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A Novel Bayesian Filter for RSS-Based
Device-Free Localization and Tracking

Ossi Kaltiokallio™, Roland Hostettler

, Member, IEEE, and Neal Patwari

Abstract—Received signal strength based device-fres localization applications utilize a moded that relates the measurements to
position of the wireless sensors and person, and the underlying imerse problem is solved either wsing animaging method or a
nonlinear Bayesian filter. In this paper, it is shown that the Bayesian filters nearly reach the posterior Cramér-Rao bound and they are
superior with respect toimaging approaches intemns of localization accuracy because the measurements ane directly related to
position of the person. However, Bayesian filters ane known to suffer from divergence issues andin this paper, the problemis
addressed by introducing a novel Bayesian filter. The developed fiter augments the measurement model of a Bayesian filter with
position estimates from an imaging approach. This bounds the fiter's measurement residuals by the position ermors of the imaging
approach and as an outcome, the developed filter has robustness of animaging method and tracking accuracy of a Bayesian filter. The
fitter is demonstrated to achieve a localization error of 0,11 min a 75 m® open indoor deployment and an error of .20 m in a 82 m®
apartment axpeariment, decreasing the localization emor by 30-48 percent with respect to a state-of-the-art imaging method.

Index Terms—Heceived signal strength, wireless sensor networks, Bayesian filtering, posterior Cramér-Rao bound, positioning and tracking
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1 INTRODUCTION

qumous radio frequency (RF) sensing technologies
have experienced a surge of interest over the past years

and are considered as a potential candidate to be used in
smart homes. Smart homes control heating, ventilation and
air conditioning systems to improve environmental sustain-
ability and the comfort of their residents [1]. Our vision is that
future smart homes would not only monitor the homes we
live in, but also its inhabitants. Such systemn capabilities are
enabled by RF signals and recently, variousradio signal meas-
urements have been demonstrated for vital sign monitoring
[2], adtivity and gesture recognition [3], and localization and
tracking [4]. With such information, the smart home could be
controlled using our gestures, the vital sign information could
be used to enhance our health-awareness, and heating and
lighting could be automatically adjusted based on our
location.

MNon-invasive RF sensing technologies are built upon the
fact that humans alter the propagation characteristics of radio
signals and at the receiver, these changes can be quantified
using the radio’s channel measurements. Research has demon-
strated the use of various radio signal measurements for infer-
ence, including time delay [2], phase [3], and signal strength
[4]; and these have been used for various purposes as
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mentioned above. Most notably, the technology is non-inva-
sive and does not require the person to carry any electronic
device. Moreover, the technology can be realized with received
signal strength (RS5) measurements that are ubiquitously
available in nearly all receivers. In this paper, we consider nar-
rowband wireless devices that measure the BS5 and we utilize
the channel measurements for locating and tracking people in
indoor environments. It is to be noted that the technology is
not himited to localizing people and the proposed method
could also be used to locate large animals [5] and vehicles [6].
The readers are referred to [7], [8] for a GEI:I'IPl'El'El'Isi‘l-’E over-
view of RF-based passive localization tech
In RSS5-based device-free localization and t'adscmg (DFLT),

the algorithmic approaches can be divided into two catego-
ries. In the first, the is located using an imaging
approach [9], [10] and a Kalman filter (KF) is used for tracking
[11], [12]. In the second, a propagation model er with a
nonlinear Bayesian filter such as a particle filter (FF) [13], [14],
[15] or an extended Kalman filter (EKF) [16] is used to track
the kinematic state of the target. The considered problem can
be solved more accurately using a nonlinear Bayesian filter,
however, these filters are known to suffer from divergence
issues if the modeling errors are significant [17, p.128]. To
address this problem, we introduce a novel Bayesian filter in
which the measurement update recursion is augmented with
position estimates from an imaging approach. The benefit of
the proposed approach is that the filter’s measurement resid-
vals are bounded by the position errors of the imaging
approach, and as a result, the filter has the robustness of an
imaging method and almost the tracking accuracy of a nonlin-
ear Bayesian filter. Moreover, the implemented filter is com-
putationally efficient. We refer to the developed Bayesian
filter as Fusion Filter (FF) and it practically merges an EKF

approach with animagingapproach.
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https://orcid.org/0000-0002-9336-7703
https://orcid.org/0000-0002-9336-7703
https://orcid.org/0000-0002-9336-7703
https://orcid.org/0000-0002-9336-7703
https://orcid.org/0000-0002-9336-7703
https://orcid.org/0000-0001-8613-6176
https://orcid.org/0000-0001-8613-6176
https://orcid.org/0000-0001-8613-6176
https://orcid.org/0000-0001-8613-6176
https://orcid.org/0000-0001-8613-6176
https://orcid.org/0000-0003-3440-2043
https://orcid.org/0000-0003-3440-2043
https://orcid.org/0000-0003-3440-2043
https://orcid.org/0000-0003-3440-2043
https://orcid.org/0000-0003-3440-2043
mailto:ossi.kaltiokallio@aalto.fi
mailto:roland.hostettler@angstrom.uu.se
mailto:npatwari@wustl.edu

KALTIOKALLIO ET AL.: NOVEL BAYESIAN FILTER FOR RS5-BASED DEVICE-FREE LOCALIZATION AND TRACKING 781

TABLE 1

Major Notations and Common Operators
Symbol Description
zpZzand I A scalar RS5 measurement of link [, RSS measurement vector at time & and RSS matrix
X, X, Pr State of the person at time k, estimate of the state and covariance of the estimate
hy, H, and H Measurement model of link [, Jacobian of f;(x;) and linear measurement model
Ar(k)and 8; = [¢ N oF] Excess path length of link [ at ime k and model parameters of the link
(7, () tand || - matrix transpose, inverse and euclidean norm

The work is motivated by deriving the posterior Cramér-
Rao bound (PCRB) for the RS5-based DFLT problem and eval-
uating two estimators with respect to the bound. The used
RSS-based DALT estimators are: an EKF-based method [16]
and a modified radio tomographic imaging (RTI) method
[12]. The analysis dearly shows that RTI is lower bounded by
the pixel size of the discretized image and this bound is signif-
icantly higher than the PCRB. On the other hand, the EKF
nearly achieves the bound which encourages its use in RS5-
based DFLT. However, the divergence issues of the EKF must
be solved and we propose to use the FF for this purpose. The
filter is experimentally and numerically evaluated. The results
imply that the presented filter nearly achieves the perfor-
mance of the EKF in ideal scenarios, it outperforms the EKF
and PF in more challenging environments and it has the
robustness of an imaging method. The presented filter is dem-
onstrated to achieve a localization error as low as 11 centi-
meters in a 75 m® open indoor deployment and an error of
29 centimeters in a 82 m® apartment experiment, decreasing
the localization error by 3048 percent with respect to a state-
of-the-art imaging method.

In RF sensing, sensor fusion is the inherent way of com-
bining the information from multiple sources (distributed
sensor nodes [9], [18], antermas [2], [3] and/or frequency
channel [12], [19]). Several works have also used different

pes of sensors including ultra-wideband radios [20], cam-
eras [21], [22], [23] and acoustic sensors [24] to enhance the
performance of a system that solely uses radio channel
measurements. The works perform sensor fusion by com-
bining the sensory data from two kinds of sensors to reduce
the uncertainty and improve the accuracy. Our solution
differs from traditional sensor fusion methods since we do
not combine different types of sensory data but instead, we
merge the information from two categories of DFLT appro-
aches into one filtering algorithm.

This paper makes the following contributions:

¢ A closed form solution for the PCRB is derived and
two well known estimators are evaluated with
respect to the bound.

s A sequential imaging method is proposed allowing
recursive image updates whenever new RSS5 meas-
urements are received.

s We propose a method on how the uncertainties related
to RTI position estimates can be taken into account.

s A novel filtering framework is proposed that aug-
ments the measurement update recursion of a non-
linear Bayesian filter with position estimates from an
imaging solution.

