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ARTICLE OPEN

State leakage during fast decay and control of a
superconducting transmon qubit
Aravind Plathanam Babu 1, Jani Tuorila1,2 and Tapio Ala-Nissila1,3✉

Superconducting Josephson junction qubits constitute the main current technology for many applications, including scalable
quantum computers and thermal devices. Theoretical modeling of such systems is usually done within the two-level
approximation. However, accurate theoretical modeling requires taking into account the influence of the higher excited states
without limiting the system to the two-level qubit subspace. Here, we study the dynamics and control of a superconducting
transmon using the numerically exact stochastic Liouville–von Neumann equation approach. We focus on the role of state leakage
from the ideal two-level subspace for bath induced decay and single-qubit gate operations. We find significant short-time state
leakage due to the strong coupling to the bath. We quantify the leakage errors in single-qubit gates and demonstrate their
suppression with derivative removal adiabatic gates (DRAG) control for a five-level transmon in the presence of decoherence. Our
results predict the limits of accuracy of the two-level approximation and possible intrinsic constraints in qubit dynamics and control
for an experimentally relevant parameter set.

npj Quantum Information            (2021) 7:30 ; https://doi.org/10.1038/s41534-020-00357-z

INTRODUCTION
Recent developments in quantum devices are based on the high-
fidelity control of two-level systems. Superconducting Josephson
junction-based qubits are the current leading choice for large-
scale quantum computing and devices such as quantum heat
engines1–3. Superconducting qubits are realized with different
circuit designs, which are the charge, flux, and phase qubits4.
These systems are ideally physical realizations of anharmonic
multilevel systems in which the anharmonicity is caused by the
inherent nonlinearity in the Josephson junction5 and can be
controlled by changing ratio of the Josephson to the charging
energy. Ideal qubit operation requires a strict two-level approx-
imation that restricts the operational subspace into the two
lowest-energy eigenstates.
The population leakage from this low-energy subspace can

induce significant error in the qubit dynamics and control. High-
fidelity and error-free computing in particular requires a detailed
understanding of the dynamics and control in the presence of
these higher energy states for experimental circuits. Most
importantly, coherent driving of qubits is the key requirement
for the implementation of single-qubit quantum gates. Coherent
driving of multilevel systems inherently induces excitations out of
the qubit subspace6,7 which, in addition to decoherence, limits the
gate fidelities. Optimization of leakage-free driving for single-qubit
gates in the absence of decoherence has been previously
investigated within the derivative removal adiabatic gates (DRAG)
method which successfully reduces the leakage errors8–10.
Further, applications of superconducting qubits are not limited

to quantum computing. Superconducting qubits are also used as
efficient quantum simulators and quantum heat engines, due to
their high degree of controllability in preparation and readout11,12.
A precise understanding of dynamics and control in the presence
of higher energy states is important for proper operation of these
devices.

Typically, studies in dynamics and control of superconducting
qubits are restricted to weak coupling to the background or heat
bath. This is because most of the quantum computing devices
require ultra-weak coupling between the qubit and the environ-
ment during gate operations. However, environmental engineer-
ing should not be restricted to weak coupling only. In particular,
quantum heat engines and simulators may need relatively strong
coupling to the bath1,12–14. Considerable attention has recently
been focused on strong coupling regions in the context of fast
qubit initialization with engineered and tunable environments15–18.
For a system interacting weakly with its environment the
Markovian Lindblad equation has proven to be remarkably
successful in describing the dynamics of quantum devices19–21.
However, for strongly interacting systems the Markovian weak-
coupling approach can no longer be justified and more accurate
methods must be employed. Among these methods, the
stochastic Liouville–von Neumann (SLN) equation approach allows
for a numerically exact solution of the reduced dynamics of the
system with very few assumptions22,23.
Here, we analyze the decay of a transmon qubit coupled to a

bosonic bath and investigate how state leakage occurs during the
decay using the exact SLN method, and the stochastic Liouville
equation with dissipation (SLED) which is computationally efficient
and equivalent to SLN in the limit of high cutoff for the
environmental noise22,24. We show that the universal decoherence
induces experimentally relevant short-time leakage during the
decay. This indicates that when modeling transmon qubit decay
dynamics, the two-level approximation may be inaccurate even at
the zero temperature limit. We further study the influence of
higher energy states in controlling the transmon, focusing in
single-qubit gate fidelities in the presence of a dissipative
environment. We quantify leakage error in single-qubit quantum
gates and study the performance of DRAG control techniques in
the presence of decoherence for experimentally relevant para-
meters. Our studies thus quantify the influence of both higher
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energy levels and decoherence in the quantum gate operations
and other applications relying on coherent qubit control
protocols.

