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Abstract: This paper addresses the improvement of tracking of the maximum power point upon
the variations of the environmental conditions and hence improving photovoltaic efficiency. Rather
than the traditional methods of maximum power point tracking, artificial intelligence is utilized
to design a high-performance maximum power point tracking control system. In this paper, two
artificial intelligence-based maximum power point tracking systems are proposed for grid-connected
photovoltaic units. The first design is based on an optimized fuzzy logic control using genetic
algorithm and particle swarm optimization for the maximum power point tracking system. In turn,
the second design depends on the genetic algorithm-based artificial neural network. Each of the
two artificial intelligence-based systems has its privileged response according to the solar radiation
and temperature levels. Then, a novel combination of the two designs is introduced to maximize
the efficiency of the maximum power point tracking system. The novelty of this paper is to employ
the metaheuristic optimization technique with the well-known artificial intelligence techniques to
provide a better tracking system to be used to harvest the maximum possible power from photovoltaic
(PV) arrays. To affirm the efficiency of the proposed tracking systems, their simulation results are
compared with some conventional tracking methods from the literature under different conditions.
The findings emphasize their superiority in terms of tracking speed and output DC power, which
also improve photovoltaic system efficiency.

Keywords: PV system; maximum power point tracking; artificial intelligence; fuzzy logic control;
artificial neural network; genetic algorithm; particle swarm optimization

1. Introduction

Recently, photovoltaic (PV) systems have been used intensively in distribution net-
works worldwide to generate electric power from sunlight beside the load centers. The
total worldwide capacity of PV has experienced approximately exponential progress in
the earlier decades, cumulative from 39 GWp in 2010 to 480 GWp in 2018 while the typi-
cal PV installation costs reducing from 4621 USD/kWp to 1210 USD/kWp for the same
duration [1]. European Union (EU) follows an ambitious strategy to be the world leader
in the sector of renewable energy by 2030 [2]. For example, the share of renewables in
Finland is 47% of all generation in 2018, including wind, PV, and Hydropower stations [3].
In general, these systems exist in remote regions, i.e., standalone, or in grid-connected units.
In this regard, the PV efficiency is mostly dependent on their operation at maximum power
point (MPP) during different grid conditions. The MPP tracking (MPPT) is considered a
control unit to preserve the output DC generated power at the maximum rate at numerous
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environmental and load circumstances [4–7]. A major benefit of efficiency improvement of
PV is to minimize the overall operating cost of using these distributed generations (DG),
which is a challenge towards the effective utilization of renewable DG units [8–14].

Recently, diverse MPPT schemes have been extensively proposed for solving the
MPP uniqueness in numerous applications. Typically, the control systems of PV depend
mainly on the DC-DC boost converter, which adjusts the duty cycle during environmen-
tal conditions fluctuations (i.e., cell temperature and irradiance). Common methods for
MPPT of PV involve (1) incremental conductance (INC) method, (2) perturb-and-observe
(P&O) method, and (3) the Hill Climbing method, have been implemented in [15,16]. More
recently, the employment of advanced artificial intelligence (AI) is expanded in various
subjects which can also be employed in the MPPT of grid-connected PV units [17]. Ad-
vanced MPPT approaches have been also adopted such as the genetic algorithm (GA) [18]
and the fuzzy logic control (FLC) [19,20]. Driven by the advanced innovations in meta-
heuristic optimization, different variants have been employed in the MPPT problem, like
ant colony optimization algorithm [21], particle swarm optimization [22], and differential
evaluation [23]. Further metaheuristic based approaches for the MPPT control of PV in-
volve cuckoo Search Algorithm [24], Jaya optimizer [25], and spline model guided MPPT
method [26]. Other methods exploit the common methods and AI techniques as hybrid
MPPT control systems [27]. The authors of [28] evaluates classical techniques based on PV
efficiency is investigated. Comparative MPPT studies by the common and AI techniques
have been presented in [29,30], which have highlighted the features of employing the
advanced algorithms. Further, artificial neural networks (ANNs) have been extensively
utilized in different areas as rapid, precise, and robust tools due to their effective learning
schemes [31–33]. Specifically, ANNs can simplify complex mathematical models by the
dense connections among the neurons. For the purpose of MPPT, ANNs are used with
dissimilar architectures and input signals considering different grid and environmental sit-
uations [34–37]. Regarding ANN based MPPT units, the commonly used input signals are
the irradiance and the cell temperature. In [38], the GA optimization has been integrated
with ANN to enhance the operation of a standalone PV system by using the two common
input signals. The authors of [39] have proposed the use of GA and ANN to refining the
search procedure for MPPT. Another application of GA is to optimize the training dataset of
ANN for MPPT of PV systems [18]. In a previous work reported in [40,41], an ANN-based
MPPT method supported with GA has been proposed for PV systems.

