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We use a combination of computer simulations and isoflux tension propagation (IFTP) theory to investigate
the translocation dynamics of a flexible linear polymer through a nanopore into an environment composed of
repulsive active rods in two dimensions. We demonstrate that the rod activity induces a crowding effect on the
polymer, leading to a time-dependent effective net force that facilitates translocation into the active environment.
Incorporating this force into the IFTP theory for pore-driven translocation allows us to characterize translocation
dynamics in detail and derive a scaling form for the average translocation time as τ̃ ∼ N1+ν

01 L̃ν
r /F̃SP, where N01,

L̃r, and F̃SP are the initial contour length of the cis-side subchain, rod length, and self-propelling force acting on
the rods, respectively, and ν is the equilibrium Flory scaling exponent.

DOI: 10.1103/PhysRevResearch.3.013080

I. INTRODUCTION

Translocation dynamics of biopolymers through nanopores
has been one of the most active research areas in soft matter
during the past few decades (see, e.g., Refs. [1–4] and ref-
erences therein). The most relevant examples include DNA
and mRNA translocation through nuclear pores, protein trans-
portation across a membrane, and DNA injection by a virus.
There are many applications from DNA sequencing to gene
therapy and controlled drug delivery [5], and forced translo-
cation was originally suggested as an inexpensive and fast
method for DNA sequencing. Motivated by these applications,
many experimental as well as theoretical works [6–41] have
been performed since the seminal works by Bezrukov et al.
[42] and by Kasianowicz et al. [43]. To date, most studies have
focused on the dynamics of polymer translocation facilitated
by external driving in the pore or by pulling the polymer
from the head bead by optical tweezers, both of which are
experimentally feasible [20–30].

In biological systems, however, polymer translocation
processes often occur in crowded environments [5]. Such
environments may be composed of diffusive and randomly
distributed spherical static obstacles [44–47] or chaperones
that assist transport across membranes [48–50]. Crowded
environments consisting of active particles (APs) have intro-
duced a new out-of-equilibrium-dynamics field of research
with rich physics [51,52]. Examples include synthetic motile
objects from molecular scale to microns [53,54], micro-

*khalilian@ipm.ir
†jalal@ipm.ir

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

scopic living organisms [55,56], and artificial swimmers from
nanometer to millimeter scales [57–69]. The presence of APs
has a strong influence on polymer chains in equilibrium and
can lead to significant conformational and dynamical changes
(collapse or swelling) depending on the system parameters
[70–76].

An interesting open question pertains to the influence of
APs on polymer translocation dynamics. Pore-driven polymer
translocation in the presence of spherical APs has been con-
sidered using computer simulation methods [77] and it was
found that with high activity, there is a crowding effect in two
dimensions (2D) that leads to a speed-up of translocation. An
interesting and unanswered question remains concerning the
effect of the APs on the dynamics of unforced or nondriven
translocation. In many cases active objects such as bacteria
are not spherical, but assume rodlike shapes. The combina-
tion of anisotropy in the shape of the APs and the presence
of a self-propelling (SP) force that makes the objects active
leads to interesting collective dynamics. In the case of rodlike
APs, there is orientational alignment of the active rods (ARs)
along the walls in a two-dimensional confining channel [78]
and also in their collective motion [79]. The presence of a
translocating polymer in such an environment thus warrants
closer examination.

To this end, we perform here extensive computer simu-
lations of unforced polymer translocation dynamics in the
presence of ARs on the trans side of the pore. We demonstrate
that when the chain is initially placed in such a way that a
part of the chain is in the trans compartment, the presence of
ARs induces a net effective force from the cis to the trans side
that overcomes entropic forces and facilitates translocation.
The presence of a time-dependent driving force allows us to
use the isoflux tension propagation (IFTP) theory, which is
benchmarked against the simulation data. As our main theo-
retical result, we find that the mean translocation time τ̃ scales
with the initial contour length of the cis-side subchain N01, rod
length L̃r, and SP force F̃SP as τ̃ ∼ N1+ν

