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Abstract
Multimodal machine translation involves drawing information from more than one 
modality, based on the assumption that the additional modalities will contain useful 
alternative views of the input data. The most prominent tasks in this area are spoken 
language translation, image-guided translation, and video-guided translation, which 
exploit audio and visual modalities, respectively. These tasks are distinguished from 
their monolingual counterparts of speech recognition, image captioning, and video 
captioning by the requirement of models to generate outputs in a different language. 
This survey reviews the major data resources for these tasks, the evaluation cam-
paigns concentrated around them, the state of the art in end-to-end and pipeline 
approaches, and also the challenges in performance evaluation. The paper concludes 
with a discussion of directions for future research in these areas: the need for more 
expansive and challenging datasets, for targeted evaluations of model performance, 
and for multimodality in both the input and output space.

Keywords  Natural language processing · Machine translation · Multimodal machine 
translation · Image-guided translation · Speech language translation

1  Introduction

Humans are able to make use of complex combinations of visual, auditory, tactile 
and other stimuli, and are capable of not only handling each sensory modality in 
isolation, but also simultaneously integrating them to improve the quality of per-
ception and understanding  (Stein et  al. 2009). From a computational perspective, 
natural language processing (NLP) requires such abilities, too, in order to approach 
human-level grounding and understanding in various AI tasks.
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While language covers written, spoken, and sign language in human communi-
cation; vision, speech, and language processing communities have worked largely 
apart in the past. As a consequence, NLP became more focused towards textual 
representations, which often disregard many other characteristics of communica-
tion such as non-verbal auditory cues, facial expressions, and hand gestures. Luck-
ily, recent advances in multimodal machine learning have brought these different  
aspects of language together, through a plethora of multimodal NLP tasks. Specifi-
cally, these tasks involve more than one modality, either by (i) using one modality 
to aid the interpretation of language in another modality, or by (ii) converting one 
modality into another. Notable examples for the first category are extensions to ini-
tially unimodal problems, such as multimodal coreference resolution (Ramanathan 
et  al. 2014), multimodal sentiment analysis  (Zadeh et  al. 2016), and visual ques-
tion answering (Antol et al. 2015). For the second category that involves modality 
conversion, well-known examples are image captioning (IC) (Bernardi et al. 2016), 
where the task is to generate a textual description from an image, automatic speech 
recognition (ASR) (Yu and Deng 2016), where the task is to transcribe spoken lan-
guage audio into text, and speech synthesis (Ling et al. 2015), which is the converse 
of ASR, with the goal of generating speech from written language.

Although more pointers exist in general surveys of multimodality in NLP (Ber-
nardi et al. 2016; Baltrušaitis et al. 2017; Kafle and Kanan 2017; Mogadala et al. 
2019), this article is concerned with tasks that involve both multiple modalities and 
different input and output languages, i.e. the tasks that fall under the umbrella of 
multimodal machine translation (MMT). The connection between modalities and 
translation tasks according to our definition is illustrated in Fig.  1, outlining the 
major tasks of spoken language translation (SLT) (Akiba et al. 2004), image-guided 
translation (IGT) (Elliott et al. 2015; Specia et al. 2016), and video-guided transla-
tion (VGT) (Sanabria et al. 2018; Wang et al. 2019b).

Today, the rising interest in MMT is largely driven by the state-of-the-art perfor-
mance and the architectural flexibility of neural sequence-to-sequence models (Sut-
skever et al. 2014; Bahdanau et al. 2015; Vaswani et al. 2017). This flexibility, which 
is due to the end-to-end nature of these approaches, has the potential of bringing 
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Fig. 1   Prominent examples of multimodal translation tasks, such as image-guided translation  (IGT), 
video-guided translation (VGT), and spoken language translation (SLT), shown in contrast to unimodal 
translation tasks, such as text-based machine translation (MT) and speech-to-speech translation  (S2S), 
and multimodal NLP tasks that do not involve translation, such as automatic speech recognition (ASR), 
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the vision, speech and language processing communities back together. From a his-
torical point of view however, there was already a great deal of interest in doing 
machine translation (MT) with non-text modalities, even before the arrival of suc-
cessful statistical machine translation models. Among the earliest attempts is the 
Automatic Interpreting Telephony Research project (Morimoto 1990), a 1986 pro-
posal that aimed at implementing a pipeline of automatic speech recognition, rule-
based machine translation, and speech synthesis, making up a full speech-to-speech 
translation system. Further research has led to several other speech-to-speech trans-
lation systems (Lavie et al. 1997; Takezawa et al. 1998; Wahlster 2000).

In contrast, the use of visual modality in translation has not attracted compa-
rable interest until recently. At present, there is a variety of multimodal task for-
mulations including some form of machine translation, involving image captions, 
instructional text with photographs, video recordings of sign language, subtitles for 
videos (and especially movies), and descriptions of video scenes. As a consequence, 
modern multimodal MT studies dealing with visual  (or audiovisual) information 
are becoming as prominent as those tackling audio. We believe that multimodal 
MT is a better reflection of how humans acquire and process language, with many 
theoretical advantages in language grounding over text-based MT as well as the 
potential for new practical applications like cross-modal cross-lingual information 
retrieval (Calixto and Liu 2017b; Gella et al. 2017; Kádár et al. 2018).

In the following, we will provide a detailed description of MMT tasks and 
approaches that have been proposed in the past. Sect. 2 contains an overview of the 
tasks of spoken language translation, image-guided translation and video-guided 
translation. Section  3 reviews the methods and caveats of evaluating MT perfor-
mance, and discusses prominent evaluation campaigns, while Sect.  4 contains an 
overview of major datasets that can be used as training or test corpora. Section 5 dis-
cusses the state-of-the-art models and approaches in MMT, especially focusing on 
image-guided translation and spoken language translation. Section 6 outlines fruitful 
directions of future research in multimodal MT.

2 � Tasks

While our definition of multimodal MT excludes both cross-modal conversion tasks 
with no cross-linguality (e.g. automatic speech recognition and video description), 
and machine translation tasks within a single modality (e.g. text-to-text and speech-
to-speech translation), it is still general enough to accommodate a fair variety of 
tasks. Some of these tasks such as spoken language translation (SLT) and continu-
ous sign language recognition (CSLR) meet the criteria because their source and tar-
get languages are, by definition, expressed through different modes. Other tasks like 
image-guided translation  (IGT) and video-guided translation  (VGT) are included 
on the grounds that they complement the source language with related visuals that 
constitute an extra modality. In some cases, a well-established multimodal machine 
translation task can be characterised by methodological constraints (e.g. simultane-
ous interpretation), or by domain and semantics (e.g. video description translation).
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We observe that a shared modality composition is the foremost prerequisite that 
dictates the applicability of data, approaches and methodologies across multimodal 
translation tasks. For this reason, further in this article, we classify the studies we 
have surveyed according to the modality composition involved. We also restrict the 
scope of our discussions to the more well-recognised cases that involve audio and/
or visual data in addition to text. It should be noted that, despite our grouping, there 
may be conceptual differences between the modalities involved in different multi-
modal MT tasks, where, for example, the audio in SLT corresponds to speech that 
is semantically equivalent to the associated text, while the visual modalities in IGT 
and VGT may merely serve to narrow down the context. In the following subsec-
tions, we explain our use of the terms spoken language translation, image-guided 
translation, and video-guided translation, and provide further discussions for each 
of these tasks.

2.1 � Spoken language translation

Spoken language translation (SLT), also known as speech-to-text translation or auto-
matic speech translation, comprises the translation of speech in a source language to 
text in a target language. As such, it differs from conventional MT in the source-side 
modality. The need to simultaneously perform both modality conversion and transla-
tion means that systems must learn a complex input–output mapping, which poses a 
significant challenge. The SLT task has been shaped by a number of influential early 
works (e.g. Vidal 1997; Ney 1999), and championed by the speech translation tasks 
of the IWSLT evaluation campaign since 2004 (see Sect. 3.2.2).

Traditionally, SLT was addressed by a pipeline approach  (see Sect.  5 for more 
details), effectively separating multimodal MT into modality conversion followed by 
unimodal MT. More recently, end-to-end systems have been proposed, often based 
on NMT architectures, where the source language audio sequence is directly con-
verted to the target language text sequence (Weiss et al. 2017; Bérard et al. 2018). 
Despite the short time during which end-to-end approaches have been developed, 
they have been rapidly closing the gap with the dominant paradigm of pipeline sys-
tems. The current state of end-to-end systems is discussed further in Sect. 5.2.3.

2.2 � Image‑guided translation

Image-guided translation can be defined as a contextual grounding task, where, 
given a set of images and associated documents, the aim is to enhance the transla-
tion of the documents by leveraging their semantic correspondence to the images. 
Resolving ambiguities through visual cues is one of the main motivating forces 
behind this task.

A well-known realisation of IGT is image caption translation, where the cor-
respondence is related to sentences being the descriptions of the images. Initial 
attempts at image caption translation were mostly pipeline approaches: Elliott 
et  al. (2015) proposed a pipeline of visually conditioned neural language models, 
while Hitschler et  al. (2016) approached the problem from a multimodal retrieval 
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and reranking perspective. With the introduction of the WMT multimodal transla-
tion shared task (Specia et al. 2016, see Sect. 3.2.1), IGT attracted a lot more atten-
tion from the research community. Today, the prominent approaches rely on visu-
ally conditioning end-to-end neural MT systems with visual features extracted from 
state-of-the-art pretrained CNNs.

Although the utility of the visual modality has recently been disputed under spe-
cific dataset and task conditions (Elliott 2018; Caglayan et al. 2019), using images 
when translating captions is theoretically very advantageous to handle grammatical 
characteristics (e.g. noun genders) in translating between dissimilar languages, and 
resolving translational ambiguities. Also, Caglayan et al. (2019) shows how state-of-
the-art models become capable of leveraging the visual signal when source captions 
are deliberately deteriorated in a simulated low-resource scenario. We discuss the 
current state of the art and the predominant approaches in IGT in Sect. 5.1.

2.3 � Video‑guided translation

We posit the task of video-guided translation (VGT) as a multimodal machine trans-
lation task similar to image-guided translation, but tackling video clips (and poten-
tially audio clips as well) rather than static images associated with the textual input. 
Within video-guided translation, there can be variants depending on the textual con-
tent. The source text can be transcripts of speech from the video, which would be 
typically segmented as standard subtitles, or a textual description of the visual scene 
or an action demonstrated in the clip, often created for visually impaired people. 
As such, video-guided translation can be subject to particular challenges from both 
SLT  (time-variant audiovisual input) and IGT  (indirect correspondence between 
source modalities). On the other hand, these similarities could also indicate that it 
might be possible to adapt or reuse approaches from both of those areas to bootstrap 
VGT systems.

One major challenge hindering progress in video-guided translation is the rela-
tive scarcity of datasets. While a large collection such as the OpenSubtitles cor-
pus1 (Lison and Tiedemann 2016) can provide access to a considerable amount of 
parallel subtitles, there is no attached audiovisual content since the corresponding 
movies are not freely available. Recent efforts to compile freely accessible data for 
video-guided translation, like the How2 (Sanabria et al. 2018) and VaTeX  (Wang 
et al. 2019b) datasets (both described in Sect. 4.3) have started to alleviate this bot-
tleneck. Although there has been decidedly little time to observe the full impact 
of such initiatives, we hope that they will inspire further research in video-guided 
translation.

