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ABSTRACT
We present a simple method for fully stabilized mid-infrared optical frequency comb generation based on single-pass femtosecond optical
parametric generation that is seeded by a continuous-wave laser. We have implemented the method in a periodically poled lithium niobate
crystal that produces a frequency comb tunable across 3325 nm–4000 nm (2380 cm−1–3030 cm−1). The method generates the mid-infrared
(idler) comb with known and stabilized Carrier-Envelope Offset (CEO) frequency without the need to directly detect it. The idler CEO is
continuously tunable for almost half of the repetition rate and can be modulated. Together with the high output power (up to 700 mW) and
low intensity noise (0.018% integrated in 10 Hz–2MHz bandwidth), this makes the demonstrated mid-infrared frequency comb promising
for many applications such as high-precision molecular spectroscopy, frequency metrology, and high harmonic generation.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0038496

I. INTRODUCTION

Since their first development about 20 years ago, Optical
Frequency Combs (OFCs) have advanced science and technol-
ogy in many different ways. By creating a phase-coherent link
between optical and radio frequencies,1 OFCs have enabled accu-
rate measurements of optical frequencies with a simple and ele-
gant implementation leading to rapid progress in the development
of new optical frequency standards.2 The establishment of OFCs
has only become possible thanks to the invention of novel tech-
niques for precise measurement and control of Carrier-Envelope
Offset (CEO) frequency—a key parameter for ensuring pulse-to-
pulse coherence in femtosecond Mode Locked Lasers (MLLs).3,4
Consequently, OFCs have found applications in a variety of different
fields5–7 including optical atomic clocks,8 optical arbitrary waveform
generators,9 precise ranging, telecommunications, and molecular
spectroscopy.10,11

Despite the fact that MLL technology opened up a new path
to high-precision molecular spectroscopy, a major challenge has
been to access the Mid-Infrared (MIR) spectral region, where a

variety of strong molecular fingerprints can be measured.10,12
Although many alternative techniques for MIR OFC generation
were proposed, including direct MIR OFC generation by quantum
cascade lasers,13 in general it requires nonlinear frequency conver-
sion processes to be involved. The two most common methods for
MIR OFC generation based on nonlinear conversion are Difference
Frequency Generation (DFG) and Synchronously Pumped Optical
Parametric Oscillation (SPOPO). In most cases, DFG requires either
two fully stabilized Near-Infrared (NIR) OFCs for the input14 or one
NIR OFC and its extended version via supercontinuum (SC) gen-
eration.15–19 While the second option of DFG allows one to use a
single NIR comb for the pump and signal, this implementation leads
to cancellation of CEO (it is always 0 for the MIR comb), and thus,
the CEO cannot be changed easily. On the other hand, one of the
DFG methods involves mixing of a CW pump laser with an NIR
OFC, in which case the CEO can be precisely controlled by varying
the pump laser frequency.20,21 The drawbacks of this approach are
lowMIR output power and a rather complicated experimental setup.
SPOPO does not make the CEO tuning easier, since for a singly res-
onant SPOPO, one needs to precisely control the pump CEO and
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the cavity length at the same time to tune the MIR comb CEO, and
determination of the exact CEO frequency requires an additional
measurement setup.12,22,23 In doubly resonant degenerate SPOPO,24
the CEO tuning can be performed just by tuning the CEO of the
pump laser, but this scheme implies the random choice between
two possible CEO values for the MIR comb,23,25–27 complicating
its CEO determination. In addition, SPOPOs generally require pre-
cise cavity locking28 and careful engineering of the group delay
dispersion.25