The remainder of the paper is organized as follows. In

the next secion, related work s discussed. In Section 3, the

problem of tracking the kinematic state of the person is for-
mulated and two estimators are presented. The PCRB is
derived in Section 4 and the bounds of RS5-based DFLT are
analyzed. Motivated by the bound analysis, the FF is devel-
oped and the filter is presented in Section 5. The experi-
ments and results are presented in Sections 6 and 7 in
respective order and thereafter, the conclusions are drawn.
In Table 1, major notations of the paper are summarized.

2 RELATED WORK

In RS5-based DFLT, there are two widely used approaches
for locating people: fingerprinting [25], [26], [27], and
model-based approaches [9], [12], [14]. Fingerprinting meth-
ods use a database of training data labelled with a person’s
known locations. During runtime, the current set of RSS
measurements are compared to those in the database to esti-
mate the current location. Model-based approaches use an a
priori model for the changes in RSS with respect to the loca-
tions of the sensors and person, and localization is per-
formed for example using an imaging approach [9], [10].
Fingerprinting methods are able to achieve high accuracy
also in demanding environments, but the training process is
laborious and the performance degrades exponentially as
the environment is altered [27]. Model-based approaches
can be deployed quickly [28], but the mismatch between the
RSS model and measurements can significantly affect the
system performance [12]. This paper focuses on model-
based DFLT and a novel tracking filter is presented, and it
is shown that the filter is robust to modeling errors.

In model-based approaches, the person is typically
located and tracked either using an imaging approach [9],
[10], [12] or Sequential Monte Carlo (SMC) methods [13],
[14], [15]. The imaging methods compute a propagation
field image of the monitored area [9], [10], the person is
localized from the estimated image, and then a KF is used
for estimating the kinematic state of the target [11], [12]. In
literature, the changes in the propagation field have been
quantified using various RSS link metrics induding shad-
owing [9], RS5 variance [11] and kernel distance between
two RS55 histograms [28]. The benefit of the imaging
approaches is that they are computationally efficient, they
are robust and an improper prior does not cause the track-
ing filter to diverge. As a drawback, information can be lost
in the two-step process to first estimate the image and then
the location. In addition, discretization of the image inevita-
bly degrades the localization accuracy.

The SMC methods typically utilize a PF to solve the prob-
lem, and in the tracking algorithms, the RSS measurements
are di related to the person’s location using either an
empirical model [13], [15] or a thearetical propagation model
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[14], [29]. Different variants of the PF have been proposed in
literature including the sequential importance resampling
(SIR) filter [13], [14], [15], auxiliary particle filter [30] and Mar-
kov chain Monte Carlo filker [31]. However, the filters have
been reported to yield comparative accuracy atleastin thesin-
gle target tracking case [31]. Furthermore, our recent work
demonstrates that an EKF yields similar performance as a PF
aslongas the time evolution of the measurements is taken cor-
rectly into account in the filter recursion [16]. The benefit of
the Bayesian filters is that they are more accurate than the
imaging approaches if the used RS5-model describes the data
well [13], [16], [29]. As a disadvantage, the PF is computation-
ally very demanding, and the filters can diverge if the prior
distribution is inaccurate [16]. In this paper, we introduce a
Bayesian filter in which the measurement update recursion is
augmented with position estimates from an imaging
approach in order to improve robustness of the filter. The
developed filter is computationally less demanding than the
PF, it has the robustness of an imaging method and the track-
ing accuracy of a Bayesian filter.

The PCRB states that the mean squared error (MSE) of an
unbiased estimator is always larger than the bound [32],
[33]. The PCRB can be used to evaluate the developed esti-
mator and in addition, as a pre-deployment predictor of
system performance, providing an analytical method for
system design and pre-deployment performance evalua-
tion. Despite the importance of the PCRB, there exists only a
few works in RS5-based DFLT that have used it for evalua-
tion purposes [10], [14], [29], [34], [35], [36]. In [10], the CRB
is derived for RTI and in the work, it is studied how the
node locations affect the accuracy of image estimation. It is
shown that the best node geometry is where the nodes are
deployed uniformly around the monitored area. The CRB
for five different RTI models is derived in [34] providing an
analytical tool on how the system parameters affect the
CRB, enabling analysis of the tradeoffs between the parame-
ters in system design. Neither analysis provides a bound on
position estimates—they can only bound the covariance of
the values of the pixels in the image. In this paper, we
derive the PCRB on localization error similar to the works
in [14], [29], [35], [36]. Contrary to [14], we provide a closed-
form solution to the PCRB. In addition, we incorporate the
apriori knowledge of the target dynamics and position into
the PCRB as opposed to the works in [29], [35], [36]. In fact,
the PF used in [29] outperforms the derived bound and the
authors point out that the conventional CRB does not incor-

porate the apriori information of the motion. Furthermore,
the aforementioned works wse a diffrachion-based RSS

model which has been validated only in ideal line-of-sight
(LOS) scenarios limiting the usefulness of the derived
bounds. In this paper, we use an exponential model [13]
that is widely used in literature. In addition, the model has
been used in challenging through-wall scenarios [12] and
therefore, the derived PCRB can be applied to a wide range
of environments.

Radio source localization systems have been investigated
and deployed in a variety of forms over the past several dec-
ades [37]. Source localization from signal-strength is most
relevant to this paper, and bounds and algorithms have
been presented [38]. Similarly, localization bounds using
temporal characteristics has been widely investigated via

IEEE TRANSACTIONS ON MOBILE COMPUTING, VIOL. 20, NO. 3, MARCH 2021

geometric dilution of precision [39] or via CRB [40]. Bounds
for systems that combine multiple signal characteristics
(time, power, and angle) are given in [41]. In general, the
RSS source localization variance bound is inversely propor-
tional to the average squared distance between neighboring
sensors. It also decreases with increasing path loss exponent
and increases with fading variance [42]. Respectively, the
RS5-based DFLT variance bound decreases with increasing
number of wireless links that cover the location. It also
decreases with increasing measurement gain and increases
with measurement noise variance.

3 RSS-Basep DFLT

This section presents the background information needed to
derive the PCRB for RSS-based DFLT in Section 4 and dewvel-
oping the novel Fusion filter in Section 5. This section begins
by defining the problem of localizing and tracking a person
using RSS measurements of wireless links. Thereafter, two
solutions from the literature are summarized [12], [16]. The
first solution is based on an EKF that directly relates the RSS
measurements to the person’s kinematic state [16]. The lat-
ter is a two-step method, where a discretized propagation
field image is first computed and then, the person’s position
is estimated from the image [10], [12].

To simplify the notation, we assume in this section that
the wireless network consists of S5 nodes forming
L =5 -(5 — 1) unique links and that the link measurements
are taken at the same time instance k. We want to emphasize
that full conmectivity is not a requirement of RS55-based
DFLT and that the link measurements can be sampled at
different time instances. In Section 5, we present the used
communication protocol, how the RSS measurements are
sampled and how the time evolution between transmissions
is taken into account.