As illustrated in the literature, several methods have been used for MPPT of PV
systems. To cover the limitations of the existing methods, in this paper, two AI-based
MPPT systems are introduced for grid-connected PV. The first AI system is based on an
enhanced fuzzy logic control (FLC) by means of GA and particle swarm optimization
(PSO). Further, the second one depends on the GA-based ANN (called GA-ANN). Each of
the two AI-based MPPT systems has its superior response based on solar radiation and
temperature. Most importantly, a new combination of these two AI designs is proposed to
maximize the efficiency of the MPPT system of PV. According to the authors’ knowledge,
this is the first paper to combine GA, PSO, ANN, and FLC to efficiently address the MPPT
for PV systems. Comprehensive simulation results are compared with some common
MPPT methods from the literature under different conditions to affirm the efficiency of
the three proposed MPPT systems. It is proven that the proposed systems have superior
performances in terms of tracking speed and output DC power, thereby improving the PV
system efficiency.

The novelty of this work is to utilize the metaheuristic optimization technique with
the well-known artificial intelligence methods to achieve a better tracking system that
harvests the maximum possible power from PV systems. GA and PSO are exploited to
adapt the FLC system for MPPT. In turn, the GA is exploited to assist the choice of the
suitable ANN architecture for MPPT. As it was remarked, each of the two MPPT systems
acts well at different irradiation and temperature range. So, a proposed combination of
the two AI-based systems is presented to exploit the superiority of each of them for MPPT.
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Specifically, we introduce a novel AI-based MPPT method that combines Fuzzy logic
controller and ANN to exploits the best of them. The detailed contributions are as follows:

• Using of Fuzzy logic controller as MPPT system optimized by GA and PSO solvers;
• Using GA for design the architecture of ANN-based MPPT;
• Comparison between these two AI-based methods;
• Proposition a combination of the two methods because each of them is better for a

certain range of irradiance and temperature;
• The results are elaborated and comparisons with incremental conductance and perturb

and observe methods are presented;
• The comparisons are presented for both linear and step variations of irradiance and

temperature.

The remainder of the paper is structured as follows. Section 2.1 assesses the PV array
modeling and Section 2 presents the methods of maximum power point tracking. In Section 3,
the application of the artificial intelligence methods for MPPT is illustrated where the results.
In Section 3.5, a discussion of the main findings in the paper are discussed. Finally, Section 4
summarizes the paper, emphasizing its main conclusions.

2. Methods of Maximum Power Point Tracking
2.1. PV Array Modeling

The connection of PV cells to constitute PV panels and arrays relies on the needed
power and voltage. The PV cell modeling, which has different modeling approaches,
represents the stone for the PV array modeling. The PV cell model that satisfies the
modeling requirements and simplicity is the one diode model presented in Figure 1.
The current (I)-voltage (V) relations of a PV cell can be presented as follows [42,43]:

Rs

Rp

Iph Id

I

V

Figure 1. The model of a photovoltaic (PV) cell: one diode model.