In the present work, we demonstrate a simple approach for the
generation of fully stabilized MIR OFCs with CEO tuning and mod-
ulation. The approach is based on single-pass femtosecond Optical
Parametric Generation (OPG) seeded by a continuous-wave (CW)
laser, and it can be applied to any OPG. Importantly, OPG on its
own does not directly lead to the generation of stable OFCs for the
signal and idler, since the process starts from noise, and thus, the
CEO is random for two subsequent signal and idler pulses. In order
to fully stabilize the output MIR comb, we use a CW laser phase-
locked to the pump laser to seed the signal comb. Several important
advantages arise here compared to DFG and SPOPO. First, the idler
CEO is defined by the radio-frequency (RF) local oscillator (LO)
used for phase-locking of the seed laser, which means that there is
no need to measure the CEO, since it is always known. Second, the
CEO of the MIR comb is continuously tunable by simply changing
the RF LO frequency. It makes the system highly versatile com-
bined with easily tunable repetition rate thanks to the cavity free
design. Third, the idler CEO can also be modulated at relatively high
frequencies precisely maintaining its CEO central frequency. More-
over, the method is inherently free of any optical self-referencing
techniques like f-2f4,5 and 2f-3f29 interferometry meaning that the
CEO of the pump MLL can be left free running. We believe that
the presented simple method for the generation of fully stabilized
MIR OFCs has major advantages compared to the existing methods,
especially in applications that require precise control of the CEO
and repetition rate, such as cavity enhanced spectroscopy,30 dual-
comb spectroscopy,31–33 comb-assisted spectroscopy,34,35 and high
harmonic generation.36,37 Additionally, the setup demonstrated here
can be used as a pump source for another OPG, DFG, or SPOPO,38
since it has a large wavelength tuning range and high output power.
The high output power is also vital for certain spectroscopicmethods
including OFC photoacoustic spectroscopy39,40 and background-
free absorption spectroscopy.41 In this article, we demonstrate the
proof of concept implementation of the method, including rigorous
characterization of the system.

II. PRINCIPLE
Usually, in OPG, high-energy pulses are used to pump a nonlin-

ear crystal, which in the non-degenerate case leads to the generation
of signal and idler pulses. The generation of the new pulses is gov-
erned by the quantum noise amplification. This makes the process
inefficient and leads to loss of pulse-to-pulse coherence of the pro-
duced signal and idler pulse trains. The situation changes if the OPG
is seeded by an additional light source in the signal or idler spectral
region, which is similar to Optical Parametric Amplifiers (OPAs).
First, the seeding may lead to a significant reduction of the OPG
threshold.42 Second, it improves the pulse-to-pulse coherence pro-
vided that the seeding source is coherent.19 Third, it reduces the

relative intensity noise (RIN) of the system,43 which is vital for many
spectroscopy applications. In addition, it was demonstrated that two
OPG setups seeded by the same CW seed laser produce mutually
coherent output NIR combs (signal), which is useful for dual-comb
spectroscopy.44 Despite all the benefits, to the best of our knowledge,
the possibility of using CW-seeded OPG to produce a fully stabilized
MIR OFC source has not been demonstrated before.

Numerous OPG and OPA experiments have been reported
using different nonlinear materials including BBO,45 PPKTP,46
GaAs,47 and LiTaO3.48 Of particular interest is the OPG in MgO
doped periodically poled lithium niobate (MgO:PPLN) because
this crystal has a high nonlinear coefficient, high damage thresh-
old, and large transparency range that extends to the 3 μm CH-
stretching vibrational region, which is useful for molecular spec-
troscopy. Importantly, when the pump source has a pulse duration
in the range of hundreds of femtoseconds or less, the interaction
length may become an issue. Due to the differences in group veloci-
ties between the pump, signal, and idler pulses, the interaction length
can be so short that the OPG threshold is never reached without the
risk of damaging the crystal. This is a general problem for all non-
linear crystals pumped by ultrashort pulses, but, fortunately, several
research groups demonstrated that MgO:PPLN supports a special
case of OPG where the interaction length can be as long as 50mm
leading to conversion efficiencies over 50% with low threshold.49,50
A distinctive feature of this particular case is the convenient pump
wavelength of 1030 nm–1064 nm that coincides with the mature
technology of high power Nd:YAG solid state and Yb-doped fiber
MLLs. When launched into the MgO:PPLN in the given spectral
range, the high-energy pump generates the signal and idler pulses,
whose group velocities have opposite signs and equal absolute values
leading to a so-called pulse trapping effect.51