RESULTS
System
The effective Hamiltonian of a superconducting charge qubit
formed by a Josephson junction with Josephson energy EJ and
charging energy EC can be defined as4

Ĥq ¼ 4ECðn̂� ngÞ2 � EJ cos ϕ̂; (1)

where ng is the effective offset charge number, and n̂ and ϕ̂ are
the net number of Cooper pairs transferred into the island and
superconducting phase difference across the Josephson junction,
respectively. We approximate Ĥq by truncating into the subspace
spanned by its N lowest-energy eigenstates kj i as

Ĥq ¼ _
XN�1

k¼0

ωk kj i kh j; (2)

where ωk are the corresponding eigenfrequencies. In the
following, we denote the lowest-transition angular frequency
with ω01=ω1− ω0. In ref. 17 it has been shown that a truncation
to N= 5 lowest eigenstates is enough for accurate studies of
single excitation and low-temperature dynamics. In the so-called
transmon regime of the charge qubit, EJ≫ EC and the lowest-
energy eigenstates become independent on the offset charge
number ng which reduces the charge-noise sensitivity of the
device. The typical transition frequency for a solid-state transmon
is of the order of 4–5 GHz with the absolute anharmonicity α=
ω12−ω01 approximately around −200MHz1,18.

Bath induced decay and short-time decoherence
Transmon qubits are typically coupled to transmission line
resonators for state readout and control. The electromagnetic
modes inside such resonator act as a bosonic dissipative
environment for the transmon. We study such source of
decoherence by considering the dynamics of a transmon which
is coupled to a bosonic bath at temperature T with Hamiltonian
ĤB ¼ Σj_ωj b̂

y
j b̂j , where b̂

y
j and b̂j are the creation and annihilation

operators of the bath oscillators. Typically, the interaction between
the transmon and the bath is conveniently modeled with a
bilinear coupling. The interaction Hamiltonian can be written as

ĤIðtÞ ¼ _q̂ζ̂; (3)

where q̂ ¼ P
k;lhkjn̂jli kj i lh j and ζ̂ ¼ Σjgjðb̂

þ
j þ b̂jÞ. The spectral

characteristics of bath can be modeled in terms of the spectral
density

JðωÞ ¼ 2π
X
j

g2j δðω� ωjÞ; (4)

where gj is the coupling angular frequency between the transmon
and the bath oscillator j. In such superconducting circuits, the
bosonic environments can be conveniently modeled with a
resistor which has an ohmic spectral density JðωÞ ¼ κðω=ω01Þ

ð1þω2=ω2
c Þ2

;

where ωc is the cutoff frequency, and κ is equal to the
spontaneous emission rate of the Lindblad equation and thus
determines the coupling strength.
In the case of weak coupling, the interaction with the bath can

be modeled accurately with the Lindblad equation. In particular, at
low temperatures the leakage from the single-excitation subspace
of the transmon is negligible and one can make a truncation to
N= 2 states in the Hamiltonian in Eq. (2). However, for fast qubit
initialization or a quantum heat engine a relatively strong coupling
may be required, which warrants a detailed study of the expected
corrections to the Lindblad results. In ref. 17, the steady-state

properties of a strongly coupled transmon beyond the two-level
approximation have been studied in the context of fast qubit
initialization. Here, we focus on transient dynamics and the decay
from the first excited state in particular, with an emphasis on
leakage to states outside the qubit subspace.
Figure 1 shows the dynamics of the diagonal elements of the

reduced density operator calculated with the SLED method for a
transmon is initialized to the first excited state (see the “Methods”
section for details on the SLN and SLED methods). We have used a
relatively strong coupling κ= 0.2ω01 which can currently be
realized with a tuneable environment15,16,25. We emphasize that
such strong coupling is not relevant for coherently operating
transmon devices, but potentially relevant for fast qubit reset or
quantum heat engines operating in the non-Markovian regime.
We choose βℏω01= 5, which corresponds to temperature around
38mK for a transmon with frequency ω01/2π= 4 GHz. This is close
to typical experimental temperatures for transmon circuits. In Fig.
1, we scale the time axis with the weak-coupling decay rate κT ¼
κ cothðβ_ω01=2Þ to compare with the weak coupling decay. Figure
1 demonstrates that at short times there is a significant population
leakage to the higher excited states which is due to the universal
decoherence described in ref. 26.
We substantiate these numerical results and obtain a detailed