I = Iph − Is(exp(
q(V + IRs)

akTc
− 1))− V + IRs

Rp
(1)

where, Iph is the photo current and Is is the saturation current, which are given as [42,43]:

Iph =
G
Gn

(Iscn + KI(Tc − Tcn)) (2)

Is = Isn(
Tcn

Tc
)3exp(

qEg

ak
(1/Tcn − 1/Tc)) (3)

Isn =
Iscn

exp( qVocn
akTcn

)− 1
(4)

where, G is the solar irradiance in W/m2, Tc is the cell temperature in Kelvin, Voc is the
open circuit voltage in V, Isc is the short circuit current in A, Rs is the series resistance,
Rp is the parallel resistance, Eg is the band gap in J, k is the Boltzmann constant, a is the
ideality factor and q is the electron charge [42,43]. The standard test conditions case, where
Gn = 1000 W/m2, Tcn = 25 ◦C, is denoted by the subscript n.
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To illustrate the need of the control systems to track the maximum power point
when the environmental circumstances change, the relations between the PV voltage and
the output DC power of a PV panel is presented. These relations affirm that when the
environmental conditions, e.g., G and Tc, change, the point of maximum power, which is
the optimal point of operation, change. Therefore, an accurate MPPT system is needed to
preserve the optimal operation of PV systems. Figure 2 presents the voltage power relation
for a PV panel, with varying G and Tc. The simulated PV panel is the SUNPOWER 305.
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Figure 2. The change of the maximum power point of the PV panel (SUNPOWER 305) for the
variation of: (a) solar irradiance at Tc = 25 ◦C; (b) cell temperature at G = 1000 W/m2.

2.2. Conventional Methods

The incremental conductance (INC) and the perturb-and-observe (P&O) methods are
the most widely used conventional MPPT methods. The INC method is based on the slope
of the voltage-power relation, which represents the optimal operation point (maximum
output power) when reaching zero. If this slope tends to be positive, the PV voltage
requires to be increased and if the slope is negative, the PV voltage requires to be decreased
as the following equations summarize [29,30]:

P = VI (5)

dP
dV

= I +
VdI
dV

(6)

where, V is the PV voltage, I is the PV current and P is the output DC power of a PV panel.
At maximum power, dP/dV = 0, which leads to:

I
V

= − dI
dV

(7)

When dP
dV > 0, i.e., I > −VdI

dV , the voltage requires to be increased, and when dP
dV < 0,

i.e., I < −VdI
dV , the voltage needs to be decreased.

The conventional P&O method depends on the perturbation of the PV voltage/duty
cycle, with a fixed feasible step size and observe the corresponding output DC power. If an
increase of power is observed, additional perturbation in the same direction is effectuated,
otherwise, its direction is reversed. More details about these two conventional methods
can be found in [15,42,44]. These two method are introduced as reference methods for
comparison with the improved artificial intelligence based MPPT methods.
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2.3. Artificial Intelligence Methods for MPPT
2.3.1. GA/PSO Fuzzy Logic MPPT

The fuzzy logic controller (FLC) is used for different control systems having uncertain-
ties due to its independence of mathematical models. The basic stages of a fuzzy controller
is shown in Figure 3. The input and output of the fuzzy system are crisp. The crisp input is
converted to a fuzzy input through the fuzzification process based on the type and degree
of membership function used. The rule base is a set of if-then rules, which may be extracted
from human experience or from automatic rule generation. In the fuzzy inference stage
and depending on the fuzzy rules, an implication method and an aggregation of all fuzzy
outputs are applied to get the overall output fuzzy variable. To get the crisp output used in
the control process, the defuzzification process is applied [45].

Defuzzification
output

(crisp)

Fuzzy inference system

Rule base

Membership Functions

Figure 3. The basic stages in a fuzzy logic controller.

The FLC was effectively used with different configuration for MPPT system [46,47].
For this paper, the fuzzy inputs chosen are the error signal E, where (E =

Pk−Pk−1
Vk−Vk−1

), and the
change of this error (∆E = Ek − Ek−1). The designed objective from FLC based MPPT is a
change in the PV voltage (increment or decrement), which is achieved through the change
of the duty cycle (∆D), which is the output FLC. The initial membership functions used for
the inputs and the output of FLC based MPPT is shown in Figure 4.
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Figure 4. The membership functions of the fuzzy logic control (FLC) inputs (E and ∆E) and out-
put (∆D).