3.1 Problem Formulation

This work aims to localize and track a person using RSS
measurements of the wireless nodes. The considered prob-
lem can be formulated using a state space model of the form

x = fxe—1) + gy, (la)

z; = hx;) + 1, (1b)

where kdenotes the time and

S B*! s the pe:rson‘s kinematic state,
zp € RY!  RSS measurement vectar,
q_; ~N(0,Q) Gaunssian process noise,
1. ~A(0,R) Gaussian measurement noise,
f(-) dynamic model of the person,
h{-) RS5S measurement model

The measurement noise covariance is assumed diagonal
and it is defined as R = diag(o7, o3,.. ., oi). In literature,
the DC component is typically removed from the RSS since
it does not contain information about location of the person
[10], [13], [14], [15]. Thus, what we refer as the BSS of link [
is actually the mean removed RSS, that is, (k) = Zi(k) — uy,
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where % is the RS5 provided by the radio module and p, is
the mean RS5 computed during an initialization procedure.
The state of the person is defined as

xi=[pAR) wlk) plR v (k)] )]

where p.(k) and p, (k) are the z- and y-coordinates, and the
velodty components are denoted as v (k) and v, (k). A com-
mon choice for the dynamic model in DFLT is the second-
order kinematic model [11], [14], [15] given by [43, Ch 6]

1 ¢ 00 %ta%r?ﬂﬂ
I C ] P R
F=loo 1 <9790 o g2 e @
0001 0 0 ie %

where g is the power spectral density of the process noise
and 7 is the ssmpling period. In this case, the state evolution
in Eq. (1a) can be expressed using x; = Fx—; + q_, because
the dynamic model is linear.

3.2 Extended Kalman Filter

The EKF algorithm directly relates the RSS measurements to
the person’s kinematic state and we model the RSS of link [
using the exponential model [13], [15], [31]

h,‘{!k]l Ly e~k N , (4)

where ¢ defines the measurement gain when the personison
the LOS and A; controls the decay rate. In this paper, we use
the exponential model because it has been widely used in kit-
erature and its applicability has been demonstrated in chal-
lenging indoor environments and through-wall scenarios
[12]. Mevertheless, the d filter can readily be used
used with other RSS models as well. In (4), the excess path
length A, relates the person’s loationp, = [p-(k) p, (k)| to
link ! with transmitter (TX) i and receiver (RX) j by

A(k) 2]lp; — pell + Ip; — pell — e — Pl (5)

where p, and P; denote the TX and RX positions in respec-
tive order. The EKF requires the Jacobian of ii(x;) for which
the elements are given by [16]

[% %LL]T_ b (%) ( Pi —P:

P; —P:
= + ) (6)
A \llpi — el )

IIp; — Pl
so that the Jacobian for link [ can be expressed as

{(Hy=[2 0 & o] (D

Given that the dynamic model in (3) is linear, the predic-
tion step of the first order additive noise EKF can be
expressed as [17, Ch 4]

x; = Fxp_g,

‘ . ()
P, =FP,F" +0Q.

At time k, measurement z; becomes available and the mean
% and covariance P, can be updated using [17, Ch 5]

S: = Hy(x;)PpH, (X;) + R,
K. = PP H, (%)5;,

xp =%, +Ke(ze — h(x))),
Pi=P, — KkSkK'il.

(9

3.3 Radio Tomographic Imaging
In RTI, the RSS for the L links is assumed to be a linear com-
bination of voxel changes plus noise [9]

zZi = Abp + 1, (10

where 1 € RY! is the measurement noise defined in (1b),
AcRIYN 55 weight matrix that relates the spatial propa-
gation field b: e RY*! to the RSS zi e RY! and N is the
voxel number. The minimum mean square error estimate
(MMSE) for the model in (10), with zero-mean Gaussian pri-
ors with image noise covariance %, and measurement noise
covariance R is

by =z, (11)

where Il = (A"TR7A + X, )7'A"R™" in which a is a regu-
larization parameter. From the estimated image, b, the per-
son can be localized by finding voxel n with highest
intensity, given by

A [P:{ﬂll

P2 p (n) (12)

] = arg max by(n).

The covariance matrix ; for pixels m and n is [9]

{Z}n =exp(—lP,. — P.lI/34), (13)

where §; is a user defined space constant. For link [ and
pixel n, the elements of A are [12]

{A},. = m_gﬂ eBtalX (14)
where ¢ and A are defined by the RSS measurement model
in (4), sgn(-) is the sign fundion, A;, the excess path length
and d = ||p; — p;|| the distance between TX-EX pairi — j. In
[12], the direction of RS5 change is taken into account by
weighting the measurements using sgn(¢) - 2. Analo-
gously, the sgn(¢;) term can be included into the weight
matrix as we have done above. Also other models for A

have been proposed and the reader is referred to [34] and
[44] for further details.

4 PosSTERIOR CRAMER-RAO BOUND

This section presents a new lower bound for mordinate
tracking in RSS-based DFLT. While the PCRB is a well-
established bound for tracking problems, in general, we are
not aware of its application to the RS5-based DFLT problem.
The earlier works have only bounded the covariance of the
values of the pixels in the image [10], [34], provided the
CRB on localization error [29], [35], [36] or have approxd-
mated the bound numerically [14]. In the following, we pro-
vide a closed-form solution to the PCRB for the tracking
problem.
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The CRB for a time-varying system, referred to as the
Van Trees version of the CRB [32], or posterior CRB [33],
states that the MSE of an unbiased estimator is always
larger than J*

E{(x(z) - x)(x(z) —x)"} 2T, (15)

where [ is the Fisher information matrix (FIM), %(z) denotes
an estimator of x which is a function of measurements z.
The FIM is defined as

J =E[-Allogp(x,2)],

where p{x,z) is the joint probability density fundion (PDF)
of the pair and Al is defined as the gradient product
Al = T-",V where V] = [ﬂru ..... 3_1_”] The joint PDF for
an arblirar!,r time instant & is defined as

(16)

oxe, Zi) (17

k k
=p(xo) [ [ plzl%) [T p(xsxj-0),
i=1 j=1

and for a ime-varying system, the FIM can be calculated

recursively using [45]

Ji = D, - DL, (i, +DLL) DR, (18)

where
Dil—l = E{—ﬁ:’;
Diz—l = E{—ﬁ:ﬁ
DY, = E{—A%tlogp(xilxet)} = [D,],
D}, = E{-Aj[logp(xelx—1) + log p(zefx)]}-

Hogp(xe|xe—1)},

Jogp(xe|x_1)}, (19)

4.1 PCRB of RS5-Based DFLT

Considering the nonlinear filtering problem with additive
Gaussian noise defined in (1), the conditional PDEs in (19)
are

—log p(xfxi_1) =Cl+%{xk — f(xe1))"
Q7 (xi — f(xp1)),
= 62+%{zk —h(x))"
R7Y(z — hix)),

where ¢1 and ¢z are constant scaling terms of the multivari-
ate distributions. Plugging (20) to (19) yields

(20)
—log p(zelx: )

D}, = E{(Vaf(xe1))Q 7 (Vif(x:—1)) ' },

D2, = —E{V.f(x_,)}07", (21)

D%, = Q7 + E{(Vah(x))R ™ (Vih(x:))},
and since F is linear, and h(-) nonlinear for the problem
defined in (1), (21) simplifies to
D, =F'Q'F,
D2, =-F'Q, (22)

D, =Q7 +H,R'Hy,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VIOL. 20, NO. 3, MARCH 2021

TABLE 2

Experimental Parameters
Parameter
Regularization parameter in (11) o 500
Picel width &y, 0.25 (m)
Corrélation distance in (13) &g 2 (m)
Image process noise in (34) % 0.1(dB/s?)
Image measurement noise in (34) a 0.03 (dB?)
Image threshold (37) ¥ 0.75
RS55 model parameter (4) ] —2.22
R55 model parameter (4) A 0.04
Measurement noise (1) a? 1.42

where H, is defined in (7). Now, the recursion to update the
FIM can be obtained by substituting (22) to (18) giving

J, =H{R7H,+Q"

23)
— Q—IF {lk—l + FTQ_IFJ -1 FC! 'Q—11 l:
which can be simplified to
J.=HRH, + (Q+F;LF) 7, (24)

using the matrix inversion lemma. It is to be noted that the
bound is not defined when the target location coincides
with the position of the TX or BX since this results into divi-
sion by zero in Eq. (6).

