Peltonen, A.; Etula, J.; Seitsonen, J.; Engelhardt, P.; Laurila, T.

Three-Dimensional Fine Structure of Nanometer-Scale Nafion Thin Films

Published in:
ACS Applied Polymer Materials

DOI:
10.1021/acsapm.0c01318

Published: 12/02/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Three-Dimensional Fine Structure of Nanometer-Scale Naﬁon Thin Films

A. Peltonen,* J. Etula, J. Seitsonen, P. Engelhardt, and T. Laurila

ABSTRACT: Naﬁon is a widely used polymer membrane in various applications ranging from advanced energy solutions to sensing of biomolecules. Despite the intensive research carried out over the years to reveal and understand the fine structure of Naﬁon, its structural features, especially as nanometer-scale ﬁlms, are not unambiguously known. In this paper, we use room temperature scanning transmission electron microscopy (STEM) tomography complemented by glancing incidence small-angle X-ray scattering (GISAXS) and TEM at low temperatures to reveal the ﬁne structure of thin (10−100 nm) unannealed Naﬁon ﬁlms. The results from the detailed three-dimensional reconstructions obtained show that (i) the phase fractions of the hydrophobic and hydrophilic parts of the polymer are somewhat thickness-dependent, changing from 0.65/0.35 to about 0.7/0.3 when moving from 100 to 10 nm thick ﬁlms; (ii) the channel diameters show a range of values from 3 to 6 nm in all the ﬁlms independent of their thickness; (iii) the average distances between the hydrophilic channels inside the ﬁlm have distributions centered around 12 nm (in 10 nm ﬁlms), 15 nm (in 30 nm ﬁlms), and 7 nm (in 100 nm ﬁlms); (iv) in the thickest ﬁlms, the hydrophilic channels exhibit higher interconnectivity and some of the channels appear to end within the Naﬁon ﬁlm instead of going through the ﬁlms; and (v) there are some conﬁnement eﬀects caused by the hydrophilic SiO2 surface in the case of 10 and 30 nm thick ﬁlms shown by the tendency of the hydrophilic channels to move horizontally near the substrate. Furthermore, a stable room temperature STEM tomography imaging method for Naﬁon ﬁlms and a sample preparation method that preserves the characteristics of the hydrated morphology of Naﬁon in the dry state are demonstrated. These results provide a deeper understanding of the ﬁne structure of Naﬁon thin ﬁlms and provide a better means to characterize and understand their properties in diﬀerent applications.

KEYWORDS: Naﬁon, thin ﬁlms, STEM, tomography, 3D structure, reconstruction

INTRODUCTION

The detailed morphology of Naﬁon (perﬂuorosulphonic acid polymer) is of great interest to understand its characteristic ionic conducting properties when used as thin-ﬁlm membranes. The detailed structural knowledge of the ﬁlm would be an extremely useful tool for predicting the performance and designing new applications based on these materials. The composition of Naﬁon consists of a hydrophobic semicrystalline Teflon-like backbone with sidechains terminating in hydrophilic sultonic (−SO3H) groups that give rise to ion-transport properties of the material. The Teflon backbone gives Naﬁon exceptional mechanical stability, low gas permeability, and great chemical and thermal stability, resulting in a melting point of around 270 °C. When adequately hydrated, Naﬁon membranes are highly conductive for cations, which are thought to be transported along the hydrophilic and negatively charged channels composed of sultonic groups. The ionic conduction of Naﬁon is heavily dependent on the amount of absorbed water,7−5 nanostructure of the material,
and especially on the connectivity of the ion channels. Because of its ionic properties, Nafton has been used in fuel cells,1–3,5–12 polymer electrolytes,13 bio sensors,14 Donnan dialysis cells,14 acidic catalyst synthetics,4,15 modification of electrode surfaces,3 electrochemical sensors,1 and drug release.16

