel 3), and by the joined data-driven model (panel 4).

nected points in time reported a MAE of 0.6 °C [1]. However,
when used to predict longer time series, the performance de-
teriorated severely, and the estimation error grew to over 5 °C
in under 300 seconds. The LSTM based ANN solution pre-
sented here has better performance over prediction horizons
of multiple hours (MAE 1.44 °C after 9.75 hours), and there-
fore outperforms in comparison.

The quality of the data-driven model estimate decreases
faster than the physical model estimate (Figure 4). Therefore
the physical model can be safely used to simulate the real
system for longer time horizons without risking overheating
of the real system. However, based on these results both mod-
els could be safely used as a plant model in a control system
as the ”accurate” estimation horizon consists of the estimate
settling to several accurate steady states following several set-
point changes, and the simulation would be restarted with new
initial data to reset the error.

5. CONCLUSION

Two models for an edge data center cooling system were pre-
sented: a physical model implemented in Matlab/Simulink,
and a data-driven model based on LSTM neural networks im-
plemented in TensorFlow/Keras. The simulations were vali-
dated against an actual edge DC experimental set-up showing
root mean squared errors (RMSE) for most individual com-
ponents below 1 °C over a simulation period of 9.75 hours.

There were however challenges in correctly simulating the
multiple operating modes of the chiller component using both
methods. In addition, it was noticed that an incorrectly in-
stalled temperature sensor decreased the accuracy of the cool-
ing tower models.

When simulating the entire system using these compo-
nents, an error in any of their outputs will be propagated to
the other components and lower the accuracy of all outputs,
which was especially troubling for the errors caused by the
chiller and tower components. Overall the physical model
achieves a higher accuracy than the data-driven model.

Beyond fixing the outside temperature sensor, future work
could involve mixing both physical and data-driven compo-
nents in a joint grey-box model, to investigate if such an ap-
proach can keep simulation within long term physical bounds
while allowing fine tuning to observed transient behaviour.
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