1  Derived from https​://www.opens​ubtit​les.com/.

https://www.opensubtitles.com/
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3 � Evaluation

Evaluating the performance of a machine translation system is a difficult and con-
troversial problem. Typically, there are numerous ways of translating even a single 
sentence which would be acceptably produced by human translators  (or systems), 
and it is often unclear which one is (or which ones are) good or better, and in what 
respect, given that the pertinent evaluation criteria are multi-dimensional, context-
dependent, and highly subjective  (see for example Chesterman and Wagner 2002; 
Drugan 2013). Traditionally, human analysis of translation quality has often been 
divided into the evaluation of adequacy  (semantic transfer from source language) 
and fluency (grammatical soundness of target language) (Doherty 2017). While this 
separation is considered somewhat artificial, it was created to make evaluation sim-
pler and to allow comparison of translation systems in more specific terms. In prac-
tice, systems that are good at one criterion tend to be good at the other, and a lot 
of the more recent evaluation campaigns have focused on directly ranking systems 
for general quality rather than scoring individual systems on these criteria (relative 
ranking), or scoring systems for general quality instead (direct assessment).

Since human evaluation comes with considerable monetary and time costs (Cas-
tilho et al. 2018), evaluation efforts have converged to devising automatic metrics in 
recent years (Ma et al. 2018, 2019), which typically operate by comparing the out-
put of a translation system against one or more human translations. While a number 
of metrics have been proposed over the last two decades, they are mostly based on 
statistics computed between the translation hypothesis and one or more references. 
Procuring reference translations in itself entails some costs, and any metrics and 
approaches that require multiple references to work well may therefore not be fea-
sible for common use. Further in this section, we discuss the details of some of the 
dominant evaluation metrics as well as the most well-known shared tasks of multi-
modal MT that serve as standard evaluation settings to facilitate research.

3.1 � Metrics

Among the various MT evaluation metrics in the literature, the most commonly 
used ones are BLEU (Papineni et al. 2001), METEOR (Lavie and Agarwal 2007; 
Denkowski and Lavie 2014) and TER (Snover et al. 2006). To summarise them 
briefly, BLEU is based on an aggregate precision measure of n-gram matches 
between the reference(s) and machine translation, and penalises translations that 
are too short. METEOR accounts for and gives partial credit to stem, synonyms, 
and paraphrase matches, and considers both precision and recall with config-
urable weights for both criteria. TER is a variant of word-level edit distance 
between the source and the target sentences, with an added operation for shifting 
one or more adjacent words. BLEU is by far the most commonly used automatic 
evaluation metric, despite its relative simplicity. Most quantitative comparisons 
of machine translation systems are reported using only BLEU scores. METEOR 
has been shown to correlate better with human judgements (especially for 
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adequacy) due to both its flexibility in string matching and its better balance 
between precision and recall, but its dependency on linguistic resources makes 
it less applicable in the general case. Both BLEU and METEOR, much like the 
majority of other evaluation metrics developed so far, are reference-based met-
rics. These metrics are inadvertently heavily biased on the translation styles that 
they see in the reference data, and end up penalising any alternative phrasing 
that might be equally correct (Fomicheva and Specia 2016).

Human evaluation is the optimal choice when a trustworthy measure of 
translation quality is needed and resources to perform it are available. The 
usual strategies for human evaluation are fluency and adequacy rankings, direct 
assessment  (DA)  (Graham et  al. 2013), and post-editing evaluation  (PE)  (Sno-
ver et  al. 2006). Fluency and adequacy rankings are conventionally between 1 
and 5, while DA is a general scale between 0 and 100 indicating how “good” 
the translation is, either with respect the original sentence in the source lan-
guage (DA-src), or the ground truth translation in the target language (DA-ref). 
On the other hand, in PE, human annotators are asked to correct translations 
by changing the words and the ordering as little as possible, and the rest of the 
evaluation is based on an automatic edit distance measure between the origi-
nal and post-edited translations, or other metrics such as post-editing time and 
keystrokes (Specia et al. 2017). For pragmatics reasons, these human evaluation 
methods are typically crowdsourced to non-expert annotators to reduce costs. 
While this may still result in consistent evaluation scores if multiple crowd 
annotators are considered, it is a well-accepted fact that professional transla-
tors capture more details and are generally better judges than non-expert speak-
ers (Bentivogli et al. 2018).

The problems recognised even in human evaluation methods substantiate 
the notion that no metric is perfect. In fact, evaluation methods are an active 
research subject in their own right  (Specia et  al. 2018; Ma et  al. 2018, 2019). 
However, there is currently little research on developing evaluation approaches 
specifically tailored to multimodal translation. Fully-automatic evaluation 
is typically text-based, while methods that go beyond the text rely on manu-
ally annotated resources, and could rather be considered semi-automatic. One 
such method is multimodal lexical translation  (MLT)  (Lala and Specia 2018), 
which is a measure of translation accuracy for a set of ambiguous words given 
their textual context and an associated image that allows visual disambiguation. 
Even in human evaluation there are only a few examples where the evaluation 
is multimodal, such as the addition of images in the evaluation of image cap-
tion translations via direct assessment (Elliott et al. 2017; Barrault et al. 2018), 
or via qualitative comparisons of post-editing (Frank et al. 2018). Having con-
sistent methods to evaluate how well translation systems take multimodal data 
into account would make it possible to identify bottlenecks and facilitate future 
development. One possible promising direction is the work of Madhyastha 
et al. (2019) for image captioning evaluation, where the content of the image is 
directly taken into account via the matching of detected objects in the image and 
concepts in the generated caption.
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3.2 � Shared tasks

A great deal of research into developing natural language processing systems is 
made in preparation for shared tasks under academic conferences and workshops, 
and the relatively new subject of multimodal machine translation is not an excep-
tion. These shared tasks lay out a specific experimental setting for which partici-
pants submit their own systems, often developed using the training data provided by 
the campaign. Currently, there are not many datasets encompassing both multiple 
languages and multiple modalities that are also of sufficiently high quality and large 
size, and available for research purposes. However, multilingual datasets that aug-
ment text with only speech or only images are somewhat less rare than those with 
videos, given their utility for tasks such as automatic speech recognition and image 
captioning. Adding parallel text data in other languages enables such datasets to be 
used for spoken language translation and image-guided translation, both of which 
are represented in shared tasks organised by the machine translation community. 
The conference on machine translation (WMT) ran three shared tasks for image cap-
tion translation from 2016–2018, and the International Workshop on Spoken Lan-
guage Translation (IWSLT) has led an annual evaluation campaign on speech trans-
lation since 2004.

3.2.1 � Image‑guided translation: WMT multimodal translation task

The conference on machine translation (WMT) has organised multimodal transla-
tion shared tasks annually since the first event (Specia et al. 2016) in 2016. The first 
shared task was such that the participants were given images and an English caption 
for each image as input, and were required to generate a translated caption in Ger-
man. The second shared task had a similar experimental setup, but added French to 
the list of target languages, and new test sets. The third shared task in 2018 added 
Czech as a third possible target language, and another new test set. This last2 task 
also had a secondary track which only had Czech on the target side, but allowed the 
use of English, French and German captions together along with the image in a mul-
tisource translation setting.

The WMT multimodal translation shared tasks evaluate the performances of sub-
mitted systems on several test sets at once, including the Ambiguous COCO test 
set (Elliott et al. 2017), which incorporates image captions that contain ambiguous 
verbs (see Sect. 4.1). The translations generated by the submitted systems are scored 
by the METEOR, BLEU, and TER metrics. In addition, all participants are required 
to devote resources to manually scoring translations in a blind fashion. This scor-
ing is done by direct assessment using the original source captions and the image 
as references. During the assessment, ground truth translations are shuffled into the 
outputs from the submissions, and scored just like them. This establishes an approx-
imate reference score for the ground truth, and the submitted systems are analysed in 
relation to this.

2  The multimodal translation task was not held in WMT 2019.
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3.2.2 � Spoken language translation: IWSLT evaluation campaign

The spoken language translation tasks have been held as part of the annual IWSLT 
evaluation campaign since Akiba et  al. (2004). Following the earlier C-STAR 
evaluations, the aim of the campaign is to investigate newly-developing translation 
technologies as well as methodologies for evaluating them. The first years of the 
campaign were based on a basic travel expression corpus developed by C-STAR 
to facilitate standard evaluation, containing basic tourist utterances (e.g.  “Where 
is the restroom?”) and their transcripts. The corpus was eventually extended with 
more samples (from a few thousand to tens of thousands) and more languages (from 
Japanese and English, to Arabic, Chinese, French, German, Italian, Korean, and 
Turkish). Each year also had a new challenge theme, such as robustness of spoken 
language translation, spontaneous (as opposed to scripted) speech, and dialogue 
translation, introducing corresponding data sections (e.g. running dialogues) as well 
as sub-tasks (e.g.  translating from noisy ASR output) to facilitate the challenges. 
Starting with Paul et al. (2010), the campaign adopted TED talks as their primary 
training data, and eventually shifted away from the tourism domain towards lecture 
transcripts.

Until Cettolo et al. (2016), the evaluation campaign had three main tracks: Auto-
matic speech recognition, text-based machine translation, and spoken language 
translation. While these tasks involve different sources and diverging methodolo-
gies, they converge on text output. The organisers have made considerable effort 
to use several automatic metrics at once to evaluate participating systems, and to 
analyse the outputs from these metrics. Traditionally, there has also been human 
evaluation on the most successful systems for each track according to the automatic 
metrics. These assessments have been used to investigate which automatic metrics 
correlate with which human assessments to what extent, and to pick out and discuss 
drawbacks in evaluation methodologies.

Additional tasks such as dialogue translation  (Cettolo et  al. 2017) and low-
resource spoken languagetranslation (Niehues et al. 2018) were reintroduced to the 
IWSLT evaluation campaign from 2017 on, as TED data and machine translation 
literature both grew richer. Niehues et al. (2019) introduced a new audiovisual spo-
ken language translation task, leveraging the How2 corpus (Sanabria et al. 2018). In 
this task, video is included as an additional input modality, for the general case of 
subtitling audiovisual content.

4 � Datasets

Text-based machine translation has recently enjoyed widespread success with the 
adoption of deep learning model architectures. The success of these data-driven sys-
tems rely heavily on the factor of data availability. An implication of this for mul-
timodal MT is the need for large datasets in order to keep up with the data-driven 
state-of-the-art methodologies. Unfortunately, due to its simultaneous require-
ment of multimodality and multilinguality in data, multimodal MT is subject to 
an especially restrictive bottleneck. Datasets that are sufficiently large for training 
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multimodal MT models are only available for a handful of languages and domain-
specific tasks. The limitations imposed by this are increasingly well-recognised, as 
evidenced by the fact that most major datasets intended for multimodal MT were 
released relatively recently. Some of these datasets are outlined in Table  1, and 
explained in more detail in the subsections to follow.

4.1 � Image‑guided translation datasets

IAPR TC-12    The International Association of Pattern Recognition (IAPR) TC-12 
benchmark dataset (Grubinger et al. 2006) was created for the cross-language image 
retrieval track of the CLEF evaluation campaign (ImageCLEF 2006)  (Clough 
et  al. 2006). The benchmark is structurally similar to the multilingual image cap-
tion datasets commonly used by contemporary image-guided translation systems. 
IAPR TC-12 contains 20,000 images from a collection of photos of landmarks taken 
in various countries, provided by a travel organisation. Each image was originally 
annotated with German descriptions, and later translated to English. These descrip-
tions are composed of phrases that describe the visual contents of the photo fol-
lowing strict linguistic patterns, as shown in Fig. 2. The dataset al.so contains light 
annotations such as titles and locations in English, German, and Spanish.

Table 1   Summary statistics from most prominent multimodal machine translation datasets

We report image captions per language, and audio clips and segments per language pair

Dataset Media Text Languages Tasks

IAPR TC-12 (Grubinger et al. 
2006)

20k images 20k captions de, en IGT

Flickr8k (Rashtchian et al. 
2010)

8k images 41k captions en, tr, zh IGT

Flickr30k (Young et al. 2014) 30k images 158k captions de, en IGT
Multi30k (Elliott et al. 2016) 30k images 30k captions cs, de, en, fr IGT
QED (Abdelali et al. 2014) 23.1k video clips 8k–335k segments 20 languages SLT, VGT
How2 (Sanabria et al. 2018) 13k video clips 189k segments en, pt SLT, VGT
VaTeX (Wang et al. 2019b) 41k video clips 206k segments en, zh SLT, VGT
WIT3 (Cettolo et al. 2012) 2086 audio clips 3–575k segments 109 languages SLT
Fisher & Callhome (Post et al. 