Although Nafton has been used and studied extensively over the decades, its structure–property relationships, especially when utilized as nanometer-scale thin films, are still not unambiguously known. A variety of study methods have included swelling measurements,6,17,18 small-angle x-ray scattering (SAXS),7,12,15,19–22 grazing-incidence small-angle X-ray scattering (GISAXS),23,24 atomic force microscopy,25–29 electrostatic force microscopy,30 impedance spectroscopy, contact angle measurements, transmission electron microscopy (TEM),31–37 cryo-electron microscopy (cryo-EM), diffraction, energy-dispersive X-ray spectroscopy, neutron scattering,38–41 neutron reflectometry,42 infrared spectroscopy,33,44 and ionic diffusion.46 To summarize the extensive literature on Nafton, these numerous studies have produced a variety of simulation results,14 reconstructions, and models,47–52 which often comprise round and/or cylindrical shapes, that have been used to predict the film transport coefficient,53 proton transport44,55 and structure. However, there exists no consensus as to which of the several models best describes clustering in Nafton or whether the assumed channels in Nafton are connected and precisely in which way. Thus, there is a clear need for direct observations about the structure of Nafton to resolve at least some of the controversies in the literature.

The difficulty of obtaining direct images of insulating and beam-sensitive materials like Nafton stems from typical imaging methods involving high-energy beams of charged particles, primarily electrons used in electron microscopy. The charging and polymer microstructure deforming beam damage of Nafton in TEM makes high-resolution imaging an excruciating experience, as discussed by Rieberer,31 Porat,33 Yakovlev,1 and Allen.36 Methods to overcome beam damage by cooling, using lower doses, lower exposure time, under focus, carbon coating layer, and thinner samples, have been used, but little is reported of successful stabilization of sensitive ionomers. Thus far, all the methods involving two-dimensional (2D) imaging have been limited to low magnifications, and results discussed are prone to interpretations. In some TEM studies, it has been possible to see some 3–5 nm circular clusters, and RuO4-positive staining has revealed a typical two-phase copolymer structure,32–35 yet these results have not been conclusive. Another problem involving popular TEM methods is the capturing of an image of the material from one direction only and trusting that the representation of the material in that projection and the following interpretations of the underlying structure are valid. The reality in such an arrangement is that TEM images from three-dimensional (3D) objects produce superimposed 2D orthogonal projections. This limits the usability of 2D images and imposes uncertainty for any interpretations of the 3D reality.

Based on the literature information, most of the investigations of Nafton have been carried out using micrometer range films that are far too thick to be used in many biosensing applications. For example, in the case of glutamate detection, which is an important neurotransmitter in the mammalian brain, temporal resolution must be in the range of 10 ms or less.48 Thus, in these cases, the filtering membrane must be less than 1 μm thick (and if possible, sub-100 nm in thickness), as otherwise it would impose serious mass transfer delays that would drastically compromise the reliable operation of the biosensor.

The most conclusive electron microscopy study of thin-film Nafton structure so far by Allen16 et al. revealed the random morphology of sub-micrometer hydrated films through cryo-electron tomography and 3D reconstruction. Unfortunately, in Allen’s study, only one thickness of the Nafton film (100 nm) was investigated, and no attempts to study very thin (tens of nm) films were made. Moreover, no systematic slicing of the 3D constructions was done, and therefore, the detailed structural information remains elusive. Thus, the main objectives of the present research are to (i) assess the 3D fine structure of the Nafton membranes directly in the sub-100 nm thickness region and consequently to (ii) find out if the morphology of the membranes would drastically change as we approach very thin (10 nm) films by using a STEM technique, and (iii) find a stable room temperature STEM imaging method for Nafton. This information, to the best of our knowledge, is missing in the current literature.