01 L̃ν
r /F̃SP, where ν is the
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FIG. 1. (a) Configuration of the system after equilibration with passive rods with the chain fixed inside the pore. The compartment
dimensions are Lx = 2Ly = 400 (equally partitioned by a membrane in the y direction), Lr = 16 (16 beads), and the number of rods Nr = 320,
which gives a number density of 0.128. Translocation is initiated from this state at t̃ = 0 by making the rods active with FSP = 32 and releasing
the chain. Here N01 and N02 are the initial contour lengths of the cis- and trans-side subchains, respectively. (b) Snapshot of the system during
the tension propagation (TP) stage, i.e., t̃ < τ̃TP. The location of the tension front is denoted by R̃1, and s̃1 + N02 is the translocation coordinate
(the number of monomers on the trans side). The SP force FSP acts on the blue head monomer of each rod and is directed parallel to its
axis from tail to head. The effective force imposed by the rods on the chain f̃ (t̃ ) originates from the interaction between the active rods and
the trans-side subchain. (c) Same as in (b) but for the postpropagation stage, i.e., t̃ > τ̃TP, where the tension has already reached the cis-side
subchain end. (d) Final configuration of the system at the end of the translocation process.

equilibrium Flory exponent. This scaling form for the translo-
cation time is valid in the limit of long chains (N01 � 1) and
its dependence on L̃r and F̃SP comes from the effective net
force acting on the monomer(s) at the pore induced by the
APs with the trans-side subchain. This leads to scaling of τ̃

with N01 identical to that of a pore-driven chain without APs.
The structure of the paper is as follows. In Sec. II we

present details of the Langevin dynamics (LD) computer
simulations for a coarse-grained model of active rods and a
translocating polymer chain. The IFTP theory is introduced in
Sec. III. Section IV is devoted to presentation and discussion
of our main results. A summary and conclusions are in Sec. V.

II. LANGEVIN DYNAMICS SIMULATIONS

Our system comprises a flexible, self-avoiding polymer
chain of length N0 modeled by the bead-spring model [80]
with beads having a pairwise shifted repulsive Lennard-Jones
(SRLJ) interaction ULJ(r) = 4ε[( σ

r )12 − ( σ
r )6] + ε if r � 21/6

and zero otherwise. Here σ is the LJ radius, ε is the potential
well depth, and r is the distance between two monomers.
In addition, the consecutive monomers are connected by the
finitely extensible nonlinear elastic interaction UFENE(r) =
− 1

2 kR2
0 ln[1 − r2/R2

0], where k and R0 are the string constant
and the maximum allowed distance between the consecutive
monomers, respectively. The polymer is put into a container
of size Lx = 2Ly = 400 in units of σ and there is a membrane
in the middle (see Fig. 1) with a nanopore of radius 1.5σ

allowing only one bead in the pore at a time. The container
has walls in the x direction and periodic boundary conditions
in the y direction, and its walls and the membrane interact
with the chain with the same SRLJ potential. In the trans side
there are Nr rigid rods comprising SRLJ beads of radius σ

whose length is Lrσ . To model self-propulsion, a SP force with
magnitude of FSP is added to the head bead of each rod along
its main axis and from its tail to its head.

For the simulations we employ LD, where for the position
of the ith monomer of the polymer M �̈ri = −η�̇ri − �∇Umi +
�ξi(t ). Here η is the friction coefficient, Umi is the sum of
all interactions, and �ξi is white noise with 〈�ξi(t )〉 = 0 and

〈�ξi(t )�ξ j (t ′)〉 = 2ηkBT δi jδ(t − t ′), where kB is the Boltzmann
constant, T is the temperature, and δi j and δ(t − t ′) are the
Kronecker and Dirac delta functions, respectively. For the
ith bead of each rod we add the SP force as M �̈ri = −η�̇ri +
FSPδihê − �∇Uri + �ξi(t ), where h picks the head bead, ê is the
unit vector parallel to the vector connecting the tail to the
head, and Uri is the sum of all interactions on the ith bead.
We use M, σ , and ε as the units for mass, length, and energy,
respectively, where M = 1 is the mass of each monomer in
the polymer and the rods and ε = 1. The temperature is kept
at kBT = 1.2, the solvent friction coefficient is η = 0.7, and
τ0 =

√
Mσ 2/ε is the simulation time unit. In our simulations,

the integration time step is dt = 0.001τ0. Finally, the spring
constant is set to k = 30 and R0 = 1.5. The simulations were
performed using the LAMMPS [81] package.