It was always difficult to choose the universe of discourse and the range of each
membership function used. For adjusting the range of membership functions, series gains
are used with the inputs and the output of the fuzzy controller. These gains are optimized
using Genetic algorithm (GA) and particle swarm optimization (PSO) as Figure 5 illustrates.
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These gains are optimized based on the genetic algorithm and the particle swarm
optimization techniques to maximize the output DC power P along the simulation period
ts, which maximize the tracking efficiency. The objective function Fobj is presented in (8)
and given the maximum output DC power, PMP, according to the specifications of the PV
panel/array, the tracking efficiency is presented by (9) [29].

Fobj =
∫ ts

0
P dt (8)

ηtracking =

∫ ts
0 P dt∫ ts

0 PMP dt
(9)

FLC based
MPPT

GA/PSO

Optimization 

Figure 5. Optimization of the FLC gains.

The rule base is presented in Table 1, from which the output of the fuzzy logic system
∆D is generated based on the inputs E and ∆E. The notations in this table are; PB: positive
big, PS: positive small, ZE: zero, NS: negative small, NB: negative big. Figure 6 shows the
25 rules (If-Then rules), which relates the inputs and the output of the FLC system.

Plot points:Input:
 [0;0] 101

Move:

Help Close

left right down up

Opened system Fuzz5, 25 rules

∆ ∆

Figure 6. The 25 fuzzy rules (If-Then rules), which relates the inputs and the outputs of FLC system.
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Table 1. Rule base of FLC with the inputs E and ∆E and the output ∆D.

∆E E NB NS ZE PS PB

NB ZE ZE PB PB PB
NS ZE ZE PS PS PS
ZE PS ZE ZE ZE NS
PS NS NS NS ZE ZE
PB NB NB NB ZE ZE

2.3.2. GA-ANN for MPPT

The artificial neural networks (ANNs) have the advantage of accurately replacing
complex mathematical models [48]. The ANNs are exploited in the MPPT systems as it
can offer accurate and fast tracking as the PV system is subjected to various environmental
conditions [35].

A proposed design of an artificial neural network used for MPPT is presented in
Figure 7, where the proposed inputs E and ∆E have a privileged response over that of the
traditional inputs G and Tc [40]. The ANN output is the change of duty cycle (∆D), which
is utilized to adjust the PV voltage through the DC-DC boost converter.

Bias

Input Layer

Hidden Layer

output Layer

Figure 7. The proposed design of the artificial neural network (ANN) used for maximum power
point tracking (MPPT).

The manual choice of the best ANN architecture to provide the best response for MPPT
is tedious. The important parameters of ANN design are the number of hidden layers,
the number of neurons in each hidden layer, the type of the activation function and the type
of the learning algorithm. To acquire the optimized design of the ANN, GA optimization is
used for simultaneous adjusting of these parameters based on a selected objective function.
The training patterns used for learning the ANN are obtained at different operating G and
Tc from the theoretical model presented in Section 2.1. The objective function used for this
optimization process is the mean square error (MSE) between the target and output of the
ANN for all the training patterns. The objective function used is given as [40]:

ObjF(vn) =
1
N

N

∑
p=1

(tp − op(vn))
2 (10)
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where, ObjF is the objective function, N is the number of training patterns, tp is the target
of pattern p, op is the actual output of pattern p and vn is the optimized set of parameters.
The ANN parameters optimized are the number neurons in the hidden layer, the learning
algorithm and the type activation function. For the number neurons in the hidden layer,
the optimization process select a number from 1 to 30 neurons in one hidden layer. For the
learning algorithm, it is chosen from three types, which are the Levenberg-Marquardt
algorithm (trainlm), the gradient descent with momentum (traingdm) and the scaled
conjugate gradient (trainscg). For the activation function, it is selected from three types
for the neurons in each layer, which are the linear (purlin), the hyperbolic tangent sigmoid
(tansig) and the logistic sigmoid (logsig).

3. Application of the Artificial Intelligence Methods for MPPT

To illustrate the improvement achieved when the AI based methods are used for
MPPT, a grid connected PV model is used for the application of these methods. The model
used is a modification of the 100-kW grid-connected PV array model in MATLAB. This PV
array is composed of 5 parallel strings with each string consists of 66 series panel of type
SUNPOWER 305. A schematic diagram of the PV model is shown in Figure 8. The system
comprises a PV array, a boost converter, an inverter and the grid. A control system, which
represents the MPPT system is used to adjust the duty cycle, which consequently adjusts
the PV voltage to reach the optimal operating point. This control system contains the AI
based MPPT method, e.g., GA-FLC, PSO-FLC, GA-ANN. A voltage source converter (VSC)
control is used for the optimal inverter operation, therefore the variation of the inverter
voltage is insignificant in this study.