RESULTS AND DISCUSSION

GISAXS profiles were obtained first to relate the electron microscopy and tomography results to common scattering models available in the literature. GISAXS patterns obtained from Nafton films hydrated by water droplets, as shown in Figures S1a and S2–S8, show typical scattering peaks between q = 1.5 and 2.0 nm⁻¹ corresponding to Nafton ionomer domains, as commonly reported in the literature.57,58

Compared to dry films, swelling due to water intake shifts the peaks to lower q-values and increases the intensity, that is, the scattering contrast between sulfonated domains and the fluorinated backbone. Moisture intake due to water droplets introduced to the sides of the beam footprint increased the film thicknesses of the hydrated films by about 10–15% in comparison to the dry ones as measured by in situ X-ray reflectivity (XRR) (Figure S1b and Table S1).

TEM investigations at low temperature were pursued next in order to obtain further understanding of the film morphologies. It is to be noted here that in contrast to the GISAXS results, Nafton structures shown in Figures S9 and S10 are assumed to be dry because the water will be evaporated in the TEM vacuum chamber to a large degree. Clustering was also observed in this dry polymer state. Based on the top-view TEM micrographs (Figures S9 and S10), it is very difficult to evaluate the volume fractions of the hydrophobic and hydrophilic parts, as the visual information from the whole structure is overlaid, strongly biasing the estimation process (see below and the Supplementary Information).

The single tilt TEM images of the intact Nafton film indicated a uniform fine structure compatible with a view where channels are permeating the film. When imaged perpendicular to the plane, most of the channels appeared as spheres, indicating directionality, although some channels were observed along the plane as well. To further characterize the fine structure of the Nafton film, a cross-sectional sample was produced using an ultramicrotome. In the cross-sectioned sample, most channels appeared elongated as could be expected by assuming that the channels have a preferred direction perpendicular to the film surface. Measurement of channels yielded an average approximate channel diameter of 3.2 ± 0.5 nm. While the minimum diameter measured was 2.5
nm and maximum 6.0 nm, the number of such observed outliers was very low. It is to be noted that the measurement of the channel dimensions from individual images is at best an approximation due to the random undulation of the channels and the high thickness of the film relative to the diameter of the channels. Additionally, the cross-sectioned film sample may suffer from compression and shearing artifacts introduced by the ultramicrotomy, which could skew the data. Finally, depending on the focusing conditions, the contrast of hydrophilic/hydrophobic parts is different, making any quantitative assessment of the structure practically impossible (see Table S2 for more details).

As the information gained from GISAXS and TEM at low temperature did not give us reliable structural information, STEM tomography investigations were carried out to achieve a view of Nafton morphology in high detail. It is assumed here that the STEM image tilt series were acquired from dry Nafton membranes because of the fact that they were imaged under vacuum in an electron microscope chamber. However, as the negative staining with uranyl formate (UF) \([\text{UO}_2(\text{CHO}_2)_2\cdot\text{H}_2\text{O}]\) was very well absorbed into the channels and was permeated evenly throughout the film independent of film thickness (10–100 nm), one may expect that the hydrated state of the Nafton film is at least partly retained also under the present imaging conditions. As the rodlike uranyl ion \([\text{UO}_2^{2+}]\) has such a small size (length \(\sim\)500 pm) in comparison to that of the expected size of the hydrophilic channel as well as a high positive charge, it can be expected to form a thin layer with high affinity to sulphonyl-covered walls of the Nafton channels. The fact that reconstructions show complete filling of channels, and not just on the walls, suggests that this simple picture may be somewhat incomplete. In fact, UF has been shown by computer simulations and experiments to form uranyl-formate-uranyl polymeric chains in solutions. This means that more UF than is needed to cover the channel walls will be pulled and bonded into the channels as chains, thus filling them close to the maximum. In dissolved uranyl, five equatorial water ligands bind to a uranyl ion. The question is, then, whether the vacuum in the electron microscope chamber (1.5 e\(^{-5}\) Pa) is sufficient to detach all or some of these water molecules, or do they at least partly remain inside the Nafton channels bonded to uranyl. Furthermore, we cannot completely exclude the influence of capillary forces contributing to filling of channels either. Thus, we anticipate that the Nafton channels contain plenty of uranyl and accompanied formate mixture, with possibly some water molecules still present. The coarse alignment used was enough to reveal negatively stained channels in a manner appropriate for the purpose, and no further alignment was needed. Because of the high UF concentration, the hydrophilic channels showed higher density over the backbone material. In the control samples without UF, the channels were not visible, confirming that UF is the only source of clear contrast in the channels of UF-stained samples. On the other hand, the fiducial Au markers used in STEM imaging showed higher density than UF-saturated channels because of being pure solid gold, thus producing a well-defined contrast. The density histogram of the reconstructions is represented in a standard way by showing decreasing density from red (fiducial markers) to blue (channels). The thin Teflon-like backbone material is filtered invisible by cut off at lowest densities, thus leaving only the stained channels visible. The fact that UF is not swelling or mixing with the bulk, fiducial markers show such nice round shapes and that Nafton exhibits high phase contrast in final reconstructions shows that no observable irradiation damage occurs while the tilt series is collected. In all samples, there was an overall tendency for cationic fiducial markers to seek an available channel in vicinity, and then stay there and block it. Fiducial markers were found forming either larger clusters or single markers that were always found on top of a channel as expected. As discussed, the cationic Au particles are themselves hydrophilic and are carrying water within the ligand layer.
attached to their surface. Thus, the Au particles were attracted toward the hydrophilic channels by a combined electrostatic and hydrophilic interactions. It is interesting to note that the 5 nm sized Au markers were just barely too large to be absorbed inside the channels.