description of the short-time decoherence by deriving an analytic
solution in the early time limit in which the free dynamics of the
system can be neglected. Details of the derivation can be found in
“Methods” section. We use the operator method described in
refs. 17,26 to obtain the diagonal elements as

h0jρSðtÞj0i ¼
1
6
½1� e�12f ðtÞκ=ð4πω01Þ�; (5)

h1jρSðtÞj1i ¼
1
2
½1þ e�12f ðtÞκ=ð4πω01Þ�; (6)

h2jρSðtÞj2i ¼
1
3
½1� e�12f ðtÞκ=ð4πω01Þ�; (7)

where

f ðtÞ ¼ 2ω01

κ

Z 1

0
dω

JðωÞ
ω2

cothð_βω=2Þ½1� cosðωtÞ�: (8)

We have set N= 3 here, which makes the analytic calculations
feasible and reveals the main factors contributing to leakage. We
have assumed that the transmon is initially in the first excited
state, similar to the numerical data shown in Fig. 1. Figure 2 shows
a detailed comparison between our analytic solution for the short-
time decay and the corresponding numerical data obtained with
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Fig. 1 Bath induced decay dynamics of a transmon. Decay
dynamics of the diagonal elements of the reduced density matrix
of a transmon with N states, starting from an occupied first excited
state ρ11(t= 0)= 1. The data have been obtained using the SLED. We
have used the parameters EJ/EC= 100, κ/ω01= 0.2, βℏω01= 5, ωc=
50ω01, and κT ¼ κ cothðβ_ω01=2Þ.

A.P. Babu et al.

2

npj Quantum Information (2021)    30 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



the SLN and SLED methods. The excellent agreement validates the
conclusion that the short-time leakage in the transmon is due to
the universal short-time decoherence. We note that ref. 17 also
reports analytic results for short-time dynamics but only in the
two-level approximation for the transmon.
The population leakage demonstrated in Fig. 1 can be

quantified in terms of state leakage L of the density matrix as27

LðρÞ ¼ 1� Tr½P1ρ�; (9)

where P1 ¼ 0j ih0j þ j1i 1h j is the projector onto the computational
(ideal) subspace and ρ is the density matrix of the system. The
maximum of state leakage over time Lmax for a five-level transmon
is shown in Fig. 3. The data reveal that the state leakage is a
monotonically increasing function of the coupling constant κ. As
expected, the maximum leakage at high temperatures signifi-
cantly increases due to thermal excitations. It is worth noting that
the maximum state leakage is larger than the state leakage in
thermal equilibrium, and we emphasize that at finite temperatures
the Lindblad equation predicts that the leakage increases
monotonically towards the steady-state value given by the

Boltzmann distribution. In order to understand how the maximum
leakage depends on temperature, we define the time at which
Lmax occurs as

tmax ¼ argmax
t

LðρÞ: (10)

In Fig. 4, we show tmax for different values of κ and β. In the case of
strong coupling (κ > 0.1ω) short-time decoherence dominates and
maximum leakage occurs at early times. However, for a relatively
weak coupling (κ < 0.1ω) the thermal excitations start to dominate
and the time at which the maximum leakage occurs is
approximately 100/ω01. Thus, we expect that the short-time
leakage could be studied experimentally for moderate tempera-
tures and bath coupling strengths using fast measurement
techniques. These results imply that higher-order levels are
essential for accurately modeling the transmon dynamics even
at low temperatures and, thus, should be taken carefully into
account when modeling devices that use strong and possibly
controllable couplings to the environment.

Control with classical driving
Coherent driving of qubits is crucial for the realization of quantum
logical operations. To this end, we consider the case of an isolated
transmon driven unitarily by an external classical field as

ĤS ¼ _
XN�1

k

ωk kj i kh j þ _Ωq̂ cosðωdtÞ; (11)

where Ω determines the amplitude of the cosine pulse and ωd is
the is the driving frequency. In order to reduce the complexity of
the analytic calculations, we consider here the idealized case of a
three-level transmon (N= 3) in the absence of dissipation. In the
sections below, we use N= 5 in our numerical simulations which
quantify leakage errors in single-qubit gate operations.
We transform the Hamiltonian into the rotating frame using the

unitary operator Û ¼ eiωd tâ
y â, where â ¼ 0j ih1j þ ϵj1i 2h j, ϵ ¼

h1jn̂j2i and ϵ � ffiffiffi
2

p
.