In general, each optical frequency component νn of a frequency
comb can be represented as a combination of two radio frequencies
using the following formula:5

νn = f CEO + n f r,
where f r is the repetition rate, f CEO is the CEO frequency, and n is
the mode number of the given optical frequency components (comb
tooth). We will use CEO instead of f CEO further in the text. As usual,
f r is directly detectable using a fast photodiode and, thus, easy to sta-
bilize. On the other hand, CEO cannot be directly detected without
an additional measurements setup, such as an f-2f interferometer.4
Luckily, in OPG, there is a way to determine, stabilize, and freely
tune the idler CEO without directly detecting it.

Considering the principle of conservation of energy, the CEO
equation for the OPG process can be written as follows:

CEOp = CEOs + CEOi, (1)

whereCEOp,CEOs, andCEOi are the offset frequencies of the pump,
signal, and idler combs, respectively. In regular OPG without seed-
ing, even if the CEOp is stabilized, CEOs and CEOi are random. On
the contrary, if one seeds the signal comb with a coherent source, the
CEOs follows the seed source, which consequently leads to a change
in CEOi to satisfy Eq. (1). We can use this feature in our favor to
stabilize the CEOi. Let us first assume that CEOs = CEOp; according
to Eq. (1), it leads to CEOi = 0, which is the case of DFG mentioned
above.15,16 Here, it does not matter whether the CEOp is stabilized
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or not because the CEOi will always remain zero, thanks to Eq. (1).
Next, let us set the CEOs in a different way,

CEOs = CEOp − Δ f (2)

or
CEOs = CEOp + Δ f , (3)

where ∆f is a frequency offset; in this case, we have two states, CEOi
= ∆f or CEOi = −∆f , respectively, for Eqs. (2) and (3), which are
easy to distinguish in our setup. Hence, if one can precisely set∆f , it
means that CEOi is known and freely tunable.

In practice, the above-mentionedCEOi stabilization can be per-
formed in the four steps schematically shown in Fig. 1. First, the
output beam of the pump MLL is split into two arms. Note that in
order to produce fully stabilized MIR comb, repetition rate of the

FIG. 1. Schematic of the CW seeded OPG for stabilized MIR OFC generation. (a) Pump optical spectrum. (b) SC optical spectrum combined with CW seed laser. (c) CW
seed laser (black line) locked to SC (blue lines) in the state corresponding to Eq. (2): CEOs = CEOp −∆f LO. (d) Generated signal and idler spectra using CW seeded OPG
(above) and the schematic of the corresponding laser modes (below).
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pumpMLL should be stabilized (CEOp can be left free running). Sec-
ond, the first arm is used to generate SC that reaches the CW seed
laser wavelength (see “supplementary material note 1: Supercontin-
uum generation” for details). Third, the CW seed laser frequency
is phase-locked to the generated SC. When phase-locking is per-
formed, the frequency offset∆f is defined by an RF LO, which is why
we denote ∆f = ∆f LO; see “supplementary material note 2: Phase-
locking” for more information. Since ∆f LO can be easily changed,
the CEOi is continuously tunable. On the last step, the second arm
of the pumpMLL and the phase-locked CW seed laser are combined
in a nonlinear crystal and used to generate the signal and idler combs
via seeded OPG.

By phase-locking the CW seed laser to the SC produced from
the pump MLL, we transfer all the changes and fluctuations of the
CEOp to CEOs, which according to Eq. (1) makes the CEOi sta-
ble. Note that in Fig. 1, we only consider the case of Eq. (2) that
corresponds to CEOi = ∆f LO. The states in Eqs. (2) and (3) can
be distinguished in the phase-locking process by simply monitor-
ing the behavior of the RF beat note between the CW seed laser
and the SC. The state of Eq. (2) is realized when prior to locking
the RF beat note frequency decreases while increasing the optical
CW laser frequency (decreasing wavelength); if the opposite is true,
then the state corresponding to Eq. (3) is realized. All the optical
spectra in Figs. 1(a), 1(b), and 1(d) are examples of real measured
spectra. The spectra are shown in a linear scale with arbitrary units
except for the SC spectrum in Fig. 1(b), which is shown in the deci-
bel logarithmic scale for clarity (see “supplementary material note
1: Supercontinuum generation” for details). We will call the wave-
lengths used in Fig. 1 (1530 nm signal and 3400 nm idler) “reference
point” throughout the text.