2013)
38 h audio 171k segments en, es SLT

MSLT (Federmann and Lewis 
2017)

4.5–10 h audio 7 k–18k segments de, en, fr, ja, zh SLT

IWSLT ’18 (Niehues et al. 
2018)

1565 audio clips 171k segments de, en SLT

LibriSpeech (Kocabiyikoglu 
et al. 2018)

236 h audio 131k segments en, fr SLT

MuST-C (Di Gangi et al. 2019b) 385–504 h audio 211k–280k segments 10 languages SLT
MaSS (Boito et al. 2019) 18.5–23 h audio 8.2k segments 8 languages SLT
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Flickr8k      Released in 2010, the Flickr8k dataset  (Rashtchian et  al. 2010) has 
been one of the most widely-used multimodal corpora. Originally intended as a 
high-quality training corpus for automatic image captioning, the dataset comprises 
a set of 8,092 images extracted from the Flickr website, each with 5 crowdsourced 
captions in English that describe the image. Flickr8k has shorter captions compared 
to IAPR TC-12, focusing on the most salient objects or actions, rather than complete 
descriptions. As the dataset has been a popular and useful resource, it has been fur-
ther extended with captions in other languages such as Chinese (Li et al. 2016) and 
Turkish (Unal et al. 2016). However, as these captions were independently crowd-
sourced, they are not translations of each other, which makes them less effective for 
MMT.

Flickr30k/Multi30k    The Flickr30k dataset (Young et al. 2014) was released in 
2014 as a larger dataset following in the footsteps of Flickr8k. Collected using the 
same crowdsourcing approach for independent captions as its predecessor, Flickr30k 
contains 31,783 photos depicting common scenes, events, and actions, each anno-
tated with 5 independent English captions. Multi30k  (Elliott et  al. 2016) was ini-
tially released as a bilingual subset of Flickr30k captions, providing German trans-
lations for 1 out of the 5 English captions per image, with the aim of stimulating 
multimodal and multilingual research. In addition, the study collected 5 independ-
ent German captions for each image. The WMT multimodal translation tasks later 
introduced French (Elliott et al. 2017) and Czech (Barrault et al. 2018) extensions 
to Multi30k, making it a staple dataset for image-guided translation, and further 
expanding the set’s utility to cutting-edge subtasks such as multisource training. An 
example from this dataset can be seen in Fig. 2.

WMT test sets      The past 3 years of multimodal shared tasks at WMT each 
came with a designated test set for the task  (Specia et al. 2016; Elliott et al. 2017; 
Barrault et  al. 2018). Totalling 3,017 images in the same domain as the Flickr 
sets (including Multi30k), these sets are too small to be used for training purposes, 
but could smoothly blend in with the other Flickr sets to expand their size. So far, 
test sets from the previous shared tasks (each containing roughly 1,000 images with 

EN: the courtyard of an orange, two-storey building with 
a footpath to a swimming pool in the shape of an eight 
and small palm trees to the left and right;

DE: der Innenhof eines zweistöckigen, orangen 
Gebäudes mit einem Weg zu einem achterförmigen 
Schwimmbecken und kleine Palmen rechts und links 
davon;

EN: Mexican women in decorative white dresses 
perform a dance as part of a parade.
DE: Mexikanische Frauen in hübschen weißen Kleidern 
führen im Rahmen eines Umzugs einen Tanz auf.
FR: Les femmes mexicaines en robes blanches décorées 
dansent dans le cadre d'un défilé.
CS: Součástí průvodu jsou mexičanky tančící v bílých 
ozdobných šatech.

Fig. 2   Examples from IAPR TC-12 image descriptions (top) and Multi30k image captions (bottom)
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captions) have been allowed for validation and internal evaluation. In parallel with 
the language expansion of Multi30k, the test set from 2016 contains only English 
and German captions, and the one from 2017 contains only English, German, and 
French. The 2018 test set contains English, German, French, and Czech captions 
that are not publicly available, though systems can be evaluated against it using an 
online server.3

MS COCO captions    Introduced in 2015, the MS COCO Captions dataset (Chen 
et  al. 2015) offers caption annotations for a subset of roughly 123,000 images 
from the large-scale object detection and segmentation training corpus MS COCO 
(Microsoft Common Objects in Context) (Lin et al. 2014b). Each image in this data-
set is associated with up to 5 independently annotated English captions, with a total 
of 616,767 captions. Though originally a monolingual dataset, the dataset’s large 
size makes it useful for data augmentation methods for image-guided translation, as 
demonstrated in Grönroos et al. (2018). There has also been some effort to add other 
languages to COCO. A small subset with only 461 captions containing ambiguous 
verbs was released as a test set for the WMT 2017 multimodal machine transla-
tion shared task, called Ambiguous COCO (Elliott et al. 2017), and is available in 
all target languages of the task. The YJ Captions dataset  (Miyazaki and Shimizu 
2016) and the STAIR Captions dataset  (Yoshikawa et  al. 2017) comprise, respec-
tively, 132k and 820k crowdsourced Japanese captions for COCO images. However, 
these are not parallel to the original English captions, as they were independently 
annotated.

4.2 � Spoken language translation datasets

The TED corpus    TED is a nonprofit organisation that hosts talks in various topics, 
comprising a rich resource of spoken language produced by a variety of speakers 
in English. Video recordings of all TED talks are made available through the TED 
website,4 as well as transcripts with translations in up to 116 languages. While the 
talks comprise a rich resource for language processing, the original transcripts are 
divided into arbitrary segments formatted like subtitles, which makes it difficult to 
get an accurate sentence-level parallel segmentation for use in translation systems. 
While resegmentation is possible with heuristic approaches, it comes with the addi-
tional challenge of aligning the new segments to the audiovisual content, and to each 
other in source and target languages.

The Web Inventory of Transcribed and Translated Talks ( WIT
3)  (Cettolo et  al. 

2012) is a resource with the aim of facilitating the use of the TED Corpus in MT. 
The initiative distributes transcripts organised in XML files through their website5, 
as well as tools to process them in order to extract parallel sentences. Currently, 
WIT

3 covers 2086 talks in 109 languages containing anywhere between 3 and 575k 
segments in raw transcripts, and is continually growing.

4  http://www.ted.com/talks​.
5  http://wit3.fbk.eu.

3  https​://compe​titio​ns.codal​ab.org/compe​titio​ns/19917​.

http://www.ted.com/talks
http://wit3.fbk.eu
https://competitions.codalab.org/competitions/19917
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Since 2011, the annual speech translation tracks of the IWSLT evaluation cam-
paign (see Sect. 3.2.2) has used datasets compiled from WIT

3 . While each of these 
sets contain a high-quality selection of English transcripts aligned with the audio 
and the target languages featured each year, they are not useful for training SLT sys-
tems due to their small sizes. As part of the 2018 campaign, the organisers released 
a large-scale English–German corpus  (Niehues et  al. 2018) containing 1565 talks 
with 170,965 segments automatically aligned based on time overlap, which allows 
end-to-end training of SLT models.

The MuST-C dataset (Di Gangi et al. 2019b) is a more recent effort to compile 
a massively multilingual dataset from TED data, spanning 10 languages (English 
aligned with Czech, Dutch, French, German, Italian, Portuguese, Romanian, Rus-
sian, and Spanish translations), using more reliable timestamps for alignments than 
the IWSLT’18 dataset using a rigorous alignment process. The dataset contains a 
large amount of data for each target language, corresponding to a selection of Eng-
lish speech ranging from 385 h for Portuguese to 504 h for Spanish.

LibriSpeech    The original LibriSpeech corpus (Panayotov et al. 2015) is a col-
lection of 982 h of read English speech derived from audiobooks from the Lib-
riVox project, automatically aligned to their text versions available from the Guten-
berg project for the purpose of training ASR systems. Kocabiyikoglu et al. (2018) 
augments this dataset for use in training SLT systems by aligning chapters from 
LibriSpeech with their French equivalents through a multi-stage automatic align-
ment process. The result is a parallel corpus of spoken English to textual French, 
consisting of 1408 chapters from 247 books, totalling 236 h of English speech and 
approximately 131k text segments.

MSLT      The Microsoft Speech Language Translation  (MSLT) corpus  (Feder-
mann and Lewis 2016) consists of bilingual conversations on Skype, together with 
transcriptions and translations. For each bilingual speaker pair, there is one conver-
sation where the first speaker uses their native language and the second speaker uses 
English, and another with the roles reversed. The first phase transcripts were anno-
tated for disfluencies, noise and code switching. In a second phase, the transcripts 
were cleaned, punctuated and recased. The corpus contains 7 to 8 h of speech for 
each of English, German, and French. The English speech was translated to both 
German and French, while German and French speech was translated only to Eng-
lish. Federmann and Lewis (2017) repeat the process with Japanese and Chinese, 
expanding the dataset with 10 h of Japanese and 4.5 h of Chinese speech.

Fisher & Callhome    Post et al. (2013) extends the Fisher6 and Callhome7 data-
sets of transcribed Spanish speech with English translations, developed by the Lin-
guistic Data Consortium. The original Fisher dataset contains about 160 h of tel-
ephone conversations in various dialects of Spanish between strangers, while the 
Callhome dataset contains 20 h of telephone conversations between relatives and 

6  Speech: https​://catal​og.ldc.upenn​.edu/LDC20​10S01​, Transcripts: https​://catal​og.ldc.upenn​.edu/LDC20​
10T04​.
7  Speech: https​://catal​og.ldc.upenn​.edu/LDC96​S35, Transcripts: https​://catal​og.ldc.upenn​.edu/LDC20​
10T04​.

https://catalog.ldc.upenn.edu/LDC2010S01
https://catalog.ldc.upenn.edu/LDC2010T04
https://catalog.ldc.upenn.edu/LDC2010T04
https://catalog.ldc.upenn.edu/LDC96S35
https://catalog.ldc.upenn.edu/LDC2010T04
https://catalog.ldc.upenn.edu/LDC2010T04
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friends. The translations were collected from non-professional translators on the 
crowdsourcing platform Mechanical Turk. Fisher  &  Callhome is distributed with 
predesignated development and test splits, a part of which contains four reference 
translations for each transcript segment. The data in the corpus also includes ground 
truth ASR lattices that facilitate the training of strong specialized ASR models, 
allowing pipeline SLT studies to focus on the MT component. As the largest SLT 
corpus available at the time of its release, the Fisher & Callhome corpus has been 
widely used, and remains relevant for SLT today.

MaSS    The Multilingual corpus of Sentence-aligned Spoken utterances (MaSS) 
(Boito et al. 2019) is a multilingual corpus of read bible verses and chapter names 
from the New Testament. It is fully multi-parallel across 8 languages (Basque, Eng-
lish, Finnish, French, Hungarian, Romanian, Russian, and Spanish), comprising 56 
language pairs in total. The multi-parallel content makes this dataset suitable for 
training SLT systems for language pairs not including English, unlike other multilin-
gual datasets such as MuST-C. The data is aligned on the level of verses, rather than 
sentences. In rare cases, the audio for some verses is missing for some languages. 
MaSS contains a total of 8,130 eight-way parallel text segments, corresponding to 
anywhere between 18.5 and 23 h of speech per language.