~HS ¼ ÛĤSÛ
y þ i_Û _̂U

y
;

¼ _

0 Ωf ðtÞ 0

Ωf ð�tÞ ω01 � ωd

ffiffiffi
2

p
Ωf ð�tÞ

0
ffiffiffi
2

p
Ωf ðtÞ ω02 � 2ωd

2
64

3
75; (12)

where f ðtÞ ¼ e�iωdt cosðωdtÞ. In order to simplify further we make
the rotating wave approximation by neglecting the fast oscillating
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Fig. 2 Short-time dynamics of the diagonal elements of the
density matrix. The diagonal elements of the density matrix for
decay from the first excited state calculated with SLN (solid lines),
SLED (dotted lines), and our analytic solution in Eqs. (5)–(7) (dashed
lines). We have used EJ/EC= 100, κ/ω01= 0.2, βℏω01= 5, ωc= 50ω01,
and N= 3.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

Fig. 3 Maximum state leakage for different coupling strengths
and temperatures. Maximum state leakage for the decay from the
first excited state calculated with SLED. Note that blue and green
lines almost overlap each other. Dotted lines indicate the steady-
state thermal leakage calculated using the Boltzmann distribution
for βℏω01= 2. Here EJ/EC= 100, ωc= 50ω01, and N= 5.
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10-1

100
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Fig. 4 The time at which maximum state leakage occurs for
different coupling strengths and temperatures. The system is
initially in the first excited state and the data have been obtained
using the SLED. Here EJ/EC= 100, ωc= 50ω01, and N= 5.
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terms and assume resonance condition ω01=ωd. We obtain

~HS ¼ _

0 Ω=2 0

Ω=2 0
ffiffiffi
2

p
Ω=2

0
ffiffiffi
2

p
Ω=2 ω02 � 2ωd

2
64

3
75: (13)

In the case studied here, the system is isolated and the dynamics
of the diagonal elements of the density operator can be calculated
by solving the von Neumann equation. Figure 5 shows the
dynamics of the diagonal elements of the density operator
calculated by solving the von Neumann equation for the
Hamiltonian in Eq. (13) with Ω= 0.01ω01 and ωd=ω01. The data
reveal that the presence of the second excited state induces state
leakage during the Rabi oscillations, which can lead to significant
leakage error in single-qubit gate operations. In the following
section, we discuss this in detail for the case of a single-qubit NOT-
gate. Again, the data imply that the two-level approximation is not
accurate for modeling the dynamics of a driven transmon. In Fig.
6, we show the relationship between the relative anharmonicity α/
ω01 (which is inversely proportional to

ffiffiffiffiffiffiffiffiffiffiffi
EJ=EC

p
in the transmon

limit), the amplitude Ω of driving, and the maximum state leakage
Lmax. Note that here we calculated maximum state leakage during
one Rabi cycle and assumed that the transmon is initially in the
ground state. Clearly, decreasing anharmonicity enhances state
leakage as the transitions between adjacent excited states
become closer to resonance with the drive. The data illustrate

the intrinsic limits for the values of Ω and EJ/EC to reduce the
maximum leakage to Lmax < 0:01 (white region in the plot). Driving
a transmon with a small amplitude obviously reduces leakage
errors. However, we need to consider the effect of the dissipative
environment. Its influence is expected to be relatively weak in the
weak-coupling limit, but it still could have notable effects in
devices that require high accuracy.

Control with single-qubit gates
Finally, we study the influence of dissipation to the operation of
optimized single-qubit gates. Superconducting single-qubit gates
are constructed with various type of controls. A general gate
operation for a N-level transmon can be written as

H ¼ _
XN�1

k

ωk kj i kh j þ _q̂εðtÞ; (14)

with

εðtÞ ¼ εxðtÞ cosðωdtÞ þ εyðtÞ sinðωdtÞ; for 0< t < tg;

0; otherwise ;

�
(15)

where εx(t), εy(t) are mutually independent quadrature controls,
and tg is the gate time. For a simple NOT-gate, we choose

εxðtÞ ¼
ΩRðtÞ; for 0< t � tr;

Ω; for tr � t < tg þ tr;

ΩRðt � tg þ 2trÞ; for tg þ tr < t � tg þ 2tr;