The STEM tomography results (Figures 1 and 2) for the overall film structures are rather consistent among all the prepared thicknesses (10, 30, and 100 nm) and can all be described as “bulk-like,” as reported by Allen. The detailed channel shapes, distances, and distribution are, however, dependent on the film thickness. As revealed by the large number of slices taken through the 3D STEM reconstructions (see the Supplementary Information and images in Zenodo for details), there is a significant variation in the channel diameters throughout the films. Based on averaging over multiple measurements, the hydrophilic channels measure approximately 3–6 nm in diameter in all the films and tend to form an undulating and anisotropic interconnected mesh. The values determined from these direct observations are
consistent with those obtained from the more indirect GISAXS and TEM at low temperature methods (see above).

Figure 2b,d,f shows a more detailed view of the Naion fine structure. The channel size determined (varying between 3 and 6 nm; see details in the Supplementary Information) corresponds to that reported for wetted Naion, thus indicating that UF adsorption most likely preserves the swollen morphology of the hydrophilic channels also in the dry state at least to some degree. The fact that fiducial Au markers with about 5 nm diameter could not enter the channels indicates that the upper limit of the channel width distribution might be slightly less than 6 nm, but the evidence is not conclusive. There appears to be no major texture or preferred orientation effects in the films as expected based on the fabrication method. The direct STEM observations from UF-stained thin Naion films in our study seem to fit best to the cluster network model discussed in a recent review by Kusoglu and Weber.61

The top view of the 10 nm Naion reconstruction (Figure 1) has similar patterns that are seen in our earlier TEM results (see Figures S9 and S10) and RuO4 vapor-stained films imaged with TEM by Xue.35 No three-phase interfaces were observed contrary to that proposed by some theoretical three-phase models.45,62 No visible changes in phase separation for the large number of slices through the 3D STEM reconstruction (see Figures S11–S28, and Table S3 for details) was roughly 0.3/0.7 in the 10 nm thick film, changing gradually to about 0.35/0.65 in the thickest 100 nm film. It is to be noted that just by purely inspecting the overlaid view of the complete reconstruction (Figure S22), it is not possible to reliably evaluate the phase fractions, and a strong bias toward a ratio of about 0.5/0.5 is evident. This is also the case when TEM micrographs from one direction (see, e.g., Figures S9 and S10) are used to assess volume fraction of the phases. Furthermore, as the slices through the complete reconstruction show (Figures S11–S28), the ones taken near the surface area (both top and bottom) give rather different values for the volume phase fractions than the slices further inside the film. This exemplifies the problems of estimating the phase fractions and casts some doubts over the values reported in the literature.56