Before the translocation process, the polymer is fixed in
the pore such that there are N01 and N02 beads in the cis and
trans compartments, respectively, where N0 = 1 + N01 + N02.
The polymer-rod system is equilibrated for teq = 5 × 104τ0

without the SP force, and at the beginning of translocation the
polymer is released and FSP is turned on for all rods simultane-
ously. The rod lengths used in the LD simulations are Lr = 8,
12, 16, and 20, which correspond to the number of rods in the
trans domain Nr = 640, 426, 320, and 256, respectively. For
the SP force we have FSP = 16, 24, and 32, the initial cis-side
contour lengths are N01 = 50, 100, and 150, and finally the
initial trans-side contour length is N02 = 100. For all sets of
parameters the value of the rods’ volume fraction is fixed at
about 0.1 in 2D. The density of the ARs here are chosen
low enough such that the equilibrated system has a uniformly
random orientational distribution. For the particular system
with N01 = N02 = 100, L̃r = 16, and F̃SP = 32 the results are
averaged over 3000 uncorrelated trajectories, while for the
other cases we use at least 1000 trajectories.

We use dimensionless quantities throughout and a tilde
denotes units within the IFTP theory. They are defined as Q̃ ≡
Q/Qu, where the denominator denotes the units of length,
time, velocity, monomer flux, friction, and force as su ≡ σ ,
tu ≡ ησ 2/(kBT ), vu ≡ σ/tu = kBT/(ησ ), φu ≡ kBT/(ησ 2),

u ≡ η, and fu ≡ kBT/σ , respectively.
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FIG. 2. (a) Plot of f̃ (t̃ )L̃ν
r /F̃SP as a function of the normalized time t̃/τ̃ , where f̃ (t̃ ) is the effective force experienced by the monomer

inside the pore in the x direction from the LD simulations, ν is the Flory exponent, and τ̃ is the translocation time (as obtained from LD) for
Lr = 16, Nr = 320, and FSP = 32. Open orange squares and open turquoise diamonds are data for the contributions of the tension due to the
trans-side subchain and the interactions of ARs with the monomer inside the pore, respectively. The effective force which is the sum of the
tension due to the trans-side subchain and the AR interactions with the monomer inside the pore is given by green circles. The solid and the
dashed green lines are the fitting curves for the effective force in the TP and PP stages, respectively. Here N01 = 100 and N02 = 100 are the
initial contour lengths of the cis- and trans-side subchains, respectively. (b) Same as in (a) but for fixed Lr = 16 and for different values of
FSP = 16, 24, and 32. (c) Same as in (b) but for fixed FSP = 32 and different values of Lr = 8, 12, 16, and 20 corresponding to the number of
rods Nr = 640, 426, 320, and 256, respectively. (d) Bond length lb as a function of the bond index mb with the same system parameters as in
(a) for different time instants during the translocation process t/τ = 0–0.8. The bond indices mb = 1 and 200 identify the tail and head bonds
in the cis and trans sides, respectively.

Figure 1(a) presents a typical snapshot of the system after
equilibration at t̃ = 0. We find that the activity of the rods
induces an effective force f̃ (t̃ ) on the monomer in the pore,
directed from cis to trans such that it facilitates translocation
as depicted in Fig. 1(b). This causes tension propagation along
the backbone of the cis-side subchain. The distance between
the tension front on the cis side from the pore is denoted by
R̃1. This stage is called the tension propagation (TP) stage (t̃ <

t̃TP). The number of the monomers on the trans side s̃1 + N02

defines a translocation coordinate and is equal to N02 at time
zero. Eventually the tension reaches the end of the cis-side
subchain and the postpropagation (PP) stage starts (t̃ > t̃TP),
which is presented in Fig. 1(c). Finally, Fig. 1(d) shows the
last snapshot of the system at the end of the translocation
process which defines the translocation time τ̃ .