8><
>: (16)

and εy(t)= 0. Here, RðtÞ ¼ ½cosðcosðπt=2trÞÞ � cosð1Þ�=½1� cosð1Þ�
is the ramping function, and tr is the ramp time to and from the
constant value of Ω. As a consequence, the protocol mimics a
typical experimental situation in which the change of parameters
has to have a finite rate.
The average fidelity of single-qubit gate operations can then be

defined as8

Fg ¼ 1
6

X
j¼fσ ±

z ;σ ±
x ;σ ±

y g
Tr½Uidealρð0ÞUy

idealρðtgÞ�; (17)

where Uideal is the unitary operation for the corresponding gate
operation in an ideal basis and σ ±

i¼x;y;z are the eigenstates of the
corresponding operators σi. We estimate the gate error in terms of
infidelity in the presence of a coupling to a bosonic bath at
temperature T. We set the coupling frequencies with the bath
oscillators to very small values, resulting to ultra-weak decay rates
κ for the transmon. Instead of Linblad equation, we model the
dissipative dynamics with the Redfield equation in order to avoid
errors arising from the secular approximation (see “Methods”). We
also note that earlier work has demonstrated that in the weak-
coupling limit both SLED and Redfield results agree for the gate
operations17.
In Fig. 7, we show the average infidelity (1− Fg) calculated with

the Redfield equation for the case of an isolated and weakly
coupled transmon with simple NOT-gate driving. We emphasize
that the optimal gate time tg= π/Ω with ramp time tr= tg/20 is
independent of the coupling strength κ, but the corresponding
value of infidelity depends on κ and Ω. The difference between
the optimal fidelity for N= 5 (solid lines) and N= 2 (dashed lines)
illustrates the error due to the presence of the higher energy
states. The data further demonstrate the variation in the optimal
fidelity due to the coupling with the environment. Note that
dissipation leads to errors in single-qubit gate operation even in
the weak coupling and low-temperature limit.
It has been shown that the DRAG significantly suppresses the

leakage errors in single-qubit operations8. In DRAG control one
uses a Gaussian pulse for εx(t) given by

εxðtÞ ¼ ΩA½e�ðt�tg=2Þ2=ð2t2gÞ � e�ðtg=2Þ2=ð2t2gÞ�; (18)

Fig. 5 Dynamics of a driven transmon. Dynamics of the diagonal
elements of the density operator of a driven transmon in the
rotating frame. The transmon is initially in the ground state. The
parameters here are Ω= 0.01ω01 and ωd= ω01.
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Fig. 6 Maximum state leakage for a driven transmon. Maximum
state leakage for three-level transmon as a function of the relative
drive coupling Ω/ω01 and energy ratio EJ/EC or ∣α∣/ω01, correspond-
ing to the N= 3 transmon in Fig. V, where α= ω12−ω01 and the
white region corresponds to Lmax<0:01.

A.P. Babu et al.

4

npj Quantum Information (2021)    30 Published in partnership with The University of New South Wales



with εyðtÞ ¼ �_εxðtÞ=α. The amplitude A determines the desired
rotation (here we use π for the NOT-gate) and α is the
anharmonicity. Figure 8 shows the average infidelities 1− Fg
calculated using the Redfield equation for an isolated and weakly
coupled transmon NOT-gate with DRAG driving. Naturally, the
infidelity grows with gate speed and dissipation which cause
leakage and decoherence errors, respectively. Note that the
optimal gate time is changed from tg= π/Ω due to the Gaussian
pulse shape, but is still independent of the coupling strength κ.
The optimal values of the infidelity for simple and DRAG NOT
gates depend on κ and Ω. These results quantitatively confirm the
importance of considering higher states and dissipative effects
while modeling the single-qubit gate operation for a transmon
qubit. We emphasize that the infidelities around 10−2 are not
optimal for typical transmon gates but more reliable optimization
of pulse shapes and preventing dissipative effects are required for
realistic quantum computing applications.
We improve our estimates of the leakage error by quantifying it

in terms of average state leakage

Lg ¼ 1
6

X
j¼fσ ±

z ;σ ±
x ;σ ±

y g
L½ρjðtgÞ�; (19)

where L[ρj(tg)] is the state leakage corresponding to the gate
operation on the initial state j. In Fig. 9, we study the effect of
dissipation to the average infidelity and average state leakage of