PV array

Dc-Dc

Boost

Converter

Inverter

and Grid

side

G, Tc

MPPT based- 

GA/PSO-FLC  

GA-ANN

V, I

Figure 8. A schematic diagram of the grid-connected PV system.

To check different MPPT methods, two scenarios of environmental variations of G
and Tc, linear and step variation, are proposed as shown in Figures 9 and 10, respectively.
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Figure 9. A proposed linear variation of: (a) solar irradiance (b) cell temperature.
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Figure 10. A proposed step variation of: (a) solar irradiance (b) cell temperature.

3.1. Application of GA/PSO-FLC Based MPPT Method

In this section, the FLC system, presented in Section 2.3.1, is optimized using the
genetic algorithm and the particle swarm optimization to adjust the three gains, KE, K∆E
and K∆D. Based on the objective function presented in (8), the GA optimized gains are
found to be; KE = 0.001817, K∆E = 0.0086864, K∆D = 19.2681, where these resulted from
PSO optimization are; KE = 0.001695, K∆E = 0.0089926, K∆D = 21.4414. To testify the
effectiveness of these parameters to provide improved response of the output DC power,
the responses are presented in Figure 11 compared to the responses of the conventional
methods presented in Section 2.2.
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Figure 11. A comparison of the output DC power of the PV array using genetic algorithm (GA)-FLC,
particle swarm optimization (PSO)-FLC, perturb-and-observe (P&O) and incremental conductance
(INC) for; (a) linear variation of G and Tc (b) step variation of G and Tc.

It can be shown from Figure 11, that the response of the GA-FLC and PSO-FLC MPPT
methods are comparable and these of the P&O and INC are also comparable. However,
the improvement of the FLC based MPPT over that of the conventional methods is obvious.

To show that the optimized gains are “non-fragile”, these gains are subjected to
±10% change to examine their effect on the output DC power response of the proposed
GA/PSO-FLC MPPT method for linear variation of G and Tc. Figure 12 presents the error
in the output DC power for GA-FLC and PSO-FLC based methods, which illustrates the
power difference when the gains change by ±10% referred to the nominal gains case. It is
shown that this error ranges from −0.02 to 0.06 KW for GA-FLC method and from −0.04
to 0.1 KW for PSO-FLC method. These error values emphasize the non-fragility of the
optimized gains of the FLC based MPPT method. Note that the swarm size is 100 and
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the number of iterations is 50 for the PSO. Regarding GA, the number of populations is
100 and the number of iterations is 50. We use the parameters of the published GA and
PSO optimizers.
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Figure 12. The output DC power difference when changing the optimized gains with ±10% of:
(a) GA-FLC based MPPT method (b) PSO-FLC based MPPT method for linear variation of G and Tc.

3.2. Application of GA-ANN MPPT Method

This section introduces the application of GA-ANN based MPPT system to the PV
model. As presented in Section 2.3.2, the ANN architecture parameters are optimized using
the genetic algorithm. Based on the objective function presented in (10), the optimized
number of neurons in the hidden layer is 28 neurons, whereas the optimized activation
functions are the purlin for the neurons in the hidden layer and the logsig for the neuron in
the output layer, while the optimized learning algorithm is the traingdm [40]. To show the
effectiveness of the GA-ANN based MPPT, its response of the output DC power compared
to these of the conventional methods, is presented in Figure 13.
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Figure 13. A comparison of the output DC power of the PV array using GA-ANN, P&O and INC for;
(a) linear variation of G and Tc (b) step variation of G and Tc.