4.3 � Video‑guided translation datasets

The QED corpus    The QCRI Educational Domain (QED) Corpus (Guzman et al. 
2013; Abdelali et  al. 2014), formerly known as the QCRI AMARA Corpus, is a 
large-scale collection of multilingual video subtitles. The corpus contains publicly 
available videos scraped from massive online open courses (MOOCs), spanning a 
wide range of subjects. The latest v1.4 release comprises a selection of 23.1k vid-
eos in 20 languages (Arabic, Bulgarian, Traditional and Simplified Chinese, Czech, 
Danish, Dutch, English, French, German, Hindi, Italian, Japanese, Korean, Polish, 
Portuguese, Russian, Spanish, Thai, and Turkish), subtitled in the collaborative 
Amara environment8  (Jansen et  al. 2014) by volunteers. A sizeable portion of the 
videos has parallel subtitles in multiple languages, varying in size from 8k segments 

EN: I’m very close to the green but I didn’t get it
on the green so now I’m in this grass bunker.

PT: Eu estou muito perto do green, mas eu não pus a
bola no green, então agora estou neste bunker de grama.

EN: A person dressed as a teddy bear stands in a bouncy 
house and then falls over.

ZH: 

Fig. 3   Examples from How2 video subtitles (top) and VaTeX video descriptions (bottom), retrieved and 
adapted from Sanabria et al. (2018) and Wang et al. (2019b), respectively

8  https​://amara​.org/.

https://amara.org/
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(for Hindi–Russian) to 335k segments (for English–Spanish). Of these, about 75% 
of the parallel segments align perfectly in the original data, while the rest were auto-
matically aligned using heuristic algorithms. An alpha v2.0 of the QED corpus is 
currently underway, scheduled to appear in the OPUS repository (Tiedemann 2012), 
containing a large amount of (noisy) re-crawled subtitles.

The How2 dataset      The How2 dataset (Sanabria et al. 2018) is a collection of 
79,114 clips with an average length of 90 seconds, containing around 2000 h of 
instructional YouTube videos in English, spanning a variety of topics. The dataset 
is intended as a resource for several multimodal tasks, such as multimodal ASR, 
multimodal summarisation, spoken language translation, and video-guided trans-
lation. To establish cross-modal associations, the videos in the dataset were anno-
tated with word-level alignments to ground truth English subtitles. There are also 
English descriptions of each video written by the users who uploaded the videos, 
added to the dataset as metadata corresponding to video-level summaries. For the 
purpose of multimodal translation, a 300-h subset of How2 that covers 22 different 
topics is available with crowdsourced Portuguese translations. This dataset has also 
recently been used for multimodal machine translation  (Sanabria et  al. 2018; Wu 
et al. 2019b). An example from this dataset can be seen in Fig. 3.

The VaTeX  dataset    The Video and TeXt (VaTeX) dataset (Wang et al. 2019b) 
is a bilingual collection of video descriptions, built on a subset of 41,250 video 
clips from the action classification benchmark DeepMind Kinetics-600 (Kay et al. 
2017; Carreira et al. 2018). Each clip runs for about 10 seconds, showing one of 600 
human activities. VaTeX adds 10 Chinese and 10 English crowdsourced captions 
describing each video, half of which are independent annotations, and the other 
half Chinese–English parallel sentences. With low-approval samples removed, the 
released version of the dataset contains 206,345 translation pairs in total. VaTeX 
is intended to facilitate research in multilingual video captioning and video-guided 
machine translation, and the authors keep a blind test set reserved for use in evalua-
tion campaigns. The rest of the dataset is divided into training (26k videos), valida-
tion (3k videos), and public test splits (6k videos). The training and validation splits 
also have public action labels. An example from VaTeX is shown in Fig. 3.

5 � Models and approaches

This section discusses some of the prominent models and approaches for multi-
modal MT tasks introduced in Sect. 2. In particular, we focus on IGT and SLT, and 
present our overview of the state-of-the-art models for either task.

For some multimodal MT tasks, the traditional approach is to put together a pipe-
line to divide the task into several sub-tasks, and cascade different modules to han-
dle each of them. For instance, in the case of spoken language translation (SLT), this 
pipeline would first convert the input speech into text by an automatic speech rec-
ognition module (modality conversion), and then redirect the output to a text-based 
MT module. This is in contrast to end-to-end models, where the source language 
would be encoded into an intermediate representation, and decoded directly into the 
target language. Pipeline systems are less vulnerable to training data insufficiency 
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compared to data-driven end-to-end systems, since each component can be pre-
trained in isolation on abundant sub-task resources. However, they carry the risk of 
error propagation between stages and ignore cross-modal transfer of implicit seman-
tics. As an example for the latter, consider two languages which emphasise words 
via prosody and specific word order, respectively. Translating the transcript would 
make it impossible to reflect the word order in the target sentence as the semantic 
correspondence would be lost at transcription stage. Nevertheless, both pipeline and 
end-to-end approaches rely heavily on the sequence-to-sequence learning framework 
on account of its flexibility and good performance across tasks. In the following, we 
describe this framework in detail.

General purpose sequence-to-sequence learning is inspired by the pioneering 
works in unimodal neural machine translation (NMT). The state of the art in uni-
modal MT has been dominated by statistical machine translation (SMT) methodolo-
gies (Koehn 2009) for at least two decades, until the field drastically moved towards 
NMT techniques around 2015. Inspired by the successful use of deep neural net-
works in language modelling  (Bengio et  al. 2003; Mikolov et  al. 2010) and auto-
matic speech recognition  (Graves et  al. 2013), there has been a plethora of NMT 
studies featuring different neural architectures and learning methods. These architec-
tures often rely on continuous word vector representations to encode various kinds 
of linguistic information in a common vector space, thereby eliminating the need 
for hand-crafted linguistic features. One of the first NMT studies by Kalchbrenner 
and Blunsom (2013) combined recurrent language modelling (Mikolov et al. 2010) 
and convolutional neural networks (CNN) to improve the performance of SMT sys-
tems through rescoring. Later on, the application of recurrent architectures, such as 
bidirectional RNNs (Schuster and Paliwal 1997), LSTMs (Hochreiter and Schmid-
huber 1997; Graves and Schmidhuber 2005), and GRUs (Chung et al. 2014), intro-
duced further diversity into the field, eventually leading to the fundamental encoder-
decoder architecture  (Cho et  al. 2014; Sutskever et  al. 2014). Although the latter 
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RNN variants mitigated the problem of vanishing gradients through the use of gated 
computations, the idea of compressing a variable-length sequence into a fixed capac-
ity vector turned out to be too restrictive for learning long-range dependencies such 
as grammatical agreement in very long sentences. The attention mechanism (Bah-
danau et al. 2015) addressed this issue by simultaneously learning to align transla-
tion units and to translate, supplying a context window with the relevant input units 
at each decoding step, i.e. for each generated word in the target language (Fig. 4).

The performance of the NMT systems that followed came close to, and soon sur-
passed, that of the state-of-the-art SMT systems. Successful non-recurrent alterna-
tives have also been proposed, such as convolutional encoders and decoders with 
attention  (Gehring et  al. 2017), and the fully-connected deep transformers which 
employ the idea of self-attention in addition to the default cross-attention mecha-
nism (Vaswani et al. 2017). The main motivation behind these is to allow for effi-
cient parallel training across multiple processing units, and to prevent learning dif-
ficulties such as vanishing gradients.

Lastly, we would like to mention some major open-source toolkits which con-
tribute vastly to the state of the art in machine translation by allowing fast prototyp-
ing of new approaches as well as the extension of existing ones to new tasks and 
paradigms: Moses (Koehn et al. 2007) for SMT, and FairSeq (Ott et al. 2019), Joey-
NMT (Kreutzer et al. 2019), Lingvo (Shen et al. 2019), Marian (Junczys-Dowmunt 
et  al. 2018), Nematus  (Sennrich et  al. 2017), NeuralMonkey  (Helcl et  al. 2018a), 
nmtpytorch (Caglayan et al. 2017b), OpenNMT (Klein et al. 2017), Sockeye (Hieber 
et al. 2017) and Tensor2Tensor (Vaswani et al. 2018) for NMT.

5.1 � Image‑guided translation

In this section, we present the state-of-the-art models for the image-guided trans-
lation  (IGT) task. We first discuss the visual feature extraction process, continue 
with reviews of the two main end-to-end neural approaches, and finally briefly cover 
retrieval and reranking methods.

5.1.1 � Feature extraction

The practice of embedding translation units into continuous vector representations 
has become a standard in NMT. For compatibility with various NMT architectures, 
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Fig. 5   An overview of two common types of visual featuers extracted from CNNs
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multimodal MT systems need to embed input data from other modalities, whether 
alongside or in place of the text, in a similar fashion. For visual information, the 
current best practice is to use a convolutional neural network (CNN) with multiple 
layers stacked on top of each other, train the system for a relevant computer vision 
task, and use the latent features extracted from the trained network as visual repre-
sentations. Although these visual encoders are highly optimised for the underlying 
vision tasks such as large-scale image classification or object detection  (Russako-
vsky et al. 2015), it has been shown that the learned representations transfer very 
well into vision-to-language tasks such as image captioning (Vinyals et al. 2015; Xu 
et  al. 2015). Therefore, the majority of IGT approaches rely on features extracted 
from state-of-the-art CNNs  (Simonyan and Zisserman 2015; Ioffe and Szegedy 
2015; He et al. 2016) trained for the ImageNet (Deng et al. 2009) image classifica-
tion task, where the output of the network is a distribution over 1000 object catego-
ries. These features usually come in two flavors (Fig. 5): (i) spatial features which 
are feature maps � ∈ ℝ

W×H×C extracted from specific convolutional layers, and (ii) a 
pooled feature vector v ∈ ℝ

C which is the outcome of applying a projection or pool-
ing layer on top of spatial features. The main difference between these features is 
that the former preserves spatial information, while the latter is a spatially unaware, 
compact vectorial representation. An even more compact representation is to use 
the posterior class probabilities ( v ∈ ℝ

K ) extracted from the output layer of a pre-
trained CNN, with K denoting the size of the task-specific label set (for ImageNet, K 
is 1000). Finally, it is also possible to obtain a set of pooled feature vectors (or local 
features) from salient regions of a given image, with regions predicted by object 
detection CNNs (Girshick et al. 2014).

5.1.2 � Sequence‑to‑sequence grounding with pooled features

The simplest and the most intuitive way of visually conditioning a sequence-to-
sequence model is to employ pooled features in a way that they will interact with 
various components of the architecture. These approaches are mostly inspired by the 
early works in neural image captioning (Kiros et al. 2014; Mao et al. 2015; Vinyals 
et al. 2015), and are categorised in Fig. 6 with respect to their entry points.
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The very first attempt for neural image-guided translation comes from Elliott 
et al. (2015), where they formulate the problem as a semantic transfer from a source 
language model to a target language model, within an encoder-decoder framework 
without attention. They propose to initialise the hidden state(s) of the source lan-
guage model (LM), the target LM, or both, using pretrained VGG features (Simon-
yan and Zisserman 2015). Later initialisation variants are applied to attentive NMTs: 
Calixto et al. (2016) and Libovický et al. (2016) experiment with recurrent decoder 
initialisation while Ma et al. (2017) initialise both the encoder and the decoder, with 
features from a state-of-the-art ResNet  (He et  al. 2016). Madhyastha et  al. (2017) 
explore the expressiveness of the posterior probability vector as a visual representa-
tion, rather than the pooled features from the penultimate layer of a CNN.

Huang et al. (2016) take a different approach and enrich the source sentence rep-
resentation with visual information by projecting the feature vector into the source 
language embedding space and then adding it to the beginning or the end of the 
embedding sequence. This allows the attention mechanism in the decoder to attend 
to a mixed-modality source representation instead of a purely textual one. Instead of 
the conventional ImageNet-extracted features, they make use of local features from 
RCNN (Girshick et al. 2014) to represent explicit visual semantics related to sali-
ent objects. In another model referred to as Parallel-RCNN, they build five differ-
ent source embedding sequences, each being enriched with a visual feature vector 
extracted from a different salient region of the image. A shared LSTM encodes these 
five sequences and average pools them to end up with the final source representation.