The PCRB states that for any unbiased estimator, the root-
mean squared (RMS) loalization error islower bounded by

RMSE(K) > e 21/0 h; + Ui hyso (25)
where {lk_l}l,l and {[;1]-_‘1;1 denote elements of the PCRB
matrix corresponding to the - and y-oordinates. The PCRB
can be used as a pre-deployment predictor of localization
accuracy, providing an analytical method for system design
and pre-deployment performance evaluation. As an example,
[10] uses the CRB to investigate the effect of node geometry to
imaging accuracy, [35] uses it to analytically evaluate the
developed model and [36] uses it for pre-deployment perfor-
mance assessment. In the following section, we compare the
RMS errors of RTI and the EKF to the lower bound for locali-
zation RMSE, denoted by e,,, to evaluate the system and loca-
tion estimators.

4.2 Bound Analysis

The bound analysis is conduded using a network of 20 sen-
sorsthatcover an area of 75 m” and the devices aredistributed
around the monitored area as illustrated in Fig. 1a. The experi-
mental setting is the same as the open environment experi-
ment described In Section 6 but the data is simulated. For
now, we consider a time-invariant system so that we can focus
on localizing a stationary target. This assumption simplifies
the PCRB analysis since time evolution can be neglected and
power spectral density of the process noise can be set to zero,
that is, ¢ = (1. The PCRB and position estimates are calculated
assuming full cmnedivity and that a single RS5 measurement
is available from each TX-RX pair. The empirical cumulative
distribution function (ECDF) for the model parameter esti-
mates in the open environment experiment are shown in



KALTIOKALLIO ET AL.: NOVEL BAYESIAN FILTER FOR RS5-BASED DEVICE-FREE LOCALIZATION AND TRACKING 785

' . n
“"\é?“@' E}‘:Gh»L- ar
m s _k.;"-;h. .

Y """g.r_:_}-. x@"-, {jm*,l

'E‘:)l‘; 'G,‘n @ )
st?) I \ f'l

#
-

]
r.’?
5
,:?"
'l'.")
{ﬁ

A *

8

-

-10

o L. L L L L _13

u
I ] b
at [ ] I_I [ ] [ ] E ﬂ-‘-
) ) ; ' ' 0 2

X [m]

X [m]
(2) ()

n
]
‘ .
-
B 1 ] 2 4 [ - 1]

X [m]
()
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and PCRE on the 3o uncertainty ellipse (—). In (b}, the sum of link contributions b (p,) E,_

41kl % ag a function of target coordinates p,.

In {c}, lower bound of localization standard deviation inlogarithmic scale, 10 log (e, /1 m), asa function of P

Fig. 6 and the median of the ECDFs is used in the following
analysis. Thus, the RSS5 is modeled using: ¢, = —2.22 dB,

=0.04 m and o] = 1.42 dB* ¥ [ and parameters of the fil
ters are givenin Table 2.

In Fig. 1a, 16 example locations and the lower bound on 3
uncertainty ellipses illustrated together with the mean of the
RTI estimates and 3o uncertainty ellipse. The average lower
bound on localization RMSE is &, = mEk ep, =0.1191 m
and the EMSE of RTI estimates is (1.3980 m, over three times
higher than the bound. The advantage of RTI is that the esti-
mator does not require accurate priori information about state
of the target and the method can locate the target as long as a
sufficient number of links intersect the location. As a disad-
vantage, the two-step estimator is inefficient as it never
reaches the lower bound as shown by the uncertainty ellipses
in Fig. 1a. The other disadvantage is that measurement noise
can result in images with multiple peaks leading to inaccurate
position estimates. An example of a noisy RTI image is illus-
trated in Fig. 3b which leads to an inaccurate position estimate
and as a result, the uncertainty ellipse of the RTI position esti-
mator isvery large in many of the positions in Fig. 1a.
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Fig. 2. The PCRE as a function of devices per side (-], and the RMS
errors of EKF (- and BTl w (- — - and w/o outliers ( ) obtained

owver 1000 trials. An estimate is considered an outlier if it is one meter or
maore from the true location.

For the node a:mfigurahﬂn shown in Fig. 1a, the sum of link
contributions, hu(p,) = Y1, e %1®/% is calculated and plot-
ted as a fundion of target lcn:atl:m P. in Fig. 1b. Respedively,
the PCRB on RMSE is computed and illustrated in Fig. 1c
With the given model parameters, the PCRB is entirely
defined by the geometrical relationship of the target and
nodes, and the PCRB decreases as the number of wireless
links that intersect the location inceases. The minimum
PCRB is 0.0449 m and the lowest values are found beside the
wireless devices on the side that faces the monitored area.
Respectively, the maximum PCRB is 1.4142 m and the worst
localization accuracy is expeded in the corners of the moni-
tored area where none of the links intersedt the location (see
Fig. 1b). On average, the PCRB is 0.1858 m and 80 percent of
the monitored area has a PCRB of 0.1308 m or lower. Thus,
the localization accuracy is expected to be high and similar
performance is anticipated throughout the monitored area as
long as the target is not dose to the bord ers.

In Fig. 2, the PCRB and RMS errors of the estimators illus-
trated as a fundion of number of devices per side when they
are equally spaced on the sideofa X =9.58 mby ¥ =782 m
deployment. The PCRB is a monotonically decreasing func-
tion and the lower bound is cut to half every time the number
of devices per side is doubled. The RMS errors of the RTI esti-
mates are illustrated using three pixel size values and as
shown, lower RMS errors can be achieved with higher image
resolution but with the expense of increased computational
complexity. Interestingly, the RMS emror of the RTI estimates
converge toward & — 8;/6'. This value is the lower bound
for RTIand itrequires that the target can always be positioned
to within the correct pixel. The EKF is not constrained by dis-
cretization of the monitored area resulting to lower RMS
errors as shown in Fig. 2. Moreover, the EKFis an efficient esti-
mator as itnearly achieves the bound already with alow num-
ber of devices and it converges toward the PCRB as the

number of sensors increases.

LIf the estimate lomtes within the correct pixel, the coordinate
errors can be considered as iid. uniform random vanables X -~

U(—k3p.b3) and Y ~U(—klp,bdy). Then, the MSE is EleZ] = E[X*+
¥ = E[X?] + E[Y?] =& /6, where the expected value of the uniformly
distributed zero-mean random variable is known tobeE[X? =E[¥?*] =

45/12 [46, Ch.6]. Thus, the RMS error is E[e;| = &/ v6 and this value is

the lower bound for RTT location estimates.
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In the analysis of Fig. 2, the EKFs pror on the mean and
covariance are set as X = Xi + Qyw and Py = 3]71 +Q,,
where x;,. denotes the true state and J is the FIM at x,.,
Q, = diag([0.25 m* 0.0 (m/s)® 0.257m? 0.0 (m/s)?])
and w £ E**! is a zero-mean white Gaussian noise vector. The
EKF requires an accurate prior or otherwise the filter can
diverge and result to a biased estimate. This matter will be fur-
ther discussed in the following,

4.3 Discussion

Ideally, we would prefer to use the EKF since it is able to
achieve the PCEB and the filter is computationally efficient.
However, the filter has two important limitations. First, the
filter is prone to diverge if modeling errors exist. Seaond,
the filter requires the prior distribution to locate near the
true state. These reasons restrain using the EKF in real
world applications since the model parameters are known
to vary for each link [12] and the person’s location is not
known when initializing the filter. RTI can be considered as
complementary to the EKF, since RTI is significantly more
robust to modeling errors and it can be initialized without
prior information of the person’s location. Due to these rea-
sons, we present a novel Bayesian filter in the next section
that has the beneficial properties of both approaches.