As the film thickness increases to 100 nm, the transparency for electrons decreases, and the noise in the collected tomography data starts to increase (Figure 2e). In the 100 nm film, the random orientation of channels was more evident than in the thinner films and extensive branching connecting channels into a network was observed. One can also notice how some of the channels appeared to end inside the film instead of going through. No change in the channel diameter distribution was detected. There is also no pronounced orientation effects in this thickness range nor influence from the Si/SiO2 substrate consistent with observations reported by Kushner et al.64

The major difference between films of 10 and 100 nm is in the branching of the channels being more extensive in thicker films, and in the 100 nm thick films, more channels appear to terminate inside the film without going through than in the thinner films (10 and 30 nm). Furthermore, when the film thickness decreases down to 10–30 nm, some confinement effects emerge. Most notably, near the substrate/film interface, hydrophilic channels start to orient horizontally, which is not seen in 100 nm thick films. The confinement effects in 10 to 30 nm thick films observed here directly are consistent with the computational results reported by Vanya et al.65 and Sengupta et al.66 and more indirect experimental results from below 60 nm thick films by Eastman et al.67 and Kim et al.68 However, we did not observe the formation of a distinct truncated regime where the entire film would consist of lamellae, as suggested by DeCaluwe et al.69 The average distance between the channels were determined for all the films utilizing slices through the 3D reconstruction in the x-y plane (Figures S29–S39 and Zenodo80). The results show rather wide distributions in the values obtained for each of the films, but roughly, we can state that (i) in the 10 nm films, the distribution was centered around 12 nm, (ii) in 30 nm films around 15 nm, and (iii) in 100 nm films, around 7 nm. Thus, there was some variations in the channel distances as a function of film thickness, and the most dense channel network was observed in the 100 nm thick film, which is consistent with the highest volume fraction of the hydrophilic part (0.35 in 100 nm films vs 0.3 in 10 nm films) in that film. It is to be noted that the channel distances were determined from x−y plane slices taken through the reconstructed 3D structure so that the z-direction is not the restricting dimension in the case of 10 nm thick films.

Table 1. Structural Information of Naion Films

<table>
<thead>
<tr>
<th>Hydrated</th>
<th>Channel width</th>
<th>Hydrophilic phase fraction</th>
<th>Mean distance between channels</th>
<th>Film thickness</th>
<th>Analysis technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>~6 nm</td>
<td>NA</td>
<td>~8 nm</td>
<td>175 μm</td>
<td>SAXS and SANS</td>
<td>18</td>
</tr>
<tr>
<td>Yes</td>
<td>3–5 nm</td>
<td>NA</td>
<td>NA</td>
<td>175 μm</td>
<td>SAXS and SANS</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>~6 nm</td>
<td>NA</td>
<td>NA</td>
<td>35 nm</td>
<td>SAXS</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>~5 nm</td>
<td>NA</td>
<td>NA</td>
<td>50 nm</td>
<td>SAXS</td>
<td>24</td>
</tr>
<tr>
<td>Yes</td>
<td>~5 nm</td>
<td>0.55</td>
<td>NA</td>
<td>100 nm</td>
<td>cryo-TEM tomography</td>
<td>36</td>
</tr>
<tr>
<td>To 20%</td>
<td>~1.8–3.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>simulations of literature SAXS data</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: *Small-angle neutron scattering
EFM results obtained by Barnes et al.30 provided some insights into disconnected channels in the 100–300 nm NaFon films, and our results hopefully complete this picture by providing the 3D reconstructions of 10–100 nm films.

Our structural information about the NaFon thin films is summarized in Table 1 along with similar data collected from the literature.