III. EXPERIMENTAL SETUP
A simplified schematic of our experimental setup is depicted in

Fig. 2. Note that only essential components are shown in Fig. 2, and
components with secondary importance such as half-wave plates,
alignment mirrors, and polarizing beam splitters are omitted for
simplicity. In our experimental setup, we use a commercial Yb-
doped fiber MLL (MenloSystems GmbH, Orange comb FC1000-
250) as the pump source. It has 100 fs pulse duration Full-Width at
Half-Maximum (FWHM), 250MHz repetition rate locked to an RF
source, and 10.5W maximum output average power. The CEOp is
free running and the comb tooth linewidth (FWHM) is <200 kHz,
measured at the 100ms timescale. For the SC generation, we use
an 80 cm PCF with two zero dispersion wavelengths (NKT Pho-
tonics, NL-PM-750). In order to generate the SC with the opti-
cal bandwidth shown in Fig. 1(b), our PCF required 200 mW of
average pump power with a coupling efficiency of 50% (so only
100mW reaches the PCF). The SC is optically filtered using a diffrac-
tion grating at 1530 nm with a bandwidth of 5 nm (FWHM) and
combined with the CW seed laser (also set to 1530 nm) for phase-
locking. See “supplementary material note 1: Supercontinuum
generation” for more information. The CW seed laser is a commer-
cial ECDL (Toptica Photonics, CTL 1550) that is locked to the SC
using a PID controller (Toptica Photonics, mFALC 110) with a servo
bandwidth of about 200 kHz and an RF LO (Rohde and Schwarz,
SME03). In addition, all the electronic instruments used in the
experiments are referenced to a 10MHz GPS-disciplined frequency

FIG. 2. Simplified experimental setup of the CW seeded OPG. The pump MLL is
split into two arms: one is used to produce SC in a PCF and another is used to
pump the OPG in MgO:PPLN. The output of the ECDL is split into two arms for
seeding and phase-locking. The SC is optically filtered using DG and combined
with the CW seed laser to produce an RF beat note on the PD for phase-locking.
Phase-locking is performed using PID and RF LO. BS: beam splitter, FC: fiber col-
limator, DG: diffraction grating, DM: dichroic mirror, L: lens, PD: photodiode, PID:
Proportional–Integral–Derivative controller, ECDL: External Cavity Diode Laser,
PCF: Photonic Crystal Fiber.

reference (MenloSystems GmbH, GPS-8), which is not shown
in Fig. 2.

The MLL is used to pump a 50mm long 5% MgO doped
PPLN fanout crystal (HC Photonics) with quasi-phase-matching
(QPM) periods of 26.5 μm–32.5 μm. All the interacting waves have
extraordinary polarizations within the crystal. We use a focusing
parameter of ξ = 2.17 close to the optimum 2.84 according to
Boyd–Kleinman theory,52 which resulted in 84 μm waist diameter
inside the MgO:PPLN crystal. The crystal is placed in an oven with
the temperature set to 75 ○C to reduce the possibility of photorefrac-
tive damage. The operating wavelengths can be continuously tuned
by translating the crystal in the laser beam path so that different
QPM periods of the fanout structure are used. The seed CW laser
beam is delivered to the OPG crystal via an optical fiber, followed by
a fiber collimator for free space transfer through a dichroic mirror
to the crystal. The seed laser waist size and position in the crystal are
matched with those of the generated signal.