simple and DRAG-controlled NOT gates. The presence of a weakly
dissipative environment significantly reduces the gate fidelities of
both gates for relatively small values of driving amplitude Ω and
decoherence effects are negligible for the case of relatively fast
gate operations (large values of Ω). The errors due to the
dissipative environment can be reduced by fast driving. However,
fast driving can increase leakage errors. Ideally, the combination of
a moderate driving amplitude and isolating the system from the
bath(s) could optimize fidelity. The point where the infidelity has a
minimum corresponds to the optimal driving amplitude for the
parameters used in our work. The average state leakage in the
DRAG NOT-gate increases due to the dissipative environment and
leads to a smaller gate fidelity. The DRAG NOT-gate is robust
against the state leakage error and eliminates leakage to order Ω4/
α3. The state leakage is always less than or of the same order as
Ω4/α3 (black dashed lines) for the isolated case. This agrees with
the result reported in ref. 8 for the case of an isolated qubit with N
= 3. Also, our data clearly show that the DRAG pulse transfers the
leakage errors to bit- and phase-flip errors, which can be seen as a
multiple orders-of-magnitude difference between the simulated
simple and DRAG average state leakages in Fig. 9b. Such errors
can be corrected with quantum-error correcting codes. Note that
the gate fidelity for the DRAG NOT-gate is smaller than that of the
simple NOT-gate for large Ω but the pulse shape for DRAG can be
optimized to obtain higher fidelity28,29. Our data show that for
non-optimized pulses the bit and phase-flip errors can be of the
same order of magnitude as that caused by decoherence. We
emphasize that in our simulations we have taken into account
both the dissipation and presence of higher energy states up to
N= 5 for experimentally relevant parameters.

DISCUSSION
In summary, we have presented a detailed study of the state
leakage of a transmon under strong dissipation and fast coherent
control. We have studied the short-time decay dynamics of a five-
level transmon qubit coupled to a bosonic bath using analytic and
numerically exact methods. Our results demonstrate that the
universal decoherence induces significant short-time leakage
during the decay. At experimentally relevant low temperatures,
the leakage is directly proportional to the coupling to the bath. We
found that the two-level approximation of a transmon qubit does
not result into accurate dynamics, even in the case of low
temperature and small excitation number, especially in the case of
systems which are strongly coupled to the environment. We
expect this to be important if strong coupling is required for
environmental control, e.g., in qubit reset or in the case of
quantum heat engines.
Furthermore, we have quantified the dependence between

state leakage, anharmonicity, and drive amplitude for a resonantly
driven qubit, and predicted parameter values relevant for minimal
leakage. Finally, we have illustrated leakage errors in single-qubit
quantum gates for a five-level transmon in the presence of
decoherence, and suppression of leakage through DRAG control
techniques for experimentally relevant parameters. We have also
predicted fidelity variations in single-qubit gates for a five-level
transmon in the presence of decoherence for simple and DRAG-
controlled NOT gates.

METHODS
Models for dissipation
In the main text, we have studied open quantum system dynamics of a
transmon bilineraly coupled to a bosonic bath. We have modeled the
setup with the Hamiltonian

ĤSB ¼ ĤS þ ĤB þ ĤI; (20)

where ĤS and ĤB are the Hamiltonians of the system and the bath,
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Fig. 7 The infidelity of a simple NOT-gate. The average infidelity of
a simple NOT-gate with different drive amplitudes and bath
coupling strengths calculated using the Redfield equation for N=
5 (solid lines) and N= 2 (dashed lines). Here t0g ¼ tg þ 2tr and we
have used βℏω01= 10, EJ/EC= 100 and tr= tg/20.
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Fig. 8 The infidelity of a DRAG NOT-gate. The average infidelity of
the DRAG NOT-gate with different drive amplitudes and bath
coupling strengths calculated using Redfield equation. We have
used N= 5, EJ/EC= 100 and βℏω01= 10.
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respectively. The interaction Hamiltonian is defined as

ĤI ¼ _q̂ζ̂: (21)

The dynamics of the system is determined by its reduced density operator
ρ̂S ¼ TrB ρ̂, where ρ̂ is the joint density operator of the system and the
bath, the time evolution of which is determined by the von Neumann
equation. If the coupling to the bath is weak, one can apply the
conventional perturbative approach which includes Born and Markov
approximations. As a result, we obtain the Redfield equation19

dρ̂SðtÞ
dt ¼ � i

_ ½ĤS; ρ̂SðtÞ� þ 1
2

P
nmkl ½SðωnmÞ þ Sð�ωklÞ�f

Π̂nmρ̂SðtÞΠ̂kl � SðωklÞΠ̂nmΠ̂kl ρ̂S

�Sð�ωnmÞρ̂SðtÞΠ̂nmΠ̂kl
�
;

(22)

where ωnm=ωm−ωn with ωn being the eigenfrequencies of the system,
Π̂nm ¼ qnm nj i mh j, and qnm ¼ hnjq̂jmi. We have replaced the correlation
function by the inverse Fourier transform of spectrum of environmental
fluctuations [S(ω)]

hζ̂ðtÞζ̂ð0Þi ¼ 1
2π

Z þ1

�1
dωe�iωtSð±ωÞ: (23)