As can be seen from the table, there is a rather wide distribution of channel widths reported in the literature. Data from the present study show a wider distribution in width compared to those of other reports when considering NaFon films with similar thicknesses. However, as discussed above, based on the analyses of the large number of sections through the tomograms, as presented in the Supplementary Information, it is not feasible to provide a narrower distribution. Certainly, the edges of the channels in the tomograms are diffuse and thus the measurement errors arising from that are also included in the estimation presented, and the lower and upper limits should not be taken as precise values. Furthermore, based on the collected data, there seems to be a rather small difference between channel widths in the micro- and nanometer-scale films. In fact, based on the data from ref,6 the range of channel widths in hundreds of micrometer thick films is quite close to ours, despite the very large difference in film thickness. Quantitative determination of phase fractions in the literature is rare. There are some qualitative estimations based on TEM imaging, but as discussed above, they tend to suffer from problems inherent for 2D imaging and cannot be considered very reliable. Results from the report by Allen et al.36 report a value of circa 55% of hydrophilic phase, which is much higher than our values. However, as the x-y sectioning technique was not used in ref,36 we argue that this inherently biases the volume fraction estimation toward 0.5. This may at least partly explain the difference. Mean distances between the channels are also rarely reported, and we could find only indirect estimates18,68 that were rather close (8–16 nm) to the values obtained for our range of film thickness. Mean distances between the channels were also reported to be practically unaffected by the hydrophilicity/phobicity of the substrate.68

Although the present results show perhaps even surprisingly consistent overall morphologies between all the film thicknesses on the present substrate and only marginal orientation effect for the hydrophilic channels with the thinnest films, it must be noted that the substrate itself on which the NaFon layer will be coated will strongly affect the structure of the resulting film. For example, when decreasing the film thickness, the structure is commonly expected to become more and more affected by the in-plane confinement effects coupled with surface interactions at the substrate and vapor interfaces, as described for example by Modestino et al.57 In addition, heterogeneous substrate wetting properties can influence the preferential orientation of the hydrophobic fluorinated backbone and hydrophobic ionomer domains. The confinement effects consistent with the results reported by Modestino57 were observed to take place also in this study with the 10 and 30 nm thick films to some degree, as discussed above. However, they were not so drastic as could have been expected based on the previous investigations.57 Furthermore, it has been reported that the in-plane confinement and induced anisotropy of thin films can also reduce overall water uptake, that is, swelling when compared to bulk structures.68 Based on the in situ XRR results (Table S1), there were weak indications that the overall swelling of the film was slightly less pronounced in the thinner coatings, but the results are not entirely conclusive. However, we did not see any limitations in the film’s ability to self-assemble (phase separate), as suggested by Modestino24 for very thin NaFon films, even with the thinnest 10 nm coatings. As the statements related to the loss of phase separation in thin NaFon films are based on indirect observations, they may rise from the problems related to superimposed data from the whole film, as already discussed above. Finally, the substrate topography and roughness are also likely to affect the morphology of the NaFon films. These effects are, however, outside of the scope of this study and are subject to further investigations. While NaFon literature is rich with various models6–8,10,11,23,31,36,57–61,71 of films, membranes, and solutions, we can state that none of them appear to be fully consistent with our direct observations. Perhaps the closest match to our results can be found from almost identical schematics presented in refs14,46,52 and the cluster network model discussed in a recent review by Kusoglu and Weber.51 However, it is quite unrealistic to expect that a single structural model could represent such a complicated material as NaFon. Thus, the results from the present study show quite clearly that despite the extensive investigations carried out, there is still a lot of work to be done in characterizing thin NaFon film/substrate systems.

