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We predict that junctions between an antiferromagnetic insulator and a superconductor provide a robust
platform to create a one-dimensional topological superconducting state. Its emergence does not require the
presence of intrinsic spin-orbit coupling nor noncollinear magnetism, but arises solely from repulsive electronic
interactions on interfacial solitonic states. We demonstrate that a topological superconducting state is generated
by repulsive interactions at arbitrarily small coupling strength, and that the size of the topological gap rapidly
saturates to one of the parent trivial superconductor. Our results put forward antiferromagnetic insulators as a
new platform for interaction-driven topological superconductivity.
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The search for topological superconductors has been one
of the most active areas in condensed matter physics in
recent years [1–19]. These systems, pursued in particular
for the emergence of Majorana zero modes, represent one
of the potential solid state platform for the implementa-
tion of topological quantum computing [20,21]. Due to their
elusive nature, topological superconductors are often artifi-
cially engineered. A variety of platforms have been proposed
and demonstrated for this purpose [17,22,23], generically
relying on a combination of conventional s-wave super-
conductivity, ferromagnetism, and strong spin-orbit coupling
[7–10,15,24,25].

While ferromagnets have played a central role for artificial
topological superconductivity, antiferromagnetic insulators
have been overlooked for this purpose. Recently, antifer-
romagnets have attracted a great amount of attention due
to their unique properties for spintronics [26–30] and for
creating novel types of topological matter [31–37]. Ferromag-
netism efficiently lifts Kramer’s degeneracy, a process heavily
detrimental for spin-singlet superconductivity. Antiferromag-
netism, in comparison, does not lift Kramer’s degeneracy
between opposite spins in the absence of spin-orbit coupling, a
feature that could potentially make antiferromagnetism more
compatible with spin-singlet superconductivity [38–45].

Here we show that two-dimensional topologically trivial
antiferromagnetic insulators provide a platform to design one-
dimensional topological superconductivity. In our proposal,
spin-orbit coupling effects are not necessary for topological
superconductivity to appear, nor a fine tuning between the
different components of the system. In contrast, we show that
long-range interactions alone give rise to a nontrivially gapped
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state hosting Majorana excitations, and that the interaction-
induced gap opening is topological irrespective of details. We
demonstrate that the robustness of this unique state stems from
the solitonic nature of the emergent excitations at the inter-
face, in which interaction-induced gap opening unavoidably
gives rise to a topological superconducting state. Our results
put forward antiferromagnet-superconductor junctions as a
robust platform to engineer interaction-induced topological
superconductivity.

Our system consists of a junction between a conventional
s-wave superconductor and antiferromagnetic insulator, as
shown in Fig. 1(a). To model this system we take a Hamil-
tonian in the honeycomb lattice of the form

H = Hkin + HAF + HSC + Hint, (1)

where

Hkin = t
∑
〈i j〉,s

c†
i,sc j,s +

∑
i,s

μ(ri )c
†
i,sci,s, (2)

HAF =
∑

i,s

mAF(ri )τ
z
i,iσ

z
s,sc

†
i,sci,s, (3)

HSC =
∑

i

�(ri )ci,↑ci,↓ + H.c., (4)

Hint = V1
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)(∑
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c†
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)
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where c†
i,s is the fermionic creation operator for site i and for

spin s, σ z denotes the spin Pauli matrix, τ z is the sublattice
Pauli matrix, 〈 〉 is the first neighbors, and 〈〈 〉〉 is the second
neighbors. Taking that the interface between the antiferromag-
net and the superconductor is located at r = (x, 0, 0) we take
�(r) = �

2 [1 − sgn(y)]μ(r) = μ

2 [1 − sgn(y)] and mAF(r) =
mAF

2 [1 + sgn(y)] [46]. The repulsive interaction term of Eq. (5)
is solved at the mean-field level including the usual mean-
field decouplings Hint ≈ HMF = ∑

χi jss′c†
i,sc j,s′ with χi jss′ the
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FIG. 1. (a) A sketch of the two-dimensional antiferromagnet
(AF) and superconductor (SC) forming a one-dimensional AF-SC
interface. The spectral function at the surface of the AF (b), at the
surface of the SC (c), and at the interface between AF and SC (d) as
given by our model Hamiltonian (1) in a honeycomb lattice. (e) The
spatial distribution of the interfacial modes. Here we chose � = 0.3t ,
mAF = 0.5t , μ = t , and V1 = V2 = 0.

self-consistent mean-field parameters [47] . On-site interac-
tions are incorporated in mAF(r) and �(r) at the mean-field
level.

It is instructive to examine the electronic band struc-
ture in the absence of interactions and in the absence of
an interface. Let us consider a semi-infinite slab in the y
direction, having translational symmetry in the x direction
as depicted in Fig. 1(a). For that geometry we compute the
momentum-resolved spectral function at the edge A(k||, ω) =
− 1

π
Im[ω − H(k||) + i0+]−1 using the Dyson formalism [48].

For both isolated superconductor and antiferromagnet, the sur-
face spectral function presents a gap, as shown in in Figs. 1(b)
and 1(c), that simply stems from the gapped topologically
trivial band structure. In the case of the superconductor the
gap is controlled by �, whereas in the antiferromagnet, the
gap is determined by mAF. In stark contrast, when the anti-
ferromagnet and superconductor are joined together, a new
branch of interfacial modes appear as shown in Fig. 1(d). By
computing the spectral function in real space at zero energy
A(r, ω = 0) it is clearly seen that the new branch is heavily

localized at the junction between the superconductor and the
antiferromagnet. We have verified that for different values of
the superconducting and antiferromagnet order parameters,
zero modes emerge as long as the order parameters are not
substantially bigger than the typical bandwidth.