Calixto and Liu (2017a) revisit the idea of source enrichment to extend it by 
simultaneously appending and prepending the projected visual features to the 
embedding sequence; and combining it with encoder and/or decoder initialisation. 
Caglayan et al. (2017a) explore different source and target interaction methods such 
as the element-wise multiplication between the visual features and the source/target 
word embeddings. Delbrouck and Dupont (2018) add another recurrent layer within 
the decoder in their DeepGRU​ model, conditioned on the visual features and the 
bottom layer hidden state. Both recurrent layers simultaneously decide on the output 
probability distribution by additively fusioning their respective unnormalised logits.

As for transformer-based architectures, Grönroos et al. (2018) revisit the source 
enrichment by adding the visual feature vector to the beginning of the embedding 
sequence  (Huang et  al. 2016). They also experiment with modulating the output 
probability distribution through a time-dependent visual decoder gate. More inter-
estingly, they explore different pooled visual representations such as scene–type 
associations  (Xiao et  al. 2010), action–type associations  (Yao et  al. 2011), and 
object features from Mask R-CNN (He et al. 2017).

Multi-task learning Training an end-to-end neural model to perform multiple 
tasks at once can improve the model’s task-specific performance by forcing it to 
exploit commonalities across the tasks involved (Caruana 1997; Dong et al. 2015; 
Luong et al. 2016). The Imagination architecture, initially proposed by Elliott and 
Kádár (2017) and later integrated into transformer-based NMTs by Helcl et  al. 
(2018b), attempts to leverage the benefits of multi-tasking by proposing a one-to-
many framework which shares the sentence encoder between the translation task and 
an auxiliary visual reconstruction task. Besides the usual cross-entropy translation 
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objective, the model weights are also optimised through a margin-based loss which 
minimises the distance between the ground-truth visual feature vector and the one 
predicted from the sentence encoding. The visual reconstruction task encourages the 
sentence encoding to be visually grounded, i.e. it needs to be suitable for both trans-
lation and predicting the visual features of the image associated with the sentence 
encoding. The visual features are only used at training time and are not needed when 
generating translations. Zhou et al. (2018) further extends the Imagination network 
by incorporating an attention9 over source sentence encodings, with the query vector 
being the visual features. In this approach, the auxiliary margin-based loss is modi-
fied so that the output of the attention layer is considered a reconstruction of the 
pooled feature vector.

Other approaches All grounding approaches covered so far rely on the maxi-
mum-likelihood estimation (MLE) principle during training, which does not neces-
sarily relate to maximising the translation performance as measured by proxy met-
rics such as BLEU. In order to alleviate this discrepancy, Zheng et al. (2018) apply a 
reinforcement learning based fine-tuning where model parameters are updated based 
on a reward signal measured by sentence BLEU scores. In terms of visual integra-
tion, they simply initialise the decoder with pooled features. Toyama et al. (2016), 
Calixto et al. (2019) and Delbrouck and Dupont (2019) cast the problem as a latent 
variable model and resort to techniques such as variational inference and genera-
tive adversarial networks (GANs). Finally, Nakayama and Nishida (2017) approach 
the problem from a zero-resource perspective: they encode {source caption, image} 
pairs into a multimodal vectorial space using a max-margin loss. In a second step, 
they train the decoder using {target caption, image} pairs. Specifically, they do a 
forward-pass with the image as input and obtain the multimodal embedding, from 
which the recurrent decoder is trained to generate the target caption as usual. The 
image encoder is a pretrained VGG CNN. The zero-resource aspect comes from the 
fact that the sets of pairs do not overlap i.e. the approach does not require parallel 
IGT corpus. Chen et al. (2018) tackle the same problem from a multi-agent com-
munication game perspective where a translator and a captioner agent cooperatively 
engage with each other to maximise task-specific rewards.

5.1.3 � Visual attention

Inspired by the previous success of visual attention in image captioning (Xu et al. 
2015), attentive approaches explore how to efficiently integrate a visual attention 
(approach A in Fig. 6) over the spatial features, alongside the language attention in 
NMTs. The most interesting research questions about visual attention are as follows: 
where to apply the visual attention, what kind of parameter sharing should be pre-
ferred and, how to fuse the output of language and visual attention layers. Caglayan 
et al. (2016a) and Calixto et al. (2016) are the first works to tackle these questions, 
through a visual attention which uses the hidden state of the decoder as query into 

9  It should be noted that the attention here is over the source language encodings, and hence not a visual/
spatial attention.



117

1 3

Multimodal machine translation through visuals and speech﻿	

the set of W × H spatial features. Their implementation is quite similar to the lan-
guage attention, which results in two modality-specific contexts that should be fused 
before the output layer of the network. One notable difference is that Caglayan et al. 
(2016a) experiment with a single multimodal attention layer shared across modali-
ties while Calixto et al. (2016) keep the attention layers separate. Later on, Caglayan 
et al. (2016b) evaluate both shared and separate attentions with additive and con-
catenative fusion, and discover that proper feature normalisation is crucial for their 
recurrent approaches (Caglayan et al. 2018). Delbrouck and Dupont (2017b) propose 
a different fusion operation based on compact bilinear pooling (Fukui et al. 2016), 
to efficiently realise the computationally expensive outer product. Unlike additive 
and concatenative fusions, outer product ensures that each dimension of the lan-
guage context vector interacts with each dimension of the visual context vector and 
vice-versa. Follow-up studies extend the decoder-based visual attention approach in 
different ways: Calixto et al. (2017) reimplement the gating mechanism  (Xu et al. 
2015) to rescale the magnitude of the visual information before the fusion, while 
Libovický and Helcl (2017) introduce the hierarchical attention which replaces the 
concatenative fusion with a new attention layer that dynamically weighs the modal-
ity-specific context vectors. Finally, Arslan et al. (2018) and Libovický et al. (2018) 
introduce the same idea into the Transformer-based  (Vaswani et  al. 2017) archi-
tectures. Besides revisiting the hierarchical attention, Libovický et  al. (2018) also 
introduce parallel and serial variants. The former is quite similar to Arslan et  al. 
(2018) and simply performs additive fusion while the latter first applies the language 
attention, which produces the query vector for the subsequent visual attention. Ive 
et al. (2019) extend Libovický et al. (2018) to add a 2-stage decoding process where 
visual features are only used in the second stage, through a visual cross-modal atten-
tion. They also experiment with another model where the attention is applied over 
the embeddings of object labels detected from the images.

In contrast to the decoder-based visual attention, encoder-based approaches 
are relatively less explored. To that end, Delbrouck and Dupont (2017a) propose 
conditional batch normalisation, a technique to modulate the batch normalisation 
layer (Ioffe and Szegedy 2015) of ResNet. Specifically, they condition the mean and 
the variance of the batch normalisation layer on the source sentence representation 
for informed feature extraction. In the same work, Delbrouck and Dupont (2017a) 
also propose to apply an early visual attention inside the encoder, to yield inherently 
multimodal source encodings, on top of which the usual language attention would 
be applied by the decoder.

5.1.4 � Reranking and retrieval based approaches

The most typical pipeline for MT is to obtain an n-best list of translation candi-
dates from an arbitrary MT system and select the best candidate amongst them after 
reranking with respect to an aggregated score. This score is often a combination of 
several models that are able to quantitatively assess translation-related qualities of 
a candidate sentence, such as the adequacy or the fluency, for example. Each model 
is assigned a coefficient and an optimisation step is executed to find the best set of 
coefficients that maximise the translation performance on an held-out development 
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set  (Och 2003). The challenge for the IGT task is how to incorporate the visual 
modality into this pipeline in order to assign a better rank to visually plausible 
translations. To this end, Caglayan et al. (2016a) combine a feed-forward language 
model (Bengio et al. 2003; Schwenk et al. 2006) and a recurrent NMT to rerank the 
translation candidates obtained from an SMT system. The language model is special 
in the sense that it is not only conditioned on n-gram contexts but also on the pooled 
visual feature vector. In contrast, Shah et  al. (2016) conjecture that the posterior 
class probabilities may be more expressive than a pooled representation for rerank-
ing, and treat each probability vi as an independent score for which a coefficient is 
learned. In a recent work, Lala et al. (2018) demonstrate that for the Multi30k data-
set, better translations are available inside an n-best list obtained from a text-only 
NMT model, which allow up to 10 points absolute improvement in METEOR score. 
They propose the multimodal lexical translation (MLT) model where they rerank the 
n-best list with scores assigned by a multimodal word sense disambiguation system 
based on pooled features.

Another line of work considers the task as a joint retrieval and reranking prob-
lem, which can be useful in overcoming data sparsity issues with small multilin-
gual multimodal datasets. Hitschler et al. (2016) construct a multimodal/cross-lin-
gual retrieval pipeline to rerank SMT translation candidates. Specifically, they use a 
large corpus of target {caption, image} pairs, and retrieve a set of pairs similar to the 
translation candidates and the associated image. The visual similarity is computed 
using the Euclidean distance in the pooled CNN feature space. The initial transla-
tion candidates are then reranked with respect to their—inverse document frequency 
based—relevance to the retrieved captions. Zhang et al. (2017) also employ a com-
bined framework of retrieval and reranking. For a given {caption, image} pair, they 
first retrieve a set of similar training images. The target captions associated with 
these images are considered as candidate translations. They learn a multimodal word 
alignment between source and candidate words and select the most probable tar-
get word for each source word. An n-best list from their SMT is reranked using a 
bi-directional NMT trained on the aforementioned source/target word sequences. 
Finally, Duselis et  al. (2017) and Gwinnup et  al. (2018) propose a pure retrieval 
system without any reranking involved. For a given image, they first obtain a set of 
candidate captions from a pretrained image captioning system. Two distinct neural 
encoders are used to encode the source and the candidate captions, respectively. A 
mapping is then learned from the hidden space of the source encoder to the target 
one, allowing the retrieval of the candidate caption which minimises the distance 
with respect to the source caption representation.

5.1.5 � Comparison of approaches

Table  2 presents BLEU and METEOR scores on the English→German 
test2016 set of Multi30k dataset, as this is the test set that most studies report 
against. When possible, we annotate each score with the associated gain or loss 
with respect to the underlying unimodal MT baseline reported in the respective 
papers. The results concentrate around constrained systems, which only allow the 
use of parallel Multi30k corpus during training. A few studies experiment with 
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using external resources  (Calixto et al. 2017; Helcl and Libovický 2017; Elliott 
and Kádár 2017; Grönroos et  al. 2018) for pretraining the MT system and then 
fine-tuning it on Multi30k, or directly training the system on the combination of 
Multi30k and the external resource. Two such unconstrained systems are also 
reported.

Table 2   Automatic scores of state-of-the-art IGT methods on Multi30k English→German test2016: 
the table is clustered (and sorted by METEOR) across years for constrained systems, followed by uncon-
strained ones

Systems marked with † are re-evaluated with tokenised sentences, * denotes the use of visual features 
other than ImageNet CNNs. The gains and losses are with respect to the MT baselines reported in the 
papers. The types refer to Fig. 6

BLEU ↑ METEOR ↑ Type Description Arch.