CONCLUSIONS

In this paper, we show directly and in fine detail the morphology of thin unannealed nanometer-scale NaFon films by STEM tomography supported by GISAXS and TEM at low temperature. Compared to existing models derived from, for example, X-ray scattering data, the real channel reconstructions reported here provide a spatial 3D illustration of the shape, size, orientation, and interconnectedness of the fine details of the channel structure in ultrathin NaFon films that have not been reported before at such a level. In particular, we show (i) how the NaFon bulk structure remains rather consistent in all three different thin-film thicknesses (10, 30, and 100 nm), from ultrathin up to thickness, which can be considered “bulk-like.” (ii) The phase fractions of the hydrophobic and hydrophilic parts of the polymer are determined to be about 0.7/0.3 for the 10 nm film and changing to 0.65/0.35 for the 100 nm films. (iii) The most significant difference between the thinnest (10 nm) and thickest (100 nm) films is that in the latter films, the hydrophilic channels exhibit higher interconnectivity and some of the channels appear to end within the NaFon film instead of going through the film. (iv) Substrate-induced confinement effects start to emerge with the 10 and 30 nm thick films exhibited by the horizontal channels next to the hydrophilic SiO\textsubscript{2} surface. (v) Our new sample preparation method preserves characteristics of the hydrated morphology of NaFon in the dry state. (vi) A stable room temperature STEM tomography series from NaFon can be collected without observable irradiation damage using high incremental tilt angles and carbon coating. (vii) Cationic UF stain and cationic fiducial Au markers both seek the anionic hydrophilic NaFon channels. These results and sample preparation method exhibit information about the fine structure of NaFon at a level not seen before and provide a basis for a better understanding of the factors affecting the performance of very thin NaFon films in filtering applications by directly showing the branching of proton conduction channel networks in high detail.
MATERIAL AND METHODS

GISAXS. Silicon chips of 2 cm × 2 cm in size were dipped in a buffered hydrofluoric acid for 1 min and rinsed in deionized water in order to increase Nafion adhesion for wetting experiments. On top of the silicon (100) substrate, 1 and 5% Nafion 117 was spin-coated in different thicknesses for XRR and GISAXS measurements. GISAXS measurements were performed in parallel beam mode using a Rigaku SmartLab diffractometer equipped with a 9 kW rotating Cu anode (Kα1, 0.154 nm), 200 um collimator, and HyPix-3000 2D detector (100 um pixel size) at a 150 mm distance. Images collected at an incidence angle of 0.5° omega were processed using Rigaku 2D Data Processing software 2D. Measurements were carried out at room temperature and under normal humidity conditions. Nafion samples were hydrated in situ during scattering measurements by placing distilled water droplets around the beam footprint area. The beam footprint and specular directions remained free of water droplets. Consequently Nafion film wetting, that is, swelling was observed as a thickness increase during XRR measurements (Table S1 in the Supporting Information). No measurable scattering was observed for dry Nafion films. XRR scans were obtained using a Kα1 monochromator, 0.05 mm vertical and 2 mm horizontal slits, and soller slits.

TEM Imaging at Low Temperature. Two types of approaches were used to image the samples at low temperatures as explained next:

Method A: Nafion 117 (Sigma-Aldrich) 5% mixture in lower aliphatic alcohols and water was spin-coated on silicon chips. Spun membranes were cut into a chessboard pattern of 9 mm² area squares, which were floated on deionized water and were picked up on an Agar Scientific EM grid (holey carbon 300 Cu mesh). Method B: For cross-section imaging, 5% Nafion 117 was spin-coated as a 150 nm thick film on a solid epon (Epofix) button, and then fresh epon was cast on top of the Nafion film to form a sandwich structure where Nafion is between epon. Then, this sandwich button was cut into small pieces and sectioned using ultramicrotome Leica UC7 at room temperature to form cross sections of the sandwiched epon-Nafion-epoxy structure. Ribbons of sections that floated on the surface of the water were about 50 nm in thickness. They were subsequently picked up on Agar Scientific EM grids (lacy carbon 300 Cu mesh) for TEM studies.

Both types of samples were imaged using JEOL JEM-3200FSC TEM with an Omega-type energy filter. The microscope was operated at 300 kV, and imaging was carried out under zero-loss conditions. Images were acquired with a CCD detector (Gatan Ultrascan 4K). The specimen temperature was maintained at −187 °C during imaging by liquid nitrogen cooling.