III. ISOFLUX TENSION PROPAGATION THEORY

Over the past few years a consistent and quantitatively
accurate theory of driven polymer translocation has been
developed based on isoflux tension propagation. Due to the ef-
fective force f̃ (t̃ ) induced by the SP forces of the rods, we can
generalize the IFTP theory to the present case too. To obtain
the time evolution of the translocation coordinate s̃1, which
is the number of monomers that have passed from the cis to
the trans side, the isoflux approximation for the monomer flux
φ̃1(t̃ ) = ds̃1/dt̃ means that it is constant in space but evolves
in time within the mobile subchain on the cis side. The tension
force on the backbone of the chain at distance x̃ from the pore
on the cis side F̃ (x̃, t̃ ) is obtained by integration of the local
tension force balance relation dF̃ (x̃′, t̃ ) = −φ̃1(t̃ )dx′ from the
pore entrance at x̃′ = 0 to the distance x̃ as F̃ (x̃, t̃ ) = F̃0 −
x̃φ̃1(t̃ ) [here the tension force at the entrance of the pore on
the cis side is F̃0 = f̃ (t̃ ) − η̃pφ̃1(t̃ )]. Then, as the tension force
vanishes at R̃1, i.e., F̃ (R̃1, t̃ ) = 0, one can write F̃0 = R̃1φ̃1(t̃ ).
Finally, using the above definitions of the monomer flux and
F̃0, the equation of motion for the translocation coordinates is

cast in the form [26,27]


̃1(t̃ )
ds̃1

dt̃
= f̃ (t̃ ), (1)

where 
̃1(t̃ ) = R̃1(t̃ ) + η̃p, with η̃p and R̃1(t̃ ) the pore friction
and the tension front distance from the nanopore, respectively.

In Fig. 2(a) we plot f̃ (t̃ )L̃ν
r /F̃SP, where f̃ (t̃ ) is the effective

force (closed green circles) (is the sum of the tension due
to the trans-side subchain and the AR interactions with the
monomer inside the pore) in the horizontal direction from
cis to trans as a function of the normalized time t̃/τ̃ for
N01 = N02 = 100, FSP = 32, and Lr = 16. It is the sum of
the tension force due to the trans-side subchain (open orange
squares) and the force due to the interactions of the ARs with
the monomer inside the pore (open turquoise diamonds). The
effective force first grows almost linearly and then decreases.
Its largest magnitude in LJ units is of the same order as that
of FSP. In Figs. 2(b) and 2(c) we show the corresponding
data for varying either FSP or Lr. The remarkable finding
here is that all the data collapse onto two master curves,
namely, f̃TP(t̃ )L̃ν

r /F̃SP = 0.35 + 13.25t̃/τ̃ [solid green line in
Fig. 2(a)] and f̃PP(t̃ )L̃ν

r /F̃SP = 11.37 − 6.42t̃/τ̃ [dash-dotted
green line in Fig. 2(a)] in the TP and PP stages, respectively,
and they intersect at t̃/τ̃ = 0.56. We have independently ver-
ified from the bond lengths that the maximum of the effective
force curve exactly corresponds to the TP time where the
tension front reaches the end of the cis-side subchain. To this
end, in Fig. 2(d) we plot the bond length łb as a function of the
bond index mb. The bond indices mb = 1 and 200 identify the
tail and head bonds on the cis and trans sides, respectively.
It can be seen from the figure that the tension front reaches
the tail bond (mb = 1) at about t̃/τ̃ = 0.56 ≈ 0.6 (open blue
triangles), which defines the TP time. We have checked this
for all the sets of parameters here.