It is shown from Figure 13, that the improvement in the response of the GA-ANN
based MPPT method compared to these of the P&O and INC is apparent. Putting
Figures 11 and 13 in perspective, arises the question of which response is better,
the ANN based or the FLC based MPPT method for this PV system.
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A sample for validating these simulation results is given as follows. The output DC
power of the SUNPOWER panel provided by the manufacture is 305 W at standard test
conditions. The PV array consists of 66 parallel strings, each string has 5 series panels, which
results in a total power of 100.7 KW at G = 1000 W/m2 and Tc = 25 ◦C. Comparing this
power with the output DC power obtained from the simulation results in Figures 11 and 13
implies the agreement of the simulated model with the manufacture data.

3.3. Comparison of GA/PSO-FLC and GA-ANN Based MPPT

As the responses of the output DC power of the PV array when using GA-FLC and
GA-ANN based MPPT are apparently comparable, proximate comparisons are presented
at different time periods as shown in Figures 14 and 15.

It is clear from Figures 14 and 15 that the GA-FLC based MPPT method has a privileged
response over that of GA-ANN based method in case of low G and high Tc. However,
the GA-ANN based method has its privilege in case of the high G and low Tc. Therefore,
a wise switching between the two responses is proposed, according to the values of G and
Tc, to exploit the best of the two methods. Explicitly, at high G and low Tc, the used MPPT
method is the GA-ANN, otherwise the GA-FLC is used. Figures 16 and 17 presented an
illustration of the behavior of three MPPTs methods, which are the GA-ANN, the GA-FLC
and the merged MPPT method, which is referred as GA-FLC-ANN. It is illustrated that the
reponse of the GA-FLC-ANN almost coincides with the higher DC power at all values of G
and Tc.

A quantitative comparison of the conventional and AI based MPPT methods is given
in Table 2 in terms of the PV array output energy over the simulation period and the
tracking speed expressed by the rise time.
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Figure 14. Proximate views of the output DC power of the PV array when using the GA-FLC and the
GA-ANN based MPPT methods for linear variations of G and Tc: (a) from 0.1 to 0.3 s; (b) from 0.914
to 0.922 s; (c) from 0.9 to 1.5 s; (d) from 1.6 to 1.7 s.
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Figure 15. Proximate views of the output DC power of the PV array when using the GA-FLC and the
GA-ANN based MPPT methods for step variations of G and Tc: (a) from 0.1 to 0.2 s; (b) from 0.75 to
0.79 s; (c) from 0.784 to 0.8 s; (d) from 1.515 to 1.525 s.
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Figure 16. Close views of combining the output DC power response from the GA-FLC and the GA-
ANN based MPPT methods based on the environmental conditions G and Tc for their linear variations:
(a) from 0.1 to 0.3 s; (b) from 0.914 to 0.922 s; (c) from 0.9 to 1.5 s; (d) from 1.6 to 1.7 s.
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Figure 17. Close views of combining the output DC power response from the GA-FLC and the GA-
ANN based MPPT methods based on the environmental conditions G and Tc for their step variations
(a) from 0.1 to 0.2 s; (b) from 0.75 to 0.79 s; (c) from 0.784 to 0.8 s; (d) from 1.515 to 1.525 s.

Table 2. A quantitative evaluation of the proposed MPPT methods in terms of the produced energy and the rise time.

Step Variations of G and Tc Ramp Variations of G and Tc

Output Energy (KJ) Rise Time (s) Output Energy (KJ)

INC 141.92 0.0251 127.52
P&O 141.95 0.0239 127.54

GA-FLC 147.27 0.0193 129.43
PSO-FLC 147.26 0.0193 129.43
GA-ANN 147.17 0.0169 129.31

COMBINED GA-FLC-ANN 147.34 0.0168 129.44

As this table summarizes, the improvements of the AI based MPPT methods over the
conventional methods, in terms of output energy and tracking speed, are apparent. The
GA-FLC and PSO-FLC based MPPT are almost the same. An improvement of the GA-FLC
based MPPT over that of GA-ANN regarding the output energy, while the GA-ANN is
superior regarding the tracking speed. The combination of the GA-FLC and GA-ANN
exploits the best of each of them from both the output energy and tracking speed.