Elliott et al. (2015)† 9.7 (N/A) 24.7 (N/A) E,D Conditional LMs RNN
Caglayan et al. (2016a)† 29.3 ( ↓4.6) 48.5 ( ↓4.3) A Shared attention RNN
Calixto et al. (2016)† 28.8 (N/A) 49.6 (N/A) A Separate attention RNN
Huang et al. (2016) 36.8 ( ↑2.0) 54.4 ( ↑2.3) I* Parallel RCNN-LSTMs RNN
Hitschler et al. (2016)† 34.3 (N/A) 56.0 (N/A) R Retrieval + reranking SMT
Toyama et al. (2016) 36.5 ( ↑1.6) 56.0 ( ↑0.7) L Variational RNN
Shah et al. (2016)† 34.8 ( ↑0.2) 56.7 ( ↑0.1) R Visual reranking SMT
Caglayan et al. (2016a)† 36.2 (– 0.0) 57.5 ( ↑0.1) R Visual reranking SMT
Helcl and Libovický 

(2017)
31.9 ( ↓2.7) 49.4 ( ↓2.3) A Hierarchical attention RNN

Calixto and Liu (2017a) 36.9 ( ↑3.2) 54.3 ( ↑2.0) I Input prepend & append RNN
Calixto et al. (2017) 36.5 ( ↑2.8) 55.0 ( ↑2.7) A Gated attention RNN
Calixto and Liu (2017a) 37.3 ( ↑3.6) 55.1 ( ↑2.8) D Decoder init. RNN
Elliott and Kádár (2017) 36.8 ( ↑1.3) 55.8 ( ↑1.8) T Imagination RNN
Caglayan et al. (2017a) 38.2 ( ↑0.1) 57.6 ( ↑0.3) E,D Encoder decoder init. RNN

37.8 ( ↓0.3) 57.7 ( ↑0.4) O Multiplicative interaction RNN
Delbrouck and Dupont 

(2017a)
40.5 (N/A) 57.9 (N/A) A Encoder attention + CBN RNN

Arslan et al. (2018) 41.0 ( ↑2.4) 53.5 ( ↓1.5) A Parallel attention Transformer
Calixto et al. (2019) 37.7 ( ↑2.7) 56.0 ( ↑1.1) L Variational RNN
Helcl et al. (2018b) 38.8 ( ↑0.7) 56.4 ( ↑0.2) T Imagination Transformer
Libovický et al. (2018) 38.5 ( ↑0.2) 56.5 ( ↓0.2) A Hierarchical attention Transformer

38.6 ( ↑0.3) 57.4 ( ↑0.7) A Parallel attention Transformer
Ive et al. (2019) 38.0 ( ↑0.1) 55.6 ( ↓0.3) D* 2-stage decoder + label 

embs.
Transformer

Libovický (2019) 37.6 ( ↑0.9) 56.0 ( ↑0.9) A Hierarchical attention RNN
Caglayan (2019) 39.0 ( ↑0.1) 58.5 ( ↑0.1) E,D Encoder decoder init. RNN

39.4 ( ↑0.5) 58.7 ( ↑0.3) A Separate attention + L2 
Norm.

RNN

Unconstrained ensembles
 Helcl et al. (2018b) 42.6 ( ↑2.2) 59.4 ( ↑0.4) T Imagination Transformer
 Grönroos et al. (2018) 45.5 (– 0.0) (N/A) I* Input prepend Transformer
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At a first glance, the automatic results reveal that (i) initially, neural systems 
were not able to surpass the SMT systems, (ii) the use of external resources 
is beneficial to boost the underlying baseline performance, which further mani-
fests itself as a boost in the multimodal scores and (iii) careful tuning allows 
RNN-based models to reach and even surpass Transformer-based models. From 
a multimodal perspective, the results are not very conclusive as there does not 
seem to be a single architecture, feature type or integration type that brings con-
sistent improvements. Elliott (2018) attempted to answer the question of how 
efficiently state-of-the-art models were integrating information from the visual 
modality and concluded that when models were adversarially challenged with 
wrong images at test time, the quality of the produced translations was not that 
much affected as one would expect. Later on, Caglayan et al. (2019) showed how 
these seemingly insensitive architectures start to significantly rely on the visual 
modality, once words were systematically removed from source sentences dur-
ing training and test. We believe that this latter finding may also be connected to 
the fact that better baselines benefit less from the visual modality (Table 2) i.e. 
sub-optimal architectures may leverage more from the visual information when 
compared to well trained NMT models. In fact, even the choice of vocabulary 
size may simulate systematic word removal, if a significant portion of the source 
vocabulary are mapped to unknown tokens. The same experimental pipeline of 
Caglayan et al. (2019) also paved the way for assessing the particular strengths 
of some of the covered IGT approaches and showed that, the use of spatial fea-
tures through visual attention is superior than initialising the encoders and the 
decoders using pooled features.

Lastly, if we take a look at the human evaluation rankings conducted through-
out the WMT shared tasks, we see that the top three ranks for English→German 
and English→French are occupied by two unconstrained ensembles  (Grönroos 
et al. 2018; Helcl et al. 2018b), the MLT Reranking  (Lala et al. 2018) and the 
DeepGRU  (Delbrouck and Dupont 2018) systems in 2018. In 2017, the multi-
plicative interaction  (Caglayan et al. 2017a), unimodal NMT reranking  (Zhang 
et  al. 2017), unconstrained Imagination  (Elliott and Kádár 2017), encoder 
enrichment (Calixto and Liu 2017a) and hierarchical attention (Helcl and Libo-
vický 2017) were ranked as top three, again for both language pairs.

5.2 � Spoken language translation

In spoken language translation, the non-text modality is the source language 
audio, which is translated into target language text. While source language 
transcripts may be available for training, at translation time the speech is typi-
cally the only input modality. We begin this section with a brief introduction to 
speech-specific feature extraction (Sect. 5.2.1). Section 5.2.2 reviews the current 
state of the art for the traditional pipeline methods and finally, Sect. 5.2.3 covers 
the end-to-end methods which saw a rapid development in recent years.
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5.2.1 � Feature extraction

Even though many deep learning applications use raw input data, it is still com-
mon to use somewhat engineered features in speech applications. The relevant 
information in the speech signal is in the temporal variation of frequency content, 
and therefore a spectrogram representation is computed. It discards the phase infor-
mation of the signal and captures signal activity at different frequencies in short, 
consecutive, and typically overlapping frames. The frame length trades off time and 
frequency precision: longer frames capture finer spectral (i.e. frequency) detail, but 
also describe a longer segment of time, which can be problematic as certain speech 
events (e.g.  the stop consonants p, t) can have a very short duration.

Next, a Mel-scale filterbank is applied to each frame, and the logarithm of each 
filter’s output is computed. This leads to log Mel-filterbank features. The filterbank 
operation reduces the number of dimensions. However, these operations are also 
perceptually motivated: the filterbank by the masking of frequencies close to each 
other in the ear, the Mel-scale as it relates frequency to perceived pitch, and the 
logarithm by the relation of perceived loudness to signal activity (Pulkki and Kar-
jalainen 2015).

Continued efforts in learning deep representations from raw samples exist, with 
some success (Sainath et al. 2015). However, log Mel-filterbank vectors as input to 
deep neural network models (Mohamed et al. 2012) are the standard choice. Addi-
tional, more complex features may be used to aid robustness to speaker variabil-
ity (Saon et al. 2013) or recognition in tonal languages (Ghahremani et al. 2014).

5.2.2 � State of the art in pipeline methods

Pipeline approaches in SLT chain together separate ASR and MT modules, and 
these naturally follow progress in their respective fields. A popular ASR system 
architecture is an HMM-DNN hybrid acoustic model (Yu and Li 2017), followed by 
an n-gram language model in the first decoding pass, and a neural language model 
for rescoring. This type of HMM-based ASR is essentially pipeline ASR. In addition 
to pipeline ASR, end-to-end ASR methods have recently gained popularity. Particu-
larly, encoder-decoder architectures with attention have been successful, although on 
standard publicly available datasets HMM-based models still narrowly outperform 
end-to-end ones (Lüscher et al. 2019). Chiu et al. (2018) show that encoder-decoder 
with attention ASR can outperform HMM-based models on an very large (12,500 
h) proprietary dataset. Another common end-to-end ASR method is Connectionist 
Temporal Classification (CTC) (e.g. Li et al. (2019)).

Wang et al. (2018c) and Liu et al. (2018) place first and second, respectively, 
in the IWSLT 2018 evaluation campaign. Both apply similar pipeline architec-
tures: a system combination of multiple different HMM-DNN acoustic models 
and LSTM rescoring for ASR, followed by a system combination of multiple 
Transformer NMT models for translation. Liu et  al. (2018) additionally use an 
encoder-decoder with attention ASR to improve the system combination ASR 
results, although individually the end-to-end model is clearly outperformed by 
the HMM-DNN models. Wang et  al. (2018c) use an additional target-to-source 



122	 U. Sulubacak et al.

1 3

NMT system for rescoring to improve adequacy. The systems also differ in inter-
facing strategies between ASR and MT.

In the latest IWSLT evaluation campaign in 2019, end-to-end SLT models 
were encouraged. However, the best performance was still achieved with a pipe-
line SLT approach, where Pham et al. (2019) use end-to-end ASR and a Trans-
former NMT model. In the ASR module, an LSTM-based approach outperforms 
a Transformer model, though combining both in an ensemble proved beneficial. 
Weiss et  al. (2017) and Pino et  al. (2019) also report competitive results using 
end-to-end ASR, with Pino et  al. (2019) surpassing the state-of-the-art in SLT. 
End-to-end ASR has attracted attention in SLT, because it allows for parameter 
transfer in end-to-end SLT (e.g. Bérard et al. (2018), and Fig. 8).

Challenges in pipeline SLT Research in pipeline SLT has specifically focused 
on the interface between ASR and MT. There is a clear mismatch between MT 
training data and ASR output, caused by the ASR noise characteristics (i.e. tran-
scription errors), and the ASR output dissimilarity with respect to the written text 
due to lack of capitalisation and punctuation, and the disfluencies (e.g.   repeti-
tions and hesitations), which naturally occur in speech. Ruiz and Federico (2014, 
2015), Ruiz et  al. (2017) quantify the effect of ASR errors on MT. In a linear 
mixed-effects model, the amount of WER added on top of gold standard tran-
scripts has a direct effect on TER increase. The results do not vary over different 
ASR systems. Minor localised ASR errors can result in longer distance errors or 
duplication of content words in NMT. Homophonic substitution error spans (e.g.  
anatomy → and that to me) are shown to account for a significant portion of ASR 
errors and to have a large impact on translation quality. With regards to noise 
robustness, it is noted that the utterances which were best translated by phrase-
based MT, had higher average WER than utterances which were best translated 
by NMT. In general, NMT has been established as particularly sensitive to noisy 
inputs (Belinkov and Bisk 2018; Cheng et al. 2018).

One approach to address the mismatch is training the MT system on noisy, ASR-
like input. Peitz et al. (2012) use an additional phrase-table trained on ASR-outputs 
on the SLT corpus. Tsvetkov et  al. (2014) augment a phrase-table with plausible 
ASR misrecognitions. These errors are synthesised by mapping each phrase to 
phones via a pronunciation dictionary, and randomly applying heuristic phone-level 
edit operations.

Sperber et al. (2017b) first train an NMT system on reference transcripts, and then 
fine-tune on noisy transcripts. The noise is sampled from a uniform distribution over 
insertions, deletions or substitutions, with optional unigram weighting for the substi-
tutions and insertions. Additionally, a deletion-only noise is used. Smaller amounts 
of noise are shown to improve SLT results, but increasing noise levels to actual test-
time ASR levels (rather high, at 40%) only degrades performance. Increased noise 
is noted to produce shorter outputs, which in turn are punished by the BLEU brevity 
penalty. A precision-recall tradeoff is observed: the system could either drop uncer-
tain inputs (better precision) or try to guess translations (better recall). Fine-tuning 
with deletion-only noise biases the system to produce longer outputs, which is 
shown to counteract the effect of noisy inputs producing shorter outputs. Pham et al. 
(2019) use the data augmentation method SwitchOut (Wang et al. 2018b), to make 
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their NMT models more robust to ASR errors. During training, SwitchOut randomly 
replaces words in both the source and the target sentences.

Another approach to cope with the mismatch is to transform the ASR-output into 
written text. Wang et al. (2018c) apply a Transformer-based punctuation restoration 
and heuristic rules which remove disfluencies and transform written out numbers 
and quantities into numerals. Liu et al. (2018) experiment with NMT-based trans-
formations in both directions: producing ASR-like text from written text for train-
ing the translation system, or producing written text from ASR-like text as a test-
time bridge between ASR and translation. Transforming the MT training data into 
an ASR-like format consistently outperforms inverse normalization of ASR-output, 
though both are beneficial in the final system combination.