For an odd spectral density [J(−ω)=− J(ω)], such as spectral density of an
ohmic bath, we obtain

SðωÞ ¼ 2JðωÞ
1� e�_βω

: (24)

The Redfield master equation can be reduced into Lindblad form by
applying secular approximation by including only terms for which ωnm+
ωkl= 0 (equivalent to the rotating wave approximation). Consequently,
one obtains

dρ̂SðtÞ
dt ¼ �i

_ ½ĤS; ρSðtÞ� þ 1
2

P
ωnm>0

Sð�ωnmÞ½2Π̂nmρ̂SðtÞΠ̂
y
nm � fΠ̂y

nmΠ̂nm; ρ̂SðtÞg�

þ 1
2

P
ωnm>0

SðωnmÞ½2Π̂y
nmρ̂SðtÞΠ̂nm � fΠ̂nmΠ̂

y
nm; ρ̂SðtÞg�

þ 1
2

P
n
Sð0Þ½2Π̂nnρ̂SðtÞΠ̂nn � fΠ̂nnΠ̂nn; ρ̂SðtÞg�;

(25)

where S(0)= limω→0S(ω)= κ/ℏβω01. If the coupling to the bath is strong,
the above perturbative approximation becomes inaccurate. Formally, the
dynamics can be solved in the path-integral formalism, but in practise the
solution becomes untractable. In the case of a bilinearly coupled Gaussian
bath, one can reorganize the path-integral representation into the form of
an SLN equation which can be solved efficiently, at least in low-
dimensional Hilbert spaces. The SLN equation for the reduced density

operator of the system can be written into the form22,23

i_
dρ̂SðtÞ
dt

¼ ½ĤS; ρ̂SðtÞ� � ξðtÞ½q̂; ρ̂SðtÞ� �
_

2
νðtÞfq̂; ρ̂SðtÞg; (26)

where ξ and ν are complex noise terms encoding the correlations between
the system and the bath. These complex noise terms have to fulfill the
correlation functions

hξðtÞξðt0Þi ¼ Re½hζ̂ðtÞζ̂ðt0Þi�;
hξðtÞνðt0Þi ¼ iΘðt � t0ÞIm½hζ̂ðtÞζ̂ðt0Þi�;
hνðtÞνðt0Þi ¼ 0;

(27)

where Θðt � t0Þ is the Heaviside step function and the bath correlation
function

hξðtÞξðt0Þi ¼
Z 1

0

dω
2π

JðωÞfcoth½_βω=2� ´ cos½ωðt � t0Þ� � i sin½ωðt � t0Þ�g:
(28)

In our calculations, we use the ohmic spectral density with a Drude cutoff
as JðωÞ ¼ κðω=ω01Þ

ð1þω2=ω2
c Þ2

; where ωc is the cutoff frequency. If the cutoff
frequency ωc is much larger than qubit frequency ω01, the SLN equation
can be written into the form of SLED as17,23,24

dρ̂SðtÞ
dt

¼ � i
_
½ĤS; ρ̂SðtÞ� þ iξðtÞ½q̂; ρ̂SðtÞ� �

κ

2_βω01
½q̂; ½q̂; ρ̂SðtÞ�� �

iκ
4
½q̂; ½p̂; ρ̂SðtÞ��;

(29)

where p̂ is the canonical conjugate of q̂. We emphasize that the above SLN
and SLED equations treat the interaction with the bath in a formally exact
manner, but with the expense that they are stochastic. Therefore, the
dynamics of the system density operator has to be solved for several
realizations of the correlated noise terms. Moreover, a time-trajectory of
the density operator given by an individual noise realization is unphysical,
but physical results can be obtained by averaging over the realizations. In
our calculations, we typically average over 105 realizations of the noise.