IV. RESULTS
A. Operating wavelengths, thresholds, and output
powers

Figure 3(a) shows the average pump powers required to reach
theOPG threshold for different operating wavelengths without seed-
ing (red) and with 5 mW of CW seed power (blue). Due to the
limited tuning range of our seed laser (1510 nm–1630 nm), we could
not seed the OPG for signal wavelengths shorter than 1510 nm. At
the reference point, the OPG requires 3.5W of average pump power
or 2.37 GW/cm2 peak intensity to reach the threshold without CW
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FIG. 3. OPG power measurements. (a) Input average pump power vs operating wavelengths for non-seeded OPG (red squares) and 5 mW CW seeded OPG (blue circles).
Note that the threshold increases at short and long operating wavelengths because of the differences in group velocities between the pump, signal, and idler pulses. (b)
Total converted power (signal + idler) for non-seeded OPG (red squares) and 5 mW CW seeded OPG (blue circles) at different average pump powers. (c) and (d) Total
converted power (signal + idler, CW seed power excluded) at low and high CW seed powers, respectively, when the average pump power is fixed at 2.7 W (below the
non-seeded OPG threshold).

seeding, and 2.5W (1.69 GW/cm2) with 5 mW CW seed power,
which is about 30% threshold reduction. Corresponding threshold
curves for the reference point can be seen in Fig. 3(b). Using 5.4
W (3.66 GW/cm2) of pump power and 5 mW of seed power at the
reference point, the average idler power can be as high as 700 mW
(1.5W of average signal power) with an optical bandwidth of more
than 100 nm (FWHM). The resulting signal and idler optical band-
widths [∼10 nm and 100 nm, respectively, see Fig. 1(d)] coincide
with calculated values of phase matching bandwidths at the given
poling period considering our broadband pump source. The damage
threshold of our crystal was experimentally determined to be 6.8W
(4.61 GW/cm2), above which the gray tracking effect is observed.

The effect of CW seed power on the total converted OPG power
(signal + idler) is demonstrated in Figs. 3(c) and 3(d). In these
measurements, the input average pump power was fixed at 2.7W,
which is below the threshold of non-seeded OPG. As can be seen in
Fig. 3(c), the OPG threshold is still reached even at 100 μW of CW
seed power. In addition, one can significantly increase the OPG out-
put power by simply using higher CW seed power [see Fig. 3(d)].
Nevertheless, for the measurements described further in the text,
we used 5 mW of CW seed power, which is attainable with most
semiconductor lasers at the telecom wavelengths.

B. Idler CEO stability and tuning
Let us start the discussion of CEOi stability from the CW

seed laser phase-locking. Using the reference point, we first locked

the seed laser to the state governed by Eq. (3) where ∆f = ∆f LO
= 25MHz. Figure 4(a) shows the corresponding RF beat note
between the seed laser and the SC when phase-locking is estab-
lished. Next, we verified the phase-locking quality by measuring the
double-sideband phase-noise of the beat note shown in Fig. 4(a)
using the phase-detector method.53 The integrated phase noise
(100 Hz–2MHz bandwidth) is as low as 16.5 mrad, meaning that the
CW seed laser is tightly locked to the SC. In addition, we performed
frequency counting of the same RF beat note. The result can be seen
in Fig. 4(c) that shows the standard deviation of 34 mHz confirming
high quality of phase-locking. The noise in the frequency counting
experiment averages out as white noise, which is evident from the
Allan deviation plot shown in Fig. 4(d). It is worth emphasizing that
if one wants to make sure that the CEOi is stabilized, the data shown
in Figs. 4(a)–4(d) can be used as a reference. In order to prove this
statement, we measured the CEOi and verified its stability, which we
discuss next.