Solving Eq. (1) gives the translocation coordinate s̃1

provided that the time evolution of the location of the ten-
sion front R̃1 is known. Using the end-to-end distance R̃1e

013080-3
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FIG. 3. Schematic of polymer configurations at time zero (in
red) and at time t̃ < t̃TP (in blue), where t̃TP denotes the tension
propagation time. For the sake of clarity, the active rods in the trans
side have not been depicted. The initial contour lengths of the cis-
and trans-side subchains at time zero are N01 and N02, respectively,
and the polymer is in its equilibrium state while the monomer (closed
red circle) that identifies the border between the initial cis- and
trans-side subchains is fixed at the pore. At time t̃ , s̃1 is the number
of monomers that was initially in the cis side and has traversed
the pore (dotted blue line), l̃1 is the number of mobile monomers
in the cis side (solid blue line in the cis side), and the equilibrium
part of the subchain in the cis side is the dashed blue line. Here N1 is
the number of all monomers that have experienced the tension force
by time t̃ and thus N1 = l̃1 + s̃1. The closed blue circle separates
the initial cis-side subchain from the trans-side side subchain. The
location of the tension front is shown by R̃1.

corresponding to the extent of the mobile part of the cis-side
subchain at time zero just before the translocation process,
wherein the chain is in its equilibrium state, the location of the
tension front R̃1 and its equation of motion can be obtained.
To understand why R̃1 is equal to R̃1e we just need to compare
the cis-side subchain configurations at time zero with the ones
at time t̃ as depicted in Fig. 3. For visualization purposes, in
Fig. 3 the polymer configurations at time zero (in red) and at
time t̃ < t̃TP (in blue) are depicted, where t̃TP denotes the ten-
sion propagation time. For the sake of clarity, the active rods
on the trans side are not depicted. The initial contour lengths
of the cis- and trans-side subchains at time zero are N01 and
N02, respectively, and the polymer is in its equilibrium state
while the monomer (closed red circle) that identifies the bor-
der between the initial cis- and trans-side subchains is fixed at
the pore. As time passes, at time t̃ a part of the subchain that
was initially in the cis side has traversed the pore (dotted blue
line) and s̃1 monomers have gone through. At time t̃ , l̃1 is the
number of mobile monomers on the cis side (solid blue line
in the cis side) and the equilibrium part of the subchain in the
cis side is the dashed blue line. In addition, N1 is the number
of all monomers that have experienced the tension force by
time t̃ and thus N1 = l̃1 + s̃1. The closed blue circle separates
the initial cis-side subchain from the trans-side subchain. The
location of the tension front is shown by R̃1. As mentioned
above, the number of monomers affected by the tension front
on the cis side at time t̃ is N1. On the other hand, at time zero
these N1 monomers are accommodated in the space between
the nanopore and the current location of the tension front at
time t̃ . The linear size of this accommodating space, on the
one hand, at time zero is given by the end-to-end distance of

the N1 monomers as R̃1e = AνNν
1 and, on the other hand, at

time t̃ it is identified as the distance between the tension front
and the nanopore R̃1. Therefore, R̃1 = R̃1e = AνNν

1 . Moreover,
as N1 = l̃1 + s̃1, where l̃1 is the number of monomers in the
mobile domain (affected by the tension front) on the cis side
and s̃1 is the translocation coordinate as defined above, we can
simply write R̃1 = Aν (l̃1 + s̃1)ν . Here Aν = 1.1 for the present
LD model and ν = 3/4 is the equilibrium Flory scaling ex-
ponent in 2D. Assuming that the mobile part of the cis-side
subchain is fully straightened corresponding to the strong
stretching (SS) regime of polymer translocation dynamics, we
can write l̃1 = R̃1 [19,24]. Together with the definition of the
monomer flux φ̃1 = ds̃1/dt̃ and differentiating both sides of
R̃1 = Aν (R̃1 + s̃1)ν in time, the equation of motion for R̃1 in
the TP stage is