3.4. Dynamic Environmental Conditions Test of the AI Based Methods

In this section the proposed AI based methods are tested under dynamic environ-
mental conditions based on EN50530 standard [49,50]. One sequence of the dynamic test
EN50530 is presented, in which the solar irradiance changes from 300 W/m2 to 1000 W/m2,
with Tc = 25 ◦C, as shown in Figure 18.
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Figure 18. A dynamic solar irradiance change based on EN50530 standard.

To evaluate the proposed GA/PSO-FLC tracking system under these environmental
dynamic change, Figure 19 presents a comparison of the response of the output dc power
with these of the conventional MPPT methods.
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Figure 19. A Comparison of the output DC power of the PV array using GA-FLC, PSO-FLC, P&O
and INC MPPT methods for a dynamic irradiance change based on EN50530 standard.

Figure 19 illustrates that the GA-FLC based MPPT method behaves almost like the
PSO-FLC MPPT method as presented in Section 3.1. The improvement in output DC power
responses of the GA-FLC and PSO-FLC MPPT over these of the P&O and INC are apparent.

Figure 20 shows also the superiority of the output DC power response of the GA-ANN
based MPPT system over these of the conventional methods.

As remarked in Section 3.3 that the GA-FLC based MPPT method has a superior
DC output power response over that of GA-ANN method in case of low G and for high
G, the GA-ANN tracking method is better. Therefore, a combination between the two
responses provides the maximum harvest of the output DC power from the PV array.
Figure 21 presents proximate views of the output DC power response when combining the
GA-FLC and GA-ANN methods at different time periods.
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Figure 20. A Comparison of the output DC power of the PV array using GA-ANN, P&O and INC
MPPT methods for a dynamic irradiance change based on EN50530 standard.
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Figure 21. Proximate views of combining the responses of the output DC power from the GA-FLC
and the GA-ANN based MPPT methods for the dynamic solar irradiance change (a) from 0.1 to 0.3 s;
(b) from 0.71 to 0.8 s.

3.5. Discussion

The presented AI based MPPT methods show a considerable improvement of the
output DC power in terms of its magnitude and the fast tracking when the environmental
conditions change. As the FLC has a lot of success in many fields, it is proposed for the
purpose of MPPT systems. The key of success of the FLC based MPPT is the well adjustment
of the membership functions used. In this paper, a genetic algorithm and a particle swarm
optimization techniques are used to adjust the width of membership functions through
optimizing the series gains of the inputs and output. The two optimization techniques
provide comparable values of gains and therefore the response of the MPPT system is
comparable. The GA-FLC and the PSO-FLC provide superior response of output DC power
over the conventional methods, e.g., the incremental conductance and the perturb and
observe methods. However, the genetic algorithm based FLC has a superior response as
MPPT system over that of the particle swarm optimization. The artificial neural network
method has its effective footprint as a MPPT system. However, the choice of its architecture,
i.e., the number of neurons in the hidden layers, the learning algorithm and the activation
function of each neuron, is tedious. This paper proposes an optimization technique to
choose from certain variety of options to provide an optimum design of the architecture
of the ANN to be suitable for MPPT. The genetic algorithm is successfully used for this
purpose. The comparison of the GA-FLC and GA-ANN based MPPT systems reveals that
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the latter one has its response advantage over the former for high solar irradiance and low
temperature. Conversely, the GA-FLC based MPPT has its superior response over that of
the GA-ANN for low solar irradiance and high temperature. Therefore, a combination of
the GA-FLC and GA-ANN is proposed which exploits each of them where its response
is superior. Although the combination of the GA-FLC and GA-ANN provides a small
improvement in both magnitude of output energy and tracking speed, this improvement is
for a time period of 2 s, which gives only a sample of the promising improvement for longer
periods. Although the improvement achieved with these AI based MPPT methods, there
still more complicated scenarios to be to tested, which will be covered as a future work.
These complicated conditions include partial shading of some PV panels and testing the
response of the PV array during dynamic conditions, such as short circuits or load changes.