Long audio streams typically need to be segmented into manageable length pieces 
using voice activity detection (Ramirez et al. 2007), or more elaborate speaker dia-
risation methods (Anguera et al. 2012). These methods may not produce clean sen-
tence boundaries. This is a clear problem in MT, as the boundaries can cut between 
actual sentences. Liu et al. (2018) alleviate the problem by applying an LSTM-based 
resegmenter after the ASR system. Pham et al. (2019) combine resegmentation, and 
casing and punctuation restoration into a single ASR post-processing task, and apply 
an NMT model.

Coupling between ASR and MT The SLT search problem is often described math-
ematically as shown in Table 3. Generally, pipeline search is based on the assump-
tion that P(y|z, x) = P(y|z) , i.e. given the source language transcript, the translation 
does not depend on the speech. It is still possible to take the uncertainty of the tran-
scription into account under this conditional independence assumption, but it rules 
out the use of paralinguistic cues, e.g.  prosody. In pure serial pipeline search, first 
the 1-best ASR result is decoded, then only this 1-best result is translated. The hard 
choice in 1-best decoding is especially susceptible to error propagation. Early work 
in SLT found consistent improvements with loosely coupled search, where a rich 
representation carrying the ASR uncertainty, such as an N-best list or word lattice, 
is used in translation. Tightly coupled search, i.e. joint decoding, is also possible, 
although the application is limited by excessive computational demands. In tightly 
coupled search, the translation model would also influence which ASR hypotheses 
were searched further. This was done by representing both the ASR and the phrase-
based MT search spaces as Weighted Finite State Transducers (WFST).  (Matusov 
et al. 2006; Zhou 2013)

Osamura et al. (2018) implement a type of loose coupling by using the softmax 
posterior distribution from the ASR module as the input for NMT. Loose coupling 

Table 3   SLT search in 
mathematical formulation, for 
translation y, source language 
transcript z, source language 
speech x, and set of all possible 
transcripts Z

End-to-end search argmax
y

P(y|x)
General pipeline search argmax

y

∑
z∈Z� (x) P(y�z)P(z�x)

Pure serial pipeline Z�(x) =
{
argmax

z

P(z|x)
}

Loosely coupled pipeline Z�(x) ⊂ Z

Tightly coupled pipeline Z�(x) = Z
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via using lattices as input in NMT is not straightforward. Sperber et  al. (2017a) 
implement LatticeLSTM for lattice inputs in RNN-based NMT, and find that pre-
serving the uncertainty in the ASR output is beneficial for SLT. Zhang et al. (2019) 
further propose a Transformer model which can use lattice inputs, and find that it 
outperforms both a standard Transformer and a LatticeLSTM baseline in an SLT 
task. However, tight coupling of NMT and ASR has not been proposed in pipeline 
SLT.

In addition to coupled decoding, end-to-end SLT leverages coupled training. This 
can avoid suboptimization; for phrase-based MT and HMM-GMM ASR, He et al. 
(2011) show how optimizing the ASR component purely for WER can produce 
worse results in SLT. He and Deng (2013) foreshadow end-to-end neural SLT sys-
tems, proposing a joint, end-to-end optimization procedure for a pipeline of HMM-
GMM ASR and phrase-based MT. In the proposed approach, the ASR and MT com-
ponents are first trained separately, and then the whole pipeline is jointly optimized 
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the decoder through MT, knowledge distillation, or multi-task learning. The optional link in multi-task 
learning results in 2-step decoding. TCEN combines multiple types of pretraining
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for sentence-level BLEU, by iteratively sampling sets of competing hypotheses from 
the pipeline and updating the parameters of the submodels discriminatively.

5.2.3 � End‑to‑end spoken language translation

The first attempts to use end-to-end methods for SLT were published in 2016. This 
period saw experimentation with a wide variety of approaches, before research focus 
converged on sequence-to-sequence architectures. These early methods (Duong 
et al. 2016; Anastasopoulos et al. 2016; Bansal et al. 2017) were able to align source 
language audio to target language text, but they were not able to perform transla-
tion. The first true end-to-end SLT system is presented by Bérard et al. (2016). Still 
a proof-of-concept, it was trained on BTEC French→English with synthetic audio 
containing a small number of speakers.

Figure 7 shows the different types of training data applicable for SLT. The stand-
ard learning setup for end-to-end SLT is only able to train from untranscribed SLT 
data. The task is very challenging, as data of this type is scarce, and the represen-
tation gap between source audio and target text is large. The source transcript is 
useful as an intermediary representation, a stepping stone to divide the gap into 
two smaller ones: modality conversion and translation. Many learning setups (see 
Fig. 8), e.g. pretraining, multi-task learning, and knowledge distillation, have been 
applied for exploiting the source transcripts. In early experiments, no new examples 
are introduced for the auxiliary task(s); Only source transcript labels for the SLT 
examples were added. Later the same learning setups have been applied to exploit 
more abundant auxiliary ASR and MT data.

An important milestone towards parity with pipeline approaches was to achieve 
better translation quality when both the end-to-end system and the pipeline system 
are trained on the same SLT data. This milestone was reached by Weiss et al. (2017), 
training on the 163h Fisher&Callhome Spanish→English data set. As pipeline meth-
ods are naturally capable of exploiting the more abundant paired ASR and MT data, 
but in this case this condition was unrealistically constrained. When the constraint 
is lifted, pipeline methods improve to a level that is difficult or impossible to reach 
on small amounts of source audio-translated text data. The effective use of auxil-
iary data was a key insight going forward towards achieving parity with pipeline 
approaches.

Figure 8 shows learning setups that have been applied for exploiting source tran-
scripts and auxiliary data. Weiss et al. (2017) use a multi-task learning procedure 
with ASR as the auxiliary task, training only on transcribed SLT data. In multi-task 
learning (Caruana 1997), multiple tasks are trained in parallel, with some network 
components shared between the tasks. Bérard et  al. (2018) compare pretraining 
(sequential transfer) with multi-task learning (parallel transfer), finding very lit-
tle difference between the two. In pretraining, some of the parameters from a net-
work trained to perform an auxiliary task are used to initialise parameters in the 
network for the main task. The system is trained only on transcribed SLT data, with 
two auxiliary tasks: pretraining the encoder and decoder with ASR and textual MT 
respectively. Stoian et al. (2019) compare the effects of pretraining on auxiliary ASR 
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datasets of different languages and sizes, concluding that the WER of the ASR sys-
tem is more predictive of the final translation quality than language relatedness.

Anastasopoulos and Chiang (2018) make the line between pipeline and end-to-
end approaches more blurred by using a multi-task learning setup with two-step 
decoding. First the source transcript is decoded using the ASR decoder. A second 
SLT decoder attends to both the speech input and the hidden states of the ASR 
decoder. While the system is trained end-to-end, the two-step decoding is still nec-
essary at translation time. The system is trained only on transcribed SLT data. Liu 
et al. (2019) focus on exploiting source transcripts by means of knowledge distilla-
tion. They train the student SLT model to match the output probabilities of a text-
only MT teacher model, finding that knowledge distillation is better than pretraining. 
Inaguma et al. (2019b) also see substantial improvements from knowledge distilla-
tion when adding auxiliary textual parallel data. Wang et al. (2019a) introduce the 
Tandem Connectionist Encoding Network  (TCEN), which allows neural network 
components to be pretrained while minimising both the number of parameters not 
transferred from the pretraining phase, and the mismatch of components between 
pretraining and finetuning. The final network consists of four components: ASR 
encoder, MT encoder, MT attention and MT decoder. The ASR encoder is pre-
trained with a Connectionist Temporal Classification objective function, which does 
not require a separate ASR decoder which would go to waste after pretraining. The 
last three parts can be pretrained with a textual MT task.

Jia et  al. (2019) show that augmenting auxiliary data is more effective than 
multi-task learning. MT data is augmented with synthesised speech, while ASR 
data is augmented with synthetic target text by forward translation using a text-
only MT system (see Fig. 7). These kinds of synthetic data augmentation are con-
ceptually similar to the highly successful practice of using backtranslation (Senn-
rich et al. 2016a) to exploit monolingual data in textual MT. With both pretraining 
and multi-task learning, the end-to-end system slightly outperforms the pipe-
line. Adding synthetic data substantially outperforms the pipeline. The systems 
are both trained on exceptionally large proprietary corpora: ca 1300h translated 

Target
Source

Meta-learning

Shared 
Decoder

Shared 
Encoder

MAML

Speech
Encoder

Meta 
Encoder

Meta 
Decoder

Decoder

Speech
Encoder

Information flow
Optional flow
Loss function
Parameter transfer

Fig. 9   Meta-learning expressed in the visual terms of the learning setups in Fig. 8. Meta-learning can be 
used to find a good initialization for standard training. The MAML algorithm explicitly learns to learn 
fast on the ASR and MT tasks
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speech and 49000h transcribed speech. Controversially the system is also evalu-
ated on a proprietary test set. The speech encoder is divided into two parts, of 
which only the first is pretrained on an ASR auxiliary task. The entire decoder 
is pretrained on the text MT task. Pino et al. (2019) evaluate several pretraining 
and data augmentation approaches. They use TTS to synthesise source audio for 
parallel text data, finding that the effect depends on the quality and quantity of 
the synthetic data. Using textual MT to synthesise target text from ASR data is 
clearly beneficial. Pretraining the speech encoder on an ASR task is useful for the 
lower resourced English→Romanian, but not for English→French. Pretraining on 
ASR is not a good substitute for using textual MT for augmenting the ASR data, 
but does speed up convergence of the SLT model. Using a combination of a VGG 
Transformer speech encoder and decoder, they very nearly reach parity with a 
strong pipeline system.

One more indirect way to exploit auxiliary data is meta-learning. In general, 
the goal of meta-learning is to use multiple related tasks to learn how to learn fast. 
A widely applicable meta-learning approach is the Model-agnostic Meta Learn-
ing (MAML) (Finn et al. 2017) algorithm. In normal MAML, a model is explic-
itly optimized to require few updates in learning a new task by backpropagating 
through training. Indurthi et al. (2020) adapt MAML to SLT by first meta-training 
the model on both ASR and MT. To deal with the multiple modalities and lan-
guages inherent, a shared vocabulary is used for the target and source sides, and 
CNN layers with stride larger than one are used to compress the input when in 
the speech modality. After meta-learning, the model is finetuned in the SLT task. 
Figure 9 relates this approach to the learning setups of Fig. 8 visually. Improve-
ments are found over transfer- and multi-task learning on the MuST-C English→
German and English→French tasks. When both subword units and synthetically 
augmented SLT data are leveraged, even a pipeline baseline is outperformed.

Bansal et  al. (2019) apply crosslingual pretraining, by pretraining on high-
resource ASR to improve low-resource SLT. They use a small Mboshi→French 
SLT corpus without source transcripts. As Mboshi has no official orthography, 
transcripts may be difficult to collect. Pretraining the speech encoder using a com-
pletely unrelated high-resource language, English, effectively allows to account 
for acoustic variability, such as speaker and channel differences. Di Gangi et al. 
(2019d) train a one-to-many multilingual system to translate from English to all 
8 target languages of the MuST-C corpus, with an additional task pair for Eng-
lish ASR. Prepending a target language tag to the input (Johnson et al. 2017), is 
not effective in multilingual SLT, resulting in many acceptable translations into 
the wrong language. Better results are achieved with a stronger language signal 
using merge, a language-dependent shifting operation. Inaguma et  al. (2019a) 
train multilingual models for {en, es} → {en, fr, de} SLT. They achieve better 
results with the multilingual models than with bilingual ones, including pipeline 
methods for some test sets.