The most straightforward way to determine the CEO and mea-
sure its stability is f-2f interferometry. This would require an octave
spanning SC spectrum generated directly in MIR, which is a chal-
lenging task. Instead, we emulated the f-2f interferometry method
by comparing the idler OFC to another OFC with a known and
stabilized CEOref, which we will refer to as a reference comb. The
reference comb is a commercial Er-doped fiberMLL (MenloSystems
GmbH, Blue comb FC1500-250-WG) that has an inbuilt SC out-
put spanning across 1050 nm–2100 nm, with the CEOref stabilized
to 20MHz. The reference comb does not directly overlap with the
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FIG. 4. CEOi stability measurements and tuning. (a) RF beat note of the CW seed laser locked to the SC. (b) Double-sideband phase-noise (PSD) of the RF beat note [shown
in (a)] when the seed laser is locked to the SC. (c) and (d) Frequency counting of the beat note shown in (a) and its Allan deviation, respectively. (e) RF beat note between
the reference comb and the idler SH. (f) and (g) Frequency counting of the RF beat note shown in (e) and its Allan deviation, respectively. (h) CEOi tuning demonstration;
note that the CEOi is continuously tunable for almost 125 MHz, which is half of the idler repetition rate.
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idler comb; hence, we had to frequency double the idler comb using
another MgO:PPLN crystal to produce an additional comb centered
at 1700 nm. When the frequency is doubled, the CEO of the idler
also doubles, meaning that the idler second harmonic (SH) offset
frequency (CEOiSH) is equal to twice the CEOi. We combined the
idler SH with the reference comb and set the repetition rates of both
combs to 250MHz. Using a simple delay line to overlap the optical
pulses in time, we measured a single beat note with the following
value:

f beat = CEOref − CEOiSH = 20 MHz − (−2∗25 MHz) = 70 MHz.

One can see a stable beat note with the expected value of 70MHz
in Fig. 4(e). It proves that the phase-locked CW seed laser trans-
fers the instabilities of the free running CEOp to the signal comb
(CEOs = CEOp + ∆f LO), thus making the CEOi stabilized accord-
ing to Eq. (1). We used the same beat note for a frequency counting
experiment that demonstrates the long term stability of CEOi [see
Fig. 4(f)]. The noise in Fig. 4(f) is limited by the mutual instability
(timing jitter) between the pump comb (hence the idler comb and
its SH) and the reference comb. The pump and reference combs are
locked to two different RF signal generators that are both referenced
to the same 10MHz GPS-disciplined crystal oscillator. The specified
relative instability of the reference oscillator is 5 × 10−12 in 1 s.

In order to demonstrate the CEOi tuning, we swept the RF LO
frequency from 10.5MHz to 120MHz with a step of 0.5MHz and
continuouslymeasured the beat note frequency using an inbuilt peak
finding function of the RF spectrum analyzer. The result can be seen
in Fig. 4(h). As evident from the figure, the idler CEO is continu-
ously tunable for almost half of the idler repetition rate without any
interruptions. For RF LO frequencies close to 125MHz, the phase-
locking becomes unstable because the adjacent RF beat note from the
next nearest comb tooth starts to overlap with the beat note under
consideration. Nevertheless, when the 125MHz point has passed,
the CEOi can be further tuned without interruptions.

C. Idler CEO modulation
Next, we modulated the RF LO frequency ∆f LO with a maxi-

mum modulation frequency of 20 kHz available in our RF LO. In

addition, we chose the largest modulation amplitude of ±2MHz
that allowed for stable phase-locking without changing any lock-
ing parameters of the PID controller used in the previous experi-
ments. The corresponding RF beat notes with modulation off and
on are depicted in Figs. 5(a) and 5(b) for comparison, respectively.
When the modulation is on, the shape of the RF beat note is mod-
ified to the typical modulated pattern with two peaks located at
the extremes of the modulation. Note that here we consider the
idler SH; thus, the modulation amplitude is doubled and results in
±4MHz [see Fig. 5(b)]. When modulated, the central frequency of
the RF beat note is precisely maintained, which would not be possi-
ble without tight phase-locking. The CEOi modulation experiment
is a good demonstration of the system’s versatility. In practice, this
can be used in experiments where a dynamic control of the CEO is
required. For instance, one could lock the comb to an external cavity
for cavity-enhanced spectroscopy, in which case both the repetition
rate and CEO often need to be precisely controlled.54 Importantly,
in our method, these two parameters are independently adjustable,
which is not necessarily the case with MLLs.