5 FusioN ALGORITHM

5.1 Sampling and Processing
In RS5-based DFLT, the sensors are programmed to transmit
and receive packets from other sensors of the network. Typi
cally, the communication schedule follows a token passing
protocol where one sensor transmits at a time while the others
are in reception mode [47]. After transmission, the tum is
assigned to the next sensor in the schedule following the sensor
IDs in sequential order. In the packets, the sensors indude the
most recent RSS associated with the transmissions of others'.
Let the wireless network consist of 5 sensors, then, when
the last sensor in the schedule transmits at time & the pay-
load of the packet is

zs(k)

where 2 ;(n) denotes the RSS that is transmitted by node j
and received by node i at time n. A base station listens to
the ongoing transmissions and it stacks the packets to form

a measurement matrix

= 251 (k-5+1) zgalk-5+2) zgg-a(-1) 0],

{z};5 zs |, (26)

containing the RSS5 measurements of the last 5 packets
before processing. We denote this time interval as the com-
munication cycle and it contains a transmission from each

= [Z1(k-5+1)

node and the elements of Z are

0 1 ,2[-E—Z?+2] zl,f[k—f]

{z}t—f+1 — Z21(E-5+1) 0 22 §(k—5)
zg1(k—8+1)  zgalk-5+3) .- 0

The measurements of Z are clearly taken at different time
instances and a sequential processing scheme was intro-
duced in [16] to resolve this issue. The proposed scheme
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processes the RSS one transmission at a ime and the meas-
urements can be assodated to the same time instant by
delaying the processing by 5 — 1 samples so that when TX j
transmits at time &, the RSS corresponding to the transmis-
sionof TX

ifj=8§

i= S—3+41
- otherwise’

jt+1

becomes available at the base station. Using the time nota-
tionn =k — 5+ 1 we can write

7,2 ol {Z}F 5 (27

As an example, when the transmitter ID is j = 5, the measure-
ments of node ¢ = 1 can be processed since the first column of
the RSS mairix, z,; = m:ﬂl{Z}i_?ﬂ [0 zq(k-5+1)
qul[b—i'+1;|]' are related to the same time instant & — 5+ 1. At
the next ime instant, the transmitter [D is j = 1 and the meas-
urements of {Z}k_?"'z are updated accordingly. Now the
measurements of node ¢ = 2 can be processed since the sec-
ond column of the RSS matrix, z., = colo{Z}57T =
[zr20k-5+7 0 zg;[k—i‘+2’,|] , are related to the same
tmeinstant & — 5 + 2.

The sequential processing scheme improves the accuracy
and robustness of RS5-based DFLT [16] and taking the time
evolution correctly into account as given in (27), the prob-
lem defined in (1) can now be written as

= Fx‘“—l + Qr-1: {283}

Z,; =h(x,) + 1, (28h)

where n denotes the time, z,; € B! is the new RSS mea-
surement vector and the correspond ing measurement noise
covariance is R; € R9%5, Using z,; the noise covariance,
measurement model vector and Jacobian of the EKF are
replaced with

{R};; =41,
{ha(5)} 0 = hul(5), (29)
{Hui(x)};, = [ % 'U],

where i and j are the TX and RX IDs in respective order,
j=1...Sandl=(i—1)- 5+

5.2 A Sequential Inaging Method
5.21 Image Filtering

The drawbadk of using the RTI formulation presented in
Section 3.3 is that the estimator requires the complete RSS
measurement matrix Z and it computes a batch estimate of
the changes within that communication cycle. In the follow-
ing, an image filter is presented which allows us to recur-
sively estimate the propagation field image every time new
measurements become available. Moreover, the time evolu-
tion is more accurate with the proposed method.

The RTI solution in Eq. (11) is equivalent to forming the
image by summing together the link contributions

ki
b, =) Mz, (30)
i=1
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where the jth column of I1; is defined as

(I}, ={m},
and indexes i, j and [ are defined as in (29). Now, instead of
summing the link contributions to form the image, an adap-
tive filter is implemented to track the changes in the image
using ;z,.;.

The designed filter is similar to the one presented in [12]
with the difference that the presented filter estimates the
images from the link contributions I;z,, ; whereas the one in
[12] uses by. In the filter, the image state is expressed as

my
my |’
where m; denotes the image intensity and #i; change rate of
voxel j. The state-space model is

(31)

m My

m=| . .
my My

(32)

m, = Fm,_; +q,__,, (33a)

b, =Hm, +r,, (33b)
where q,_; ~AN(0,Q) is the process noise and r, ~ N (0, R)
the measurement noise. The image is modeled using a dis-
crete white noise acceleration model (DWNA) as in [12] for
which the transition matrix, measurement model and noises
are [43, Ch.6]

13 12
| w=s

F=|! 7|, a= 2 _[1]", r=on
“lo 1| _ng'!z'[ = 1 = UiiN,

(34)

where g; is the power speciral density of the image process
noise. Given the models, it is straightforward to implement
a KF for tracking state of the image. The predidion step of
the KFis [17, Ch.4]

m = Frit,_;,

C; =FC.,F' +Q. (33)

Thereafter, the mean m; and covariance €, are updated
when measurement z,, ; becomes available using [17, Ch.4]

S, =HC;H" +R,

K, =C_H's!,

m, =m_ +K,(ILz,; — Hm_),
C, =C; - K,5.K!.

(36)

5.22 Positioning
If a single person locates within the area, it is expected that
the pixels with highest intensity locate near the target and
therefore, localizing the person can be postulated as finding
the mode of b, £ Hri, [48]. T = max{b,,) denotes the max-
imum component of the spatial field, than the mode is in
the set of pixels with intensity higher than yZ. To simplify
the notation, let us define

C (b, b2 T

by = {0 otherwise '’ 87

= m =

(a) (&)
Fig. 3. Two example AT] images and the position and covariance esti-
mates calculated using (38) and (38). In the image, the plus sign indi-
cates the true position, the crosses are the position estimates and the

dashed line flustrates the 3a uncertainty elipse which is defined as
Po + vNa[cos(g) sin (8)]" in which g =[0,...,2r] and /N, denctes

the lower Cholesky factorization of N, such that N, = VN NL.

and w, =l?|,,lff El;ﬂ MNow, the position can be estimated as
the weighted sum of pixels

P = PWn, (38)

wherep € RV are the pixel coordinates and w,, € BY*1 the
pixel weights. The covariance of the estimate is defined as

No=wao (p—p.)(P—P.) (39)
where o is the Hadamard product. Note that the localization
proposed in (38) is only capable of locating one person.
Multi-target localization and tracking is a challenging task
in DFLT, and it is outside the scope of this paper. Thus, we
do not propose coordinate estimators for the multi-target
case and for now, readers are referred to [15], [26], [31], [49]
for RS5-based multi-target tracking,

Two example RT] images are shown in Fig. 3 together with
the position and covariance estimates. The image on the left
shows tl'lﬂtthepixelswithﬁﬂ'.‘g ¥T are centered around the
true location, the position estimate is accurate, and the esti-
mated covariance is small. The image on the right is noisy and
does not clearly indicate the person’s location. The estimated
position is over a meter away from the true location and the
estimated covariance is significantly higher then in the other
image. Estimating the covariance allows to take such uncer-
tainties into account and the Kalman filter gives less weightto
position estimates that are estimated from noisy images.

5.3 Fusion Filter

The FF composes of two filters running in parallel. The first
one is the image filter presented in Section 5.2 and it tracks
the changes in the discretized propagation field image. The
second filter is the target tracking filter that is implemented
using the EKF presented in Section 3.2. However, the update
step of the EKF is augmented with position measurements
from the imaging solution in order to bound the EKFs mea-
surement residuals by the position errors of the imaging
approach. Recursion of the FF at time step n is presented in
the following and pseudocode of the filter is given in Algo-
rithm 1. The filter recursion can be divided into three stages:

1) Predict—Prediction step of the image and target
filter.
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Fig. 4. The experimental layouts in which the nodes () and the validation positions (- are ilustrated. The apartment was fully furnished with two
beds, nightstands, cupboands, a sofa, coffes table, etc., but the fumiture is omitted from the figure.