Analytic solution for short-time dynamics
Here, we derive an analytic expression for short-time decoherence of a
three-level transmon shown in Eqs. (5)–(7). In the early time limit, one can
neglect the intrinsic dynamics of the system (ĤS) and, as a result, one can
write the elements of the reduced density matrix in the eigenbasis of the
operator q̂ as17

ρ̂nmðtÞ ¼ expð½�ðn�mÞ2f ðtÞ þ iðn2 �m2ÞϕðtÞ�κ=4πωqÞρ̂nmð0Þ; (30)
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100
(b)

Fig. 9 Comparison of the infidelities and the state leakages. a The average infidelity of the simple and DRAG NOT gates. b Average state
leakage for the simple and DRAG NOT gates. The black dashed lines represents the curve for Ω4/α3. We have used EJ/EC= 100, βℏω01= 10, κ=
10−5ω01(solid lines) and κ= 0 (dotted lines).
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where

ρnmðtÞ ¼ hnjρ̂SðtÞjmi;

f ðtÞ ¼ 2ω01

κ

Z 1

0
dω

JðωÞ
ω2

cothð_βω=2Þ½1� cosðωtÞ�;

ϕðtÞ ¼ 2ω01

κ

Z 1

0
dω

JðωÞ
ω2

�
½ωt � sinðωtÞ�;

and the spectral density

JðωÞ ¼ κðω=ω01Þ
ð1þ ω2=ω2

cÞ2
:

For a three-level transmon system, i.e. a qutrit, the operator q̂ can be
approximated as

q̂ ¼
0 1 0

1 0
ffiffiffi
2

p

0
ffiffiffi
2

p
0

2
64

3
75; (31)

the eigenvectors of which are f q±j i ¼ ð1= ffiffiffi
6

p
; ± 1=

ffiffiffi
2

p
; 1=

ffiffiffi
3

p ÞT;
q0j i ¼ ð� ffiffiffiffiffiffiffiffi

2=3
p

; 0; 1=
ffiffiffi
3

p ÞTg. We express these eigenvectors in the
eigenbasis of the system Hamiltonian as

q0j i ¼ �
ffiffi
2
3

q
0j i þ 1ffiffi

3
p 2j i;

q±j i ¼ 1ffiffi
6

p 0j ij±
ffiffi
1
2

q
j1i þ 1ffiffi

3
p 2j i:

(32)

Thus,

0j i ¼ qþj iþjq�i�2jq0iffiffi
6

p ; 1j i ¼ qþj i�jq�iffiffi
2

p ;

2j i ¼ qþj iþjq�iþjq0iffiffi
3

p :

(33)

With these simplifications, we calculate the elements of the reduced
density matrix in the eigenbasis of the system Hamiltonian as

ρ00ðtÞ ¼ 1
6 ½2ρq0q0 ð0Þ þ ρqþqþ ð0Þ þ ρq�q� ð0Þ þ e�12f ðtÞκ=ð4πωqÞ

½ρqþq� ð0Þ þ ρqþq� ð0Þ�
�2e�3f ðtÞκ=ð4πωqÞfe3iϕðtÞκ=ð4πωqÞ

½ρqþq0 ð0Þ þ ρq�q0 ð0Þ� � 2e�3iϕðtÞκ=ð4πωqÞ

½ρq0qþ ð0Þ þ ρq0q� ð0Þ�g�;

(34)

ρ11ðtÞ ¼
1
2
½ρqþqþ ð0Þ þ ρq�q� ð0Þ � e�12f ðtÞκ=ð4πωqÞfρqþq� ð0Þ þ ρq�qþ ð0Þg�;

(35)

ρ22ðtÞ ¼ 1
3 ½1þ e�12f ðtÞκ=ð4πωqÞ½ρqþq� ð0Þ � ρq�qþ ð0Þ�
þe�3f ðtÞκ=ð4πωqÞfe3iϕðtÞκ=ð4πωqÞ ρqþq0 ð0Þ

h

þρq�q0 ð0Þ
i
þ e�3iϕðtÞκ=ð4πωqÞ½ρq0qþ ð0Þ þ ρq0q� ð0Þ�g�:

(36)

If the qutrit is initially in the state ρSð0Þ ¼ 1j i 1h j, we obtain

ρqþqþ ð0Þ ¼ ρq�q� ð0Þ ¼ 1
2 ; ρq�qþ ð0Þ ¼ ρqþq� ð0Þ ¼ � 1

2 ;

ρq0qþ ð0Þ ¼ ρqþq0 ð0Þ ¼ 0; ρq0q� ð0Þ ¼ ρq0q� ð0Þ ¼ 0;

ρq0q0 ð0Þ ¼ 0:

(37)

Using the above initial conditions, we obtain the diagonal elements [Eqs.
(5)–(7)] as

h0jρ̂SðtÞj0i ¼
1
6
½1� e�12f ðtÞκ=ð4πωqÞ�; (38)

h1jρ̂SðtÞj1i ¼
1
2
½1þ e�12f ðtÞκ=ð4πωqÞ�; (39)

and

h2jρ̂SðtÞj2i ¼
1
3
½1� e�12f ðtÞκ=ð4πωqÞ�: (40)
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