D. Idler linewidth and intensity noise
With regard to spectroscopy applications, there are two addi-

tional parameters of great importance—the comb tooth linewidth
and the RIN. First, we estimated the comb tooth linewidth by
another RF beat note measurement using an MIR CW HeNe laser
(Research Electro-Optics, Model 30545) at 3390 nm.We do not have
the exact information about the HeNe laser linewidth; thus, this
measurement only sets an upper limit for the comb tooth linewidth.
The result can be seen in Fig. 6(a) that shows an RF beat note with a
177 kHz FWHM [note the linear scale in Fig. 6(a)]. This is a narrow
linewidth considering the fact that our pump MLL repetition rate
is locked to an RF source, not to an ultra-stable CW-laser. The SC
generation and stabilization paths as well as the linewidth measure-
ment setup consist of mostly single mode fibers with an estimated
total fiber length of 40m. However, the additional noise added by a
fiber with this length should broaden the comb tooth linewidth by
less than 1 kHz.55 Thus, this effect is not noticeable under our exper-
imental conditions. We would also like to emphasize that all the RF

FIG. 5. Idler CEO modulation experiment. (a) and (b) RF beat note between the reference comb and the idler SH without and with modulation, respectively.
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FIG. 6. Idler linewidth and RIN. (a) RF beat note between MIR HeNe laser and idler comb (red) (note the linear scale) and a Gaussian fit to the curve with servo sidebands
excluded (black). (b) RIN of the idler comb in the saturated regime (blue) and non-saturated regime (red).

beat notes shown in Figs. 4(e), 5(a), and 6(a) are detectable only if the
OPG is seeded by the CW source. Without CW seeding, the CEOi is
random and no RF beat note can be detected. See “supplementary
material note 3: Pulse-to-pulse coherence” for more information.

The RIN measurements were performed using the reference
point with two different input powers that correspond to saturated
and non-saturated OPG regimes [Fig. 6(b)]. At saturation, we used
an input pump power of 4.2W that resulted in 450 mW of aver-
age output idler power. For the non-saturated regime, we used
3.2W of average pump power that produced 170 mW of average
idler power. The integrated RIN at the saturation is lower than
that for the non-saturated regime; we determined it to be 0.018%
and 0.053% (integrated from 10Hz to 2MHz) for saturated and
non-saturated regimes, respectively. The result is in agreement with
the theoretical predictions as well as experimental observations by
another research group.56

V. CONCLUSIONS
We have demonstrated a simple method that allows for the

generation of stabilized MIR OFCs using femtosecond OPG with
CW seeding. The CW seed laser plays a key role in the method,
since it establishes the idler CEO stability. Moreover, the CW seed
laser makes the system highly versatile allowing one to dynamically
tune and modulate the idler CEO directly in the OPG process. Our
setup does not have any cavities, which means that the repetition
rate can also be freely tuned. We performed all the measurements
required to prove the idler CEO stability; hence, the usually chal-
lenging step of CEO determination can be omitted. An additional
benefit of the scheme is its inherent insensitivity to relative timing
jitter between the pump and seed, since the seed source is not pulsed.
This is in contrast with DFG that relies on downshifted Raman soli-
tons and requires a careful control of the temporal overlap between
pump and signal pulses for intensity noise minimization.57 Along
with the already mentioned DFG and SPOPO methods, there are
some examples of MIR OFCs that have been produced by spectral
broadening in Si3N4

58,59 and LiNbO3
60 waveguides. These systems

show a great promise in the miniaturization of the MIR combs, but
unfortunately the output powers are quite limited in theMIR region.

However, combining our method with nonlinear waveguide tech-
nologies could open up a new path to efficient and integrated MIR
combs with dynamic CEO control.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the supercon-
tinuum generation, phase-locking procedure, and pulse-to-pulse
coherence of the described CW-seeded OPG light source.
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