˙̃R1(t̃ ) = νA1/ν
ν R̃1(t̃ )(ν−1)/ν φ̃1(t̃ )

1 − νA1/ν
ν R̃1(t̃ )(ν−1)/ν

. (2)

In the PP stage the tension has already reached the cis-
side subchain. Differentiating the closure N1 = l̃1 + s̃1 = N01

gives the time evolution of R̃1 as

˙̃R1(t̃ ) = −φ̃1. (3)

To have the full solution of the IFTP theory in the TP stage
both Eqs. (1) and (2) must be self-consistently solved, while
in the PP stage one has to solve Eqs. (1) and (3).

IV. RESULTS

A. Waiting time distribution

To validate the IFTP theory it is useful to investigate the
waiting time (WT) distribution w, which is the time that each
bead spends in the pore during the translocation process. In the
IFTP theory, to obtain the WT we need to calculate the inverse
of s̃(t ), i.e., t (s̃). Then the WT is obtained as w(s̃) = t (s̃ +
0.5) − t (s̃ − 0.5). On the other hand, in the LD simulations
the WT can be obtained directly by recording the time that
each bead spends in the pore during the translocation process.
In Fig. 4(a) we plot w(s̃) as a function of the total transloca-
tion coordinate s̃ = s̃1 + s̃2 (s̃1 and s̃2 correspond to the cis-
and trans-side subchains, respectively) for N02 = 100, FSP =
32, Lr = 16, the pore friction coefficient in the IFTP theory
η̃p = 8 (which can be obtained by comparing the WT from
IFTP with LD simulations and once it has been obtained it is
fixed), and for different values of the initial cis-side contour
lengths N01 = 50 (open turquoise squares), N01 = 100 (open
green circles) and N01 = 150 (open orange diamonds). The
solid blue, dashed green, and dash-dotted red lines present the
IFTP results for N01 = 50, 100, and 150, respectively. Regions
with 0 < s̃ � N02 and N02 < s̃ � N0 identify the monomers
initially in the trans- and the cis-side subchains, respectively.
Here N02 = 100 has been fixed in order to have the same
initial configuration for the trans-side subsystem. This allows
us to investigate only the effect of the initial contour length
of the cis-side subchain on the translocation process. We find
good agreement between the LD simulation results and the
IFTP theory. The simulation data show that the trans-side sub-
chain (0 < s̃ � N02) contributes to the WT (see Fig. 4) due to
the small magnitude of f̃ (t̃ ) at the beginning of translocation
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FIG. 4. (a) Waiting time w as a function of the total translocation
coordinate s̃ for fixed values of the initial trans-side contour length
N02 = 100, SP force FSP = 32, rod length Lr = 16, and pore friction
in the IFTP theory ηp = 8 and for different values of the initial cis-
side contour lengths N01 = 50 (open turquoise squares), N01 = 100
(open green circles), and N01 = 150 (open orange diamonds). The
solid blue, dashed green, and red dash-dotted lines are the IFTP
results for N01 = 50, 100, and 150, respectively. (b) Translocation
time τ (from LD simulations) plotted as a function of rod length Lr

for fixed FSP = 32 (open turquoise circles from the bottom horizontal
blue axis). Open orange squares are the LD data for the translocation
time as a function of FSP (from the top horizontal red axis) for fixed
Lr = 16. Dashed red and dash-dotted blue lines are guides to the eye.

process because a short section of the trans-side subchain is
temporarily retracted to the cis side. The IFTP theory thus
slightly underestimates the WT as it considers the dynamics
of the cis-side subchain only.