2)  Model concatenation—Forming the measurement model
matrices.
3) Update—Update step of the target filter.

Algorithm 1. Fusion Filter at Time Step n

procedure PREDICT
Form F, Q. F and Q using r
Predict i and C using (35} &= Image Prediction
Predict x_ and P_ using (8) o> Target Prediction
end procedure
proce dure MODEL CONCATEN ATION
Update image filter using (36)
Estimate p,, and N,, from image using (38) and (39)
Form R,z,.,,H,l[x ) and hl[x ) using (40}
: end procedure
: prn-nedu.re UFDATE )
H,(x, )P, H, (%) + R,
K. =P (%)S,",
X =%, + Kn(Zn —h(x;)),

Pn =P, — K.S.K®
: end procedure

"
SexNgURwNS

R
[ =t

—_

ok
=R

In the prediction step, matrices F and Q in (34), and F and
Q in (3), are formed using sampling interval 7 and thereaf-
ter, prediction step of the filters is performed. In the model
concatenation step, measurement z, ; of TX ¢ becomes avail-
able and the image filter can be updated. From the filtered
image m,, the position and covariance are estimated as
described In Section 52.2. Thereafter, the measurement
model matrices for the FF are formed as follows

R = blkdiag (R;, N,),
2'.“ = [zn,:l: ﬁ:I]T1
A = [HLGo) B

A& = [ 6e) (mx)" ]

(40)

where R;, h;(x] ) and H,;(x] ) are defined in (29) and

100 0
H_[{J{Jlﬂ]'

Finally, in the update step, the Fusion Filter can be updated
as given by lines 12 through 15 in Algorithm 1.

6 EXPERIMENTS

This section begins by introdudng the experimental setup.
Thereafter, the different filtering algorithms are summarized
and initialization of the filters is discussed. The sedtion is con-
cluded by presenting the evaluation metrics.

6.1 Experimental Setup

The used wireless sensors are Texas Instruments CC2531
USE dongles operating at the 2.4 GHz ISM band and the
sensors communicate in TDMA fashion as described in Sec-
tion 5.1 and further explained in [47]. The experiments are
conducted using all 16 frequency channels for communica-
tion in order to increase the system performance [19] and
the used channels are 11—26 as defined by the IEEE 802.15.4
standard [50]. The transmission interval between communi-
cations is approximately t = 2.9 ms, which defines the sam-
P]-‘-“B period for the filtering algorithms.

The experiments are conducted with 20 nodes that are
deployed in two different enviromments as illustrated in
Fig. 4 In the open environment, the nodes are deployed
around the monitored area and the network covers a 75 m®
area. The nodes are set on top of podiums at approximately
waist height (= 0.9 m). The floor plan of the apartment is
2 m® and the nodes are deployed so that the person can be
located throughout the entire house. To replicate a realistic
deployment scenario, 18 nodes are installed by eledric sockets
of the apartment so that we could power them using AC
adapters. The walk-in closets did not have electric sockets on
the exterior walls, so we decided to deploy one battery pow-
ered node in each to ensure coverage of the entire a ent.
These two nodes are located at[0.08 2.89]" and [10.24 2.80]".
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In the experiments, markers are placed inside the moni-
tored area for the test person to follow. During the experi-
ment, the person always walks directly from one validation
position (as illustrated in Fig. 4 using +) to another and once
the person reaches the destination, they stop for a few
seconds before proceeding to the next validation position.
In both environments, three different trials are conducted
and in each trial, the person is inside the area for approxi-
mately three minutes and every validation position is vis-
ited at least once. During the experiments, the person is
carrying a video camera. In post-processing, the RSS and
video streams are synchronized and the video is used to
generate the ground truth trajectory. However, we evaluate
the tracking accuracy only when the person is stationary to
ensure that the ground truth position is correct.

A recent work has presented the means for an adaptive
RTI (ARTI) system to use unsupervised training for estimat-
ing the unknown model parameters [12]. This improves the
RSS models over time as data is gathered and enhances the
system performance. We could adapt similar algorithms in
this paper but for simplicity, we calibrate the model parame-
ters using the ARTI system [12] and then use these estimates
in our filtering algorithms. Thus, the RSS model parameters
8 = [ﬁ Noa ;.i,,] are estimated by minimizing the cost
function

{—305&4530

K
J(0) = D _la(m) — hulkid, NS | g 001 < A < 17

n=1

(41)

where K is the total number of estimates in one trial (approx.
180 seconds of data), z(n) is the measured RSS, ky(-) is evalu-
ated using ARTI state estimates %2, and the dependence of
fi(-) on the model parameters is now explicitly stated. In this
paper, constrained nonlinear optimization [51] is used to find
the minirmuim of J{#;) and thereafter, the maximmum likelihood
(ML) estimates of p; = $ 3 ny (51(n) — hu(kn; ¢y, A1) and of =
5K (Z(n) — m — hu(Ra: by, ) ) are obtained.

6.2 Filtering Algorithms

In the following, the different filters are summarized. The
process noise value of the filters has been used as a tuning
parameter to maximize performance of each filter. Other-
wise, a specific value might favor one filter over another.

¢ FF—The Fusion Filter can be implemented using
Algorithm 1 and the imaging parameters of the sys-
tem are given in Table 2. The selected parameter val-
ues work in a wide range of environments and they
are close to the ones used in [12]. The process noise
of the kinematic state is set to g = 0.1 m/s".

¢ EKF—The first benchmark system is the EKF solu-
tion presented in [16]. The algorithm is summarized
in Section 3.2, the filter uses sequential processing
and the process noise is the same as for the FF.

s PF—The second benchmark system is a particle filter,
which is the de facto nonlinear Bayesian filter used in

2.In the model calibration phase, the RTI position estimates are
substituted with the person’s true coordinates whenever the person is
stationary and used as input in the filtering recursions.

RSS-based DFLT [13], [14], [15]. The used PF is a
sequential impoartance resampling filter where the
dynamic model is used as theimportance distribution.
The implemented PF uses 10000 particles, resampling
is performed once the number of effective particles is
below 1000 and the process noise is increased to
g =1m/s" and o? is increased by one, to mitigate the
sample depletion problem [52]. The readers are
referred to [17], [53] for further details on PEs.

# ARTI—The third benchmark systemis ARTI[12]. We
maodify the original ARTI algorithm so that the meas-
urements can be processed sequentially as explained
in Secton 5.1. In addition, the online estimator (see
Algorithm 2 in [12]) is disabled because the parame-
ters are alread y estimated. The imaging and filtering
parameters are given in Table 2 but the pixel width
is decreased to 8, =0.15 m so that discretization
does not degrade the tracking accuracy. ARTI locates
the person using (12) and a KF is implemented to
track the target. The process noise of the filter is set
tog =1 m/s” and the measurement noise covariance
is N =diag([0.25 m? 0.25 m?]).