Noise-based data augmentation methods have also been applied to the speech 
audio. Bahar et al. (2019) and Di Gangi et al. (2019a) apply spectral augmentation 
(SpecAugment), which randomly masks blocks of features that are consecutive in 
time and/or frequency.
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5.2.4 � End‑to‑end SLT architectures

There is a large variety of architectures that have been applied to end-to-end SLT, 
with no clear favourite having emerged. However, recent architectures all fol-
low some type of sequence-to-sequence architectures that makes use of attention 
mechanisms.

Two varieties of LSTM layers have been used: standard bi-LSTM (e.g. Jia et al. 
2019) and pyramidal bi-LSTM (e.g. Duong et al. 2016; Bérard et al. 2016; Bahar 
et  al. 2019). The pyramidal construction of the encoder downsamples the long 
speech input sequence, making subsequent bi-LSTM layers and the attention mecha-
nism faster and alignment easier. Following Weiss et al. (2017), Bérard et al. (2018) 
move away from the pyramidal bi-LSTM encoder architecture to convolution fol-
lowed by bi-LSTM. The prepended convolutional layers perform the downsampling 
of the audio signal, making the pyramidal construction unnecessary.

Transformers have also been used in many SLT systems. Liu et al. (2019) pro-
pose an architecture in which all encoders and decoders are standard Transformer 
encoders and decoders respectively. Pino et  al. (2019) further prepend VGG-style 
convolutional blocks to Transformer encoders and decoders, in order to replace the 
positional embedding layer of the standard Transformer architecture and to down-
sample the signal. A convolution is able to encode local word order information, 
even though a subsequent pooling layer will remove global order information. 
Di Gangi et al. (2019d) use a speech encoder which begins with stacks of convo-
lutional layers interleaved with 2D self-attention (Dong et al. 2018), followed by a 
stack of Transformer layers. Salesky et al. (2019) revisit the network-in-network (Lin 
et al. 2014a) architecture to achieve downsampling: parameters are shared spatially 
in a similar way to CNN, but a full multi-layer perceptron network is applied to each 
window.

Convolutional Neural Networks are used in many SLT architectures, but only 
in combination with LSTM or Transformer, not in isolation. The combined CNN-
LSTM architecture is popular in end-to-end ASR (Watanabe et al. 2018). The CNN 
is well suited for reduction of the time scale to something manageable, and mod-
eling short range dependencies. The appended LSTM or Transformer is useful for 
encoding the semantic information for translation. The CNNs used in SLT are typi-
cally 2D convolutions (parameter sharing across both time and frequency). Time 
Delay Neural Networks (TDNN) are still popular in ASR, but have not to the best 
of our knowledge been used in end-to-end SLT. TDNNs can be seen as a 1D con-
volution, only sharing parameters across time. The VGG (Simonyan and Zisserman 
2015) architecture of CNNs is used in SLT, but not ResNet (He et al. 2016).

Comparison of architectures In SLT, the choice between LSTM and Trans-
former architectures doesn’t seem to be a settled matter: recent papers use both. 
Both architectures are powerful enough, when stacked into sufficiently deep 
networks. Pino et  al. (2019) present a result in favour of the Transformer, as 
they only reach parity with their pipeline using Transformers, but not LSTMs. 
Inaguma et  al. (2019b) find that Transformers consistently outperform LSTMs 
in their experiments. A downside of LSTM is slow training on the very long 
sequences encountered in speech translation. While the Transformer parallelises 
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to a larger extent, making training fast, it is not immune to long sequences, as 
the self-attention is quadratic in memory w.r.t. the length. The Transformer also 
lacks explicit modelling of short range dependencies, due to the self-attention 
learning dependencies of any range with equal difficulty. Di Gangi et al. (2019c) 
attempt to augment the Transformer to alleviate some of its shortcomings.

Decoding units In textual NMT, subword-level decoders have become the 
standard choice  (Sennrich et  al. 2016b). Most end-to-end SLT systems use 
character-level decoders. Although word level decoding is rare, Bansal et  al. 
(2018) focus on a low-computation setting, deciding to use word-level decoding 
to shorten the sequence length. Some well-performing recent systems use sub-
word units (Liu et al. 2019; Jia et al. 2019; Pino et al. 2019; Bansal et al. 2019; 
Indurthi et al. 2020). Wang et al. (2019a) find characters to work better than sub-
words in their system.

Has parity with pipeline approaches been reached? Recent results (Jia et al. 
2019; Pino et  al. 2019; Indurthi et  al. 2020) show that on certain tasks with 
large enough datasets of high-quality, end-to-end systems can reach the same 
or even better performance than pipeline systems. On the other hand, Di Gangi 
et al. (2019c) show that when both pipeline systems and end-to-end models are 
restricted to pure SLT-data only, end-to-end methods do not lag far behind in 
performance. In low-resource settings, end-to-end systems do not perform as 
well. Furthermore, in the IWSLT 2019 evaluation campaign  (Niehues et  al. 
2019), the pipeline system of Schneider and Waibel (2019) clearly outperforms 
all end-to-end submissions. Sperber et  al. (2019) find that current methods do 
not use auxiliary data effectively enough. The amount of transcribed SLT data 
is critical: When the size of the data containing all three of source audio, source 
text and target text is sufficient, end-to-end methods outperform pipeline meth-
ods. In lower resource settings where the amount of SLT data is insufficient, 
pipeline methods are better.

Table  4 shows results on various SLT tasks. The English→French Aug-
mented LibriSpeech test set is one of the most competed test sets for SLT, par-
ticularly end-to-end SLT. It shows the rapid increase in performance during the 
last two years, and the importance of maximally exploiting available training 
data. MuST-C has gained popularity since its recent release and shows a similar 
pattern

6 � Future directions

The previous sections provide a detailed overview of resources, definitions of 
various kinds of multimodal MT, and the extensive work that has been devoted 
to develop models for the different tasks. However, multimodal MT is still in 
its infancy. This is especially the case for truly end-to-end models, which have 
only appeared in recent years. Future work should explore more realistic settings 
that go beyond restricted domains and rather artificial problems such as visually-
guided image caption translation.
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6.1 � Datasets and resources

Image-guided translation has, thus far, been studied with small-scale datasets 
(Elliott et  al. 2016), and there is a need for larger-scale datasets that bring the 
resources for this task closer to the size of image captioning (Chen et al. 2015) 
and machine translation datasets (Tiedemann 2012). Larger-scale datasets have 
started to appear for video-guided translation (Sanabria et al. 2018; Wang et al. 
2019b). Spoken-language translation datasets (Kocabiyikoglu et  al. 2018; Nie-
hues et  al. 2018) are smaller than standard automatic speech recognition data-
sets. A common challenge in multimodal translation is the need for crosslin-
gually aligned resources, which are expensive to collect (Elliott et  al. 2016), 
or can result in a small dataset of clean examples (Kocabiyikoglu et al. 2018). 
Future work will obviously benefit from larger datasets, however, researchers 
should further explore the role of data augmentation strategies (Jia et al. 2019) 
in both spoken language translation and visually-guided translation.

6.2 � Evaluation and “verification”

A significant challenge in image-guided translation has been to demonstrate that 
a model definitively improves translation with image guidance. This has resulted 
in more focused evaluation datasets that test noun sense disambiguation (Elliott 
et al. 2017; Lala and Specia 2018) and verb sense disambiguation (Gella et al. 
2019). In addition to new evaluations, researchers are focusing their efforts on 
determining whether image-guided translation models are sensitive to perturba-
tions in the inputs. Elliott (2018) showed that the translations of some trained 
models are not affected when guided by incongruent images (i.e. the transla-
tion models were not guided by the image that the source language sentence 
describes, instead they are guided by a randomly selected image; see Sect. 5.1.5 
for more details); Caglayan et  al. (2019) demonstrated that training models 
with masked tokens increases the sensitivity of models to incongruent image 
guidance; and, more recently, Dutta Chowdhury and Elliott (2019) showed that 
trained models are more sensitive to textual perturbations than incongruent 
image guidance. Overall, there is a need for more focused evaluations, especially 
in a wider variety of language pairs, and for models to be explicitly evaluated in 
these more challenging conditions. Future research on visually-guided transla-
tion should also ensure that new models are actually using the visual guidance in 
the translation process.

In spoken language translation, this line of research into focused evaluations 
might involve digging into the cases where a good transcript is not enough to 
disambiguate the translation. One possible case is translating into a language 
where the speaker’s gender matters, such as French or Arabic  (Elaraby et  al. 
2018). End-to-end SLT systems have the potential to use non-linguistic infor-
mation from the speech signal to tackle these challenges, but it is currently 
unknown to which extent they are able to do so.
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6.3 � Shared tasks

In addition to stimulating research interest, shared task evaluation campaigns 
enable easier comparison of results by encouraging the use of standardised data 
conditions. The choice of data condition can be made with many aims in mind. 
To set up a race for state-of-the-art results using any and all available resources, 
it is enough to define a common test set. For this goal, any additional restrictions 
are unnecessary or even detrimental. For example the GLUE natural language 
understanding task (Wang et al. 2018a) takes this approach.

On the other hand, if the goal is to achieve as fair as possible comparison 
between architectures, then strict limitations on the training data are required as 
well. Most evaluation campaigns choose this approach. However, it is far from 
trivial to select an appropriate set of data types to include in the condition. In 
many tasks, the use of auxiliary or synthetic data has proved vitally useful, e.g. 
exploiting monolingual data in textual MT using backtranslation (Sennrich et al. 
2016a). In spoken language translation, the use of auxiliary data has prompted 
some discussion of when end-to-end systems are considered to have reached 
parity with pipeline systems. To answer this question in a fair comparison, both 
types of systems should be evaluated under standardised data conditions.

6.4 � Multimodality and new tasks

Most previous work on multimodal translation emphasises multimodal inputs 
and unimodal outputs, mainly text. The integration of speech synthesis, and also 
a better integration of visual signals in generated communication is required 
for improved intelligent systems and interactive artificial agents. In addition to 
multimodal outputs, there should be a stronger emphasis on real-time language 
processing and translation. This new emphasis would also result in a closer inte-
gration of models for spoken language translation models and visually-guided 
translation.

In SLT, the visual modality could contribute both complementary and disam-
biguating information. In addition, visual speech recognition, automatic lip read-
ing in particular  (e.g. Chung et  al. 2017), could aid SLT for example in audio 
noise robustness. The How2 dataset should allow a flurry of research in the nas-
cent field of audio-visual SLT. Wu et al. (2019a) present exploratory first results. 
BLEU improvements over the best non-visual baseline are not found, although 
the visual modality improves results when comparing between model using cas-
caded deliberation.

In zero-shot translation, a multilingual model is used for translating between a 
language pair that was not included in the parallel training data (Firat et al. 2016; 
Johnson et  al. 2017). For example, if a model does zero-shot French→Chinese 
translation, the training data contains language pairs with French as the source 
language and Chinese as the target language but no parallel French→Chinese 
data. Considering ongoing research into multilingual translation models also in 



134	 U. Sulubacak et al.

1 3

multimodal translation (e.g. Inaguma et al. 2019a), and the fact that multimodal 
translation training data of sufficient size is available for a very limited number of 
language pairs, we expect an interest in zero-shot multimodal language transla-
tion in the future.

7 � Conclusions

Multimodal machine translation provides an exciting framework for further develop-
ment in grounded cross-lingual natural language understanding combining work in 
NLP, computer vision and speech processing. This paper provides a thorough survey 
of the current state of the art in the field focusing on specific tasks and benchmarks 
that drive the research. This survey details the essential language, vision, and speech 
resources that are available to researchers, and discusses the models and learning 
approaches in the extensive literature on various multimodal translation paradigms. 
Combining these different paradigms into truly multimodal end-to-end models of 
natural cross-lingual communication will be the goal of future developments, given 
the foundations laid out in this survey.
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