B. Scaling of translocation time

Next we consider the average translocation time τ̃ for the
polymer needs to pass through the nanopore. Its scaling form
can be written as τ̃ ∝ F̃β

SPL̃γ
r Nα

01, where α, β, and γ are the
translocation, SP force, and rod length exponents, respec-
tively. Combining mass conservation in the TP and PP stages,
i.e., N1 = s̃1 + l̃1 and N1 = s̃1 + l̃1 = N01, respectively, with
Eq. (1), the TP time is obtained by integration of N1 from zero
to N01, while the PP time is calculated by integration of R̃1

from R̃1(N01) to zero [24]. The sum of the TP and PP times
leads to

∫ t̃TP

0
f̃TP(t̃ )dt̃ +

∫ τ̃

t̃TP

f̃PP(t̃ )dt̃ =
∫ N01

0
dN1[R̃1(N1) + η̃p],

(4)
where the effective forces in the TP and PP stages of this
relation are obtained from fitting to the simulation data in
Fig. 2(a) for TP (solid green line) and PP (dash-dotted green
line) stages, respectively, as

f̃TP(t̃ )L̃ν
r /F̃SP = a + bt̃/τ̃ ,

f̃PP(t̃ )L̃ν
r /F̃SP = c − dt̃/τ̃ , (5)

with a = 0.35, b = 13.25, c = 11.37, and d = 6.42. Using
f̃TP(t̃ = t̃TP) = f̃PP(t̃ = t̃TP), the TP time is then given by
t̃TP = Qτ̃ , where Q = (c − a)/(b + d ) ≈ 0.56 here, as men-
tioned earlier. Combining t̃TP = Qτ̃ with the effective forces
in the TP and PP stages in Eq. (5) together with Eq. (4) gives

the total translocation time as

τ̃ = L̃ν
r

∫ N01

0
dN1[R̃1(N1) + η̃p]/GF̃SP. (6)

Using R̃1(N1) = AνNν
1 , where ν = 3/4 in 2D and Aν = 1.1

(from LD data), the scaling of the translocation time is

τ̃ = L̃ν
r

GF̃SP

[
AνN1+ν

01

1 + ν
+ N01η̃p

]
, (7)

where G = −0.5(c − a)2/(b + d ) + c − d/2 ≈ 11.25. Equa-
tion (7) reveals that the SP force and rod length exponents
are β = −1 and γ = ν, respectively, and the translocation ex-
ponent varies within 1 < α � 1 + ν, where the upper bound
holds in the long-chain limit N01 � 1. The SP force and
translocation exponents are in agreement with purely pore-
driven translocation in the SS regime [24]. In Fig. 4(b) we
plot the translocation time as a function of the SP force (open
orange squares from the top red horizontal axis) and the rod
length (open turquoise circles from the bottom blue horizontal
axis). Dashed red and dash-dotted blue lines are guides to the
eye. The SP force and rod length exponents obtained from
IFTP theory are in good agreement with the LD data.

V. CONCLUSION

In summary, we have shown here that active rodlike parti-
cles on the trans side of a membrane can efficiently overcome
entropic losses and facilitate translocation of a polymer chain
through a nanopore. The SP force induces a crowding effect of
the rods close to the membrane and the polymer, and as a net
result there is an effective driving force making translocation
possible even without explicit driving. We have used a combi-
nation of LD simulations and IFTP theory in the SS regime to
characterize the waiting time distribution w and the average
translocation time τ . Neglecting the explicit contribution of
N02 to the dynamics allowed us to derive a scaling form for
τ̃ as a function of N01, SP force, and rod length. The scaling
exponents for τ and the SP force are in agreement with those
of the purely pore-driven translocation case. Here we have
only focused on systems wherein the initial values of the
contour lengths for the trans-side subchain are long enough
to lead to successful translocation events. Moreover, even for
the system composed of 50% of the chain already on the trans
side, for a successful translocation there would be a threshold
for the value of F̃SP in order to overcome the entropic force.
On the other hand, at a constant value of F̃SP, there exists a
threshold value for N02/N0 in order to overcome the entropic
force. For this case the threshold value of the N02 depends on
the density of the ARs as well as the value of F̃SP. Our work
provides insight into our knowledge about the role of APs in
living cells that may assist translocation of biomolecules and
may be used as a method to control translocation dynamics,
which is crucial for DNA sequencing applications.
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