6.3 Filter Initialization

The image state is initialized with an all zeros matrix and
the covarance as Cy= d.lag{[] de? 1 {dﬂjsf] ). The
target tracking filter is initialized using the true state of the
target when the person has reached the first validation
position and the covariance matrix is set to Py=
diag([0.1 m? 0.1 (m/s)* 0.1m? 0.1 (m/s)*]). We want
to make the following remarks: i) An inaccurate prior does
not cause the imaging solutions to diverge, the methods are
not particularly sensitive to initialization and only the first
few estimates would be affected by inaccurate initialization.
ii) The FF could be designed so that the algorithm would
only use the position estimates of the imaging solution in
the beginning. After convergence, the filter would switch to
the augmented measurement model. iii) The EKF requires
that the initial estimate is close to the true state. The priori
estimate could be obtained for example using an imaging
solution or initializing numerous EKFs simultaneously and
keeping the one that converges. iv) The PF could be initial-
ized by uniformly distributing the particles inside the moni-
tored area, and with a sufficient number of particles, the
posterior distribution is expected to converge to the true
state. Initialization of the filters is not within the scope of
this work, and for a fair comparison of the different filters,
we have chosen to use the true state instead of implement-
ing a different initialization procedure for each filter.

6.4 Evaluation Metrics
The filters are evaluated using the localization RMSE

_ 1 2
&= | B2 ()

where K is the total number of estimates in one trial

(approx. 180 seconds of data) and the distance error at sam-
ple n is calculated as

(42)



T80

TABLE3
RMSE [cm]in the Open Environment Experiment
Scenario / Trial FF EKF FF ARTI
1/1 752 - - 993
1/2 103.6 - - 1151
1/3 808 - - 972
1/ average 86.3 - - 103.9
2/1 10.0 - 9.6 227
2/2 109 102 111 27
2/3 123 95 101 199
2 / average 11.1 - 10.3 214

e5(1) = (Ba(m) — Po(m))* + (By(m) — By(m))?,

in which p; and p, denote the true coordinates and the hat
acent indicates the estimate. In addition, we use the ratio
of measurements outside a defined threshold for examining
robusmess of the filkers. The metric is defined as

eﬁ=(1—‘1—fg - 100%,

where M is the number of estimates within one meter of the
true location. Typically, the filter has diverged from the cor-
rect trajectory if the estimate is one meter or further from
the true position.

It is to be noted that the sequential processing scheme
introduces a delay of (5§ —1)7= 55 ms to the estimates
which corresponds to a distance error of 0.0535m if the per-
son moves at 1 m/s. This might have an impact in critical
real-world applications if for example the system would be
used in collaborative human-robot workspaces [22]. In non-
critical applications such a delay can be neglected, espe-
cially when duration of the delay is known. In this paper,
the delay caused by the sequential processing scheme can
be calculated from the transmission imes and the lag is
removed from the position estimates before calculating the
evaluation metrics given above.

(43)

7 RESULTS

The development efforts are experimentally and numeri-
cally evaluated in this section and the FF is compared with
respect to the EKF, PF and ARTI solutions. It is to be noted
that the system performance strongly depends on the used
model parameters and their accuracy. Thus, we investigate
two scenarios:

e Scemario 1: Using an educated guess for the model
parameters and the same value is used for all links.

e Scemario 2 Using the training scheme explained at
the end of Section 6.1 and using the unique model
parameter estimates for each link.

The ECDFs of the model parameter estimates in the open
environment are illustrated in Fig. 6 and these values are
used in scenario 2. In scenario 1, the educated guess is the
median of the ECDFs and the RSS is modeled using:
$=—222, ), =0Mand o] = 142V L
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7.1 Experimental Results

The BMS errors of the filters in the different scenarios and
trials are summarized in Table 3 for the open environment
experiment. In scenario 1, when an educated guess is used
for the model parameters, the EKF and PF always diverge
because the filters can not tolerate significant modeling
errors. The imaging solutions are more robust to such
modeling errors and despite individual position estimates
can be inaccurate, the imaging solutions are able to track the
person at least to some extent. On average, the FF performs
slightly better than ARTI and both methods are able to
achieve an RMS5 error of approximately one meter or below.

NMext, the filters are run on the same experimental data
and using scenario 2. The EKF solution results to the lowest
RMSE in two of the trials when the filter does not diverge.
With respect to the EKF solution, the PF is more robust but
it is not as accurate despite using 10000 particles. The lower
accuracy results from increasing the process and measure-
ment noises, which in our case was mandatory to avoid the
sample depletion problem and divergence issues in the

environment. With resped to the nonlinear filters,
ARTI has a higher RMSE because the position estimates are
always affected by discretization of the image. In addition,
the time evolution can not be solved as accurately because
the image formation always requires low pass filtering
which is performed with the KF in this paper. In this experi-
ment, the FF never diverges and the accuracy of the filter is
comparable to the other nonlinear filters and it provides a
superior combination of robustness and accuracy.

The coordinate estimates of the filters in scenario 2 are
illustrated in Fig. 5a for trial 1 and the position estimates are
shown with respedt to the validation positions in Fig. 5c for
trial 2. On most parts, the coordinate estimates of the filters
overlap one another. However, the ARTI estimates are
slightly more spread out as shown in Fig. 5¢ and the trajec-
tory is not as smooth as can be seen in Fig. 5a. In the figure,
the time instance (t = 158 s) when the EKF diverges is also
shown. The trajectory should be a straight line from one val-
idation position to another but all filters result to maccurate
estimates with the difference that the EKF diverges and the
other filters are able to recover. It is to be noted that if the
modeling assumptions hold, the EKF is the best performing
filter in the mean squared sense and no other filter can out-
perform it. However, the open environment experiment is
actually very simplifying and modeling errors are very
common due to the complex nature of the indoor propaga-
tion charmel. Next, we show that the EKF and PF fail in
more realistic deployment scenarios even though the model
parameters are trained.

Next, the filters are run on experimental data from the
apartment experiment and using scenario 2. The coordinate
estimates of the filters are illustrated in Fig. 5b and the posi-
tion estimates are shown with respect to the validation posi-
tions in Fg. 5d for trial 1. The apartment experiment is
signifimantly more challenging since most of the nodes have
non line-of-sight (NLOS) communication with one another
and multipath propagation is common. As an outcome, the
person’s presence in between the transceivers does not neces-
sarily cause the RS5 to change. On the other hand, the person
can alter static multipath components causing a significant
RSS change even for large A values. These can result to
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significant modeling errors and the EKF and PF always
diverge in the apartment experiment due to this reason. Thus,
the coordinate estimates of the filters are omitted from
Figs. 5b and 5d. Since the imaging solutions do not rely onan
accurate image pror, the methods are significantly more
robust to modeling errors and can track the person even in
challenging environments as shown in the figures and as
given in Table 4. More quantitatively, the average RMS error
is 40.9 cm for ARTI and 28.6 cm for FF, decreasing the RMSE
by 30 percent with respect to ARTL In scenario 1, the results

TABLE 4
RMSE [cm]in the Apartment Experiment
Scenario / Trial FF EKF FF ARTI
1/1 80.3 - - 847
1/2 91.0 - - 1009
1/3 829 - - 943
1/ average 8.7 - - 933
2/1 28.4 - - 430
272 30.7 - - 394
2/3 26.8 - - 403
2 / average 28.6 - - 40.9

aresimilar to the ones in the open environment and the results
aresummarized in Table 4.

The average computation times to initialize the filters
and to compute a single recursion are given in Table 5 for
the open environment experiment. The results are obtained
using a Matlab implementation and a standard laptop
equipped with a 2.70 GHz Intel Core 7-4800MQ processor
and 16 GB of RAM. Initializing the nonlinear filters is negli-
gible, whereas the imaging methods require computing the
projection matrix given in (11) which requires inverting
large matrices. Ccrmplexit;,' of matrix inversion is at least
quadratic® and NV (1/35)" so that the overall complexity of
calculating the projection matrix relates to the pixel size via
D[{lfﬁp]d']. The quartic proportion increases the computa-
tional complexity rapidly as the pixel size decreases, and
ARTI requires seven times longer to initialize than FF. For
ARTI, the iitialization time can be reduced by using a
larger pixel size, but at the same time, the RMS error
increases. As an example, the RMSE of ARTI increases by

3. The complexity is at least O(n?) because an n % n matrix has n*
values but naive algorithms can have a complexity of O(n®).
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TABLE 5
CPUTimes in Miliseconds
FF EEKF FF ARTI
Initializa ion 21073 0.5 15 139203
Filter recursion 0.410 0.075 5.045 0.590

27 percent to 272 cm in the open environment experiment
when &, = 025 m.