The MPPT system is used in our model for adjusting the PV array voltage via con-
trolling the duty cycle, which is used by the pulse width modulation for the dc-dc boost
converter. The inverter is controlled in the model via the VSC control system to adjust the
inverter operation and keep a nearly constant dc-link voltage. An example for industrial
PV inverter is Fronius Symo 15.0-3-M which has a max efficiency (PV grid) of 98.1% [51].
The dc-dc boost converter can adjust the PV array voltage based on the constant dc-link
voltage. Note that we do not aim to improve the inverter efficiency but enhance the MPPT
based solar charge controller. In Table 2, we present a comparison of the output energy
of each method (for a small scale of time), which is an indication of the economic benefits.
The more harvesting PV energy, the more the economical benefits from the PV system. In re-
cent years all the MPPT system, used by large manufacturers (like Fronius International
GmbH or SMA Solar Technology AG), are microprocessor-based controllers. The proposed
AI-based algorithm can be programmed to any microcontroller and applied to a practical
system in general.

4. Conclusions

The increase of the tracking efficiency is essential to increase the overall efficiency of
the PV system. The conventional MPPT methods are used to keep the optimal values of the
output DC power and voltage. The artificial intelligence methods can, efficiently, replace or
support these conventional methods. The fuzzy logic controller are used successfully for
MPPT with the aid of genetic algorithm/particle swarm optimization techniques to adapt
the range of membership functions through series gains. The artificial neural networks
are also used efficiently as MPPT system with enhancing its architecture using genetic
algorithm. The simulation results demonstrate that the GA/PSO-FLC and the GA-ANN
based MPPT methods have significant improvement in term of the output DC power
and the tracking speed. The GA-FLC and GA-ANN based MPPT methods are merged
according to the environmental conditions to propose a general AI based MPPT method
with ameliorated performance. Although, these AI based methods are introduced for
this grid connected PV model, the strategy of these methods can be applied in different
applications for stand-alone PV systems. These methods can help for harvesting the
maximum possible output power from PV arrays for different applications such as charging
electric vehicles and irrigation purposes. More investigations will be presented as future
work for emphasizing the effectiveness of the proposed strategy for different applications.
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50. Andrejašič, T.; Jankovec, M.; Topič, M. Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic
test procedure. IET Renew. Power Gener. 2011, 5, 281–286. [CrossRef]

51. FRONIUS SYMO. Available online: https://www.fronius.com/en-gb/uk/photovoltaics/products/all-products/inverters/
fronius-symo/fronius-symo-15-0-3-m (accessed on 4 February 2021).

http://dx.doi.org/10.1109/CJECE.2019.2914723
http://dx.doi.org/10.1109/ACCESS.2019.2924264
http://dx.doi.org/10.1109/TSTE.2019.2923732
http://dx.doi.org/10.1016/j.epsr.2017.07.011
http://dx.doi.org/10.1016/j.rser.2015.02.009
http://dx.doi.org/10.1016/j.solener.2014.11.010
http://dx.doi.org/10.1109/ACCESS.2021.3051807
http://dx.doi.org/10.3390/s21020487
http://dx.doi.org/10.3390/s21041038
http://dx.doi.org/10.1016/j.solener.2012.11.017
http://dx.doi.org/10.1016/j.renene.2004.09.011
http://dx.doi.org/10.1016/j.apenergy.2015.01.077
http://dx.doi.org/10.1049/iet-rpg.2014.0359
http://dx.doi.org/10.1016/j.solener.2012.05.006
http://dx.doi.org/10.1016/j.rser.2014.07.202
http://dx.doi.org/10.1109/TPEL.2009.2013862
http://dx.doi.org/10.1109/TEC.2006.874230
http://dx.doi.org/10.1016/j.solener.2016.01.007
https://www.pearson.com/us/higher-education/product/Haykin-Neural-Networks-A-Comprehensive-Foundation-2nd-Edition/9780132733502.html
https://www.pearson.com/us/higher-education/product/Haykin-Neural-Networks-A-Comprehensive-Foundation-2nd-Edition/9780132733502.html
http://dx.doi.org/10.1109/PEDES.2016.7914246
http://dx.doi.org/10.1049/iet-rpg.2010.0175
https://www.fronius.com/en-gb/uk/photovoltaics/products/all-products/inverters/fronius-symo/fronius-symo-15-0-3-m
https://www.fronius.com/en-gb/uk/photovoltaics/products/all-products/inverters/fronius-symo/fronius-symo-15-0-3-m