STEM Tomography. We used 5% Nafion 117 obtained from Sigma-Aldrich in a mixture of lower aliphatic alcohols and water. Thin Nafion films were fabricated by spin coating on a smooth silicon surface, with a chip size of 1.5 cm.

The stock solution 5% Nafion was used for a 100 nm film, and dilutions of 2.5 and 1% were used to achieve 30 and 10 nm thick films, respectively. After spinning, the membranes were immediately dried and were cut into a chessboard pattern of 9 mm² area squares. Cut films were floated on deionized water in a petri dish, and floating membrane fragments were collected on Multi A 100 × 400 mesh Au holey carbon EM grids from Quantifoil. Grids, with Nafion films laid on the holey carbon side, were negatively stained with UF by blotting for 1 min. Cationic cuficial Au markers (5 and 10 nm) were added after UF blotting. UF was diluted in water until it becomes pale yellow in color, which indicates some 2.5−0.25 wt. %.

The anodic carbon film was negatively stained with a thin hydration sheet attached to them. Last step before STEM tomography was to sputter-coat a 3 nm carbon layer to stabilizing the sample. Freestanding Nafion membranes were imaged through the holes in Multi A holey carbon using a JEOL JEM-2800 electron microscope in STEM and auto-focus modes. Both bright field and dark field 16 bit mrc stacks were collected using a TEMography Recorder program for the STEM tilt series. Nominal magnification of 800 k and 1 M was used, giving pixel sizes of 0.337 and 0.27 nm, respectively. A quickie STEM method (P. Engelhardt, unpublished data), that is, tilt series collected with spanning −72 to +72, with 8 degree increment steps under low dose mode, 200 kV, camera length 4 m, 155 μA emission current, 1.5 e−3 Pa microscope chamber vacuum, and probe size 0.2 nm was used. In addition to less time spent on series, using tilt series of 8° increments reduces the exposure dose down to 26% of conventional series taken at 2° increments, making stable Nafion imaging possible at RT.

EMAN2 (e2projectManager) was used to convert 16 bit to 32 bit mrc stack. For alignment of the stacks, ETOMO automactic (coarse fiducials) alignment mode was used. The maximum entropy method was used for 3D reconstruction and UCSF Chimera was used for visualization of 3D reconstructions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.0c01318. Movies of 3D reconstructions of Nafion thin films, that are available free of charge via the internet at Zenodo (DOI: 10.5281/zenodo.3784525) and supplementary material images at Zenodo (DOI: 10.5281/zenodo.4276343). (PDF)

AUTHOR INFORMATION

Corresponding Author
A. Peltonen — Aalto-NanoFab, Micronova, Aalto University, Espoo 02150, Finland; Email: antti.peltonen@aalto.fi

Authors
J. Etula — Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo 02150, Finland; orcid.org/0000-0002-6930-1165
J. Seitsonen — Nanomicroscopy Center (NMC), Department of Applied Physics, Aalto University, Espoo 02150, Finland
P. Engelhardt — Nanomicroscopy Center (NMC), Department of Applied Physics, Aalto University, Espoo 02150, Finland
T. Laurila — Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo 02150, Finland; Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Espoo 02150, Finland

Complete contact information is available at: https://pubs.acs.org/10.1021/acsapm.0c01318

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors appreciate the support of the Oтано Otoniemi Research Infrastructure for Micro and Nano Technologies. Samples were fabricated in the Micronova Nanofabrication Centre of Aalto University, and imaging was done at Nanomicroscopy Center of Aalto University. T.L. acknowledges support from European Union’s Horizon 2020 Research and Innovation Programme H2020-FETPROACT-2018-01 under grant agreement No. 824070.

REFERENCES

(1) Leppänen, E.; Peltonen, A.; Seitsonen, J.; Koskinen, J.; Laurila, T. Effect of thickness and additional elements on the filtering

(72) Honeywell, 10579892, AF 90-10 LST VLSI Puranal, Ammonium fluoride etching mixture.
(73) Quantifoil, www.quantifoil.com/}