In the experiments, the time interval between two trans-
missions is approximately 2.9 ms which defines the system's
sampling rate and also sets an upper bound on how long asin-
gle filter recursion can last. As shown, the PF exceeds this
value and real-time operation is not possible when 10000 par-
ticles are used. The computation time could be decreased by
using fewer partides but at the same time, the filter becomes
even more vulnerable to divergence issues. The other filters
can easily be implemented in reaHtime and the EKF is supe-
rior to the other methods. However, its use is limited to very
simplistic environments and when the model parameters are
known. Lastly, the FF is more efficient than ARTI because the
real-time computation of the image estimate has complexity
O[NL] and N x (1 fﬁpjz In the next section, the PF uses
N = 1000 partides so that a real-time implementation would
be possible.

7.2 Numerical Results

The performance and differences between the filters is fur-
ther analyzed in this section using simulations which repli-
cate the open environment tests. This experimental setting
is chosen because all filters were capable of tracking the per-
son successfully in this environment. First, we compute the
ECDPFs for the model parameter estimates in the open envi-
ronment. Thereafter, various distributions are fitted to the
data and the one that maximizes the log likelihood is used
to describe the model parameter. The ECDFs and the fitted
distributions are illustrated in Fig. 6 and the selected distri-
butions are: non-standardized Student's t-distribution
¢ ~ T(—2.22,4.09,8.09), log-normal A ~ £(—3.14,1.23) and
Gamma o ~ I'(2.66,0.51). Interestingly, the same distribu-
tions can be used to describe the apartment experiment
model parameters and similar behavior was reported in
[12]. This suggests that each parameter might follow a

0t n&t
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specific distribution where the parameters of the distribu-
tion are specified by the environment and layout of the net-
work. Such information would aid predeployment
performance assessment and could be used as informative
priors to the model parameters. However, further investiga-
tion is left for future work.

In the simulations, the model parameters for each link
are randomly drawn from the fitted distributions, and in an
ideal scenario the model parameter is known. In reality, the
model parameters are unknown in advance and an edu-
cated guess must be used. We use the median of the ECDFs
as given in Table 2 and the DC term p is assumed known
for each link. In the simulations, the educated guess is used
for link ! randomly with probability P and we denote P as
the fraction of links with incorrect 8;. Note that the educated
guess is likely to differ from the drawn parameter values. In
the analysis, the filter performance between the two
extremes is studied, that is, having perfect knowledge of the
model parameters P = 0% and having no prior information
of the model parameters P = 100%.

The simulated trajectory and filter estimates averaged
over 1000 Monte Carlo simulations are illustrated in Fig. 7a
and the PCRB and RMS errors are shown in Fig. 7b when
P = (0%. As shown in Figs. 7a and 7b, the state estimates of
the nonlinear filters are close to the true mordinates’ while
the ARTI estimates are not as accurate. As discussed earlier,
ARTI performance is degraded by discretization and the
estimates are lagging because the image formation always
requires low pass filtering. For the y coordinate estimates in
Fig. 7a, the impact of discretization can be seen between
t=88-92 s and the effect of low pass filtering between
t = 84—88 s. The nonlinear filters do not have such draw-
backs and as shown in Fg. 7b, the nonlinear filters nearly
reach the PCRB. However, EMSE of the PFis slightly higher
because the process and measurement noise of the filter
have been increased to mitigate the sample depletion prob-
lem [52]. The time averaged PCRB is 2.53 cm over the 1000
Monte Carlo simulations and the RMSE of the filters in
inoreasing order are: 3.01, 3.17, 3.62 and 1442 cm for EKF,
FF, PF and ARTI in corresponding order. Thus, the results
are inline with the experimental results, that is, the EKF
achieves the lowest RMSE in ideal scenarios, the FF and PF
are slightly more inaccurate and ARTI has the highest
EMSE in ideal scenarios. [t is to be noted that acceleration of

Fla)

=3

nz 0.4

Fig. 6. The empirical COFs for 8= [¢ A o] in the open

0.6 0.8 1
A [
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environment experiment () and the distribution fits (—). The fitted distibutions ana:

non-standardized Student's t-distribution ¢ ~ T —2.22,4.08, 8.04), log-normal A ~ £{—3.14,1.23) and Gamma & ~ T{2.66, 0.51).
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the person is nor-zero for short time periods when the per-
son stops and starts moving as shown in Fig. 7b. During
these time intervals, the RMSE of the nonlinear filters
inoease as shown in Fig. 7b. A multiple model (MM)
approach [43, Ch. 11] could be adopted where multiple fil-
ters would be run in parallel, each having a different pro-
cess noise value. However, the improvement is expected to
be marginal because maneuverability of the target is low
and the maneuvers last for short time periods.

Next, robustness of the filters is studied by inoementing
P so that the number of links that use the educated guess
instead of the true model parameter value increases. The
results are shown in Fig. 7c, and the advantages and disad-
vantages of the filters are dearly conveyed by the evaluation
metrics. Ideally, the model parameters would be known and
a good choice for the filter is an EKF due to its high tracking
performance and low computational overhead. However,
as the fraction of links with modeling error increases, the PF
and EKF start to experience divergence issues and the filters
can not be used as stand alone solutions. The PF can cope
slightly better with the modeling errors but the improve-
ment is insignifiant considering the added computational
complexity. The imaging solutions are signifiantly more
robust to modeling errors and the filters are able to track the
target even though all links are using an incorrect model
parameter value. The main reason for this is that the imag-
ing methods do not rely on an accurate prior when estimat-
ing the images. As shown in Fig. 7c, FF always outperforms
ARTI and in the most challenging scenario when P = 100%,
the RMSE is .26 m with FF and 0.42 m with ARTIL an
increase of 62 percent in tracking error. Thus, the numerical
results support the experimental findings and we can con-
clude that the FF provides a superior combination of robust-
ness and accuracy. It is to be noted that the numerical and
experimental results do not correspond one another pre-
cisely because the used model is a simplification of the
actual propagation phenomena and error sources.

8 CoONCLUSION

The PCEB of RSS-based DFLT is derived in this paper and
two estimators are evaluated with respect to the bound. The
first estimator is a two-step imaging approach which first

estimates the changes in the propagation field and then the
person is localized from the image. The second estimator is
a Bayesian filter which is realized using an EKF and the
method directly relates the RS5 measurements to the per-
son’s kinematic state. The bound analysis dearly shows that
the EKF is efficient as it nearly reaches the bound and it is
superior to the imaging approach in terms of localization
accuracy. However, the EKF has practical limitations which
restrict its use in real world deployments and in this paper,
we address these limitations by introducing a Fusion Filter
which merges the EKF and imaging solutions. The benefit
of the proposed approach is that the filter's measurement
residuals are bounded by the position errors of the imaging
approach and as an outcome, the filter has the robusimess
of an imaging method and the tracking accuracy of a nonlin-
ear Bayesian filter. The results imply that the presented filter
nearly achieves the performance of the EKF in ideal sce-
nario, and it is as robust as the imaging solution in non-ideal
SOENArios.

Developments of this paper open interesting opportuni-
ties in smoothing and parameter estimation since the
Rauch-Tung-Striebel smoother can be directly applied to
improve the state estimates of the presented filter. More-
over, the required expectations and maximization step for
an expectation maximization algorithm can be computed in
closed form using the smoothing distributions. These topics
will be explored in future research.
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