The emergence of the interfacial zero modes can be ratio-
nalized from a low energy model for the honeycomb lattice
[49–53]. For the following analytic derivation, it is convenient
to take μ = 0 so that the full antiferromagnet-superconductor
can be described with a generalized Dirac equation at the K
point of the honeycomb lattice [54]. The low energy excita-
tions can be captured by an effective model around the valleys
V z = ±1, and we will focus first on taking the momentum
parallel to the interface px = 0. By defining the Nambu spinor
�† = (c†

A,↑,k, c†
B,↑,k, cA,↓,−k, cB,↓,−k ), the Hamiltonian in the

electron-up/hole-down sector (⇑) can be written as H(px =
0, py)κ = 1

2�†Hκ� with

Hκ =

⎛
⎜⎝

mAF(r) py �(r) 0
py −mAF(r) 0 �(r)

�(r) 0 mAF(r) −py

0 �(r) −py −mAF(r)

⎞
⎟⎠. (6)

The spectrum of this effective model is gapped at y ± ∞, as
expected from its asymptotic antiferromagnet/superconductor
gap. However, a zero energy mode H |ψ⇑〉 = 0 at the inter-
face can be always built, taking the functional form ψ

†
⇑ =

e− ∫ y
0 [�(y′ )−mAF(y′ )]dy′

(c†
A,↑ + ic†

B,↑ − icA,↓ − cB,↓). The nature
of this zero mode is analogous to the Jackiw-Rebbi
soliton [49], and therefore can be understood as an
antiferromagnet-superconducting soliton. The complemen-
tary electron-down/hole-up (⇓) sector of the Hamiltonian will
therefore also host a zero mode that we label as ψ⇓. Away
from the point px = 0, the previous state acquires a finite
dispersion given by first order perturbation theory vF px =
〈ψ⇑|H|ψ⇑〉. As a result, close to the K points two branches
of zero modes appear, giving rise to the effective low energy
Hamiltonian

H (px ) =
∑

κ

vF pxV z
κ,κ

[
ψ

†
⇑,κ,px

ψ⇑,κ,px − ψ
†
⇓,κ,px

ψ⇓,κ,px

]
,

(7)
where κ runs over the two valleys. It is interesting to note
that the four modes are not independent, but they are re-
lated by electron-hole symmetry operator � = θ yσ yC with
θ y the Nambu Pauli matrix and C the complex conjuga-
tion as �−1ψ⇑,+1,px � = ψ⇓,−1,−px due to the built-in Nambu
electron-hole symmetry of the Hamiltonian. Therefore, the
Hamiltonian Eq. (7) hosts only two physical degrees of free-
dom, each one propagating in opposite directions, realizing
an effective spinless one-dimensional model. These singly-
degenerate channels are analogous to quantum Hall edge
states [15], and helical channels in topological insulators [7],
states that provide a starting point for engineering a topolog-
ical superconducting gap. Remarkably in our case, as will
be shown below, the solitonic gapless channels will open
up a topological superconducting gap once electron-electron
interaction effects are included.

Let us now move on to consider the impact of long-range
electronic interactions in the solitonic modes. For compu-
tational convenience we now perform our calculations in
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FIG. 2. (a) Noninteracting bands in a ribbon geometry. First
neighbor interactions do not lead to a gap (b), whereas second
neighbor interactions drive a gap opening (c). When both first and
second neighbor interactions are present the gap remains. The pa-
rameters are V1 = t in (b), V2 = 1.7t in (c), V1 = t, V2 = 2t in (d),
and mAF = 0.8t , � = 0.4t in (a)–(d).

ribbons of finite width in the x direction, in which we take
the transverse direction wide enough to avoid finite-size ef-
fects. The previous gapless interface modes of Fig. 1(d) and
derived in Eq. (7) appear in this ribbon geometry as shown
in Fig. 2(a), where Sz = 1

2 〈∑n,s σ z
s,sc

†
n,scn,s〉�k with �k the

eigenstate. It is shown that in the absence of interactions,
the sectors Sz = ±1/2 are fully decoupled, stemming from
the U (1)-spin symmetry of the Hamiltonian. With this lattice
model we now explore the impact of electronic interactions
by solving self-consistently Eq. (1). Note that the interactions
apply both along the interface and across it. We start by con-
sidering only first neighbor interactions, taking V2 = 0. In this
situation, a gap does not open even when V1 is increased, as
shown in Fig. 2(b). We now move on to the case of V2, taking
first V1 = 0. As observed in Fig. 2(c), it is clearly seen that
now a gap opens up. This behavior also takes place when V1 is
taken to be nonzero, see Fig. 2(d). As a result, second neighbor
interactions are the only interaction capable of opening up a
gap on the topological interface modes, whose magnitude is
marginally affected by the first neighbor interactions.

The emergence of a gap opening driven by electronic inter-
actions raises the question of potential nontrivial topological
properties. From the point of view of the effective low en-
ergy model, interactions create an effective term in Eq. (7)
of the form HMF ∼ 〈�⇑�

†
⇓〉�†

⇑�⇓ + H.c. It is interesting to
note that due to the solitonic functional form of �⇑ and
�⇓ and their relation via electron-hole symmetry, the gap
(∝〈�⇑�

†
⇓〉) created is odd with respect to κ , the valley index,

suggesting the emergence of an effective topological super-
conducting state. To verify the nontrivial topological nature
of the interaction-driven gapped state, we compute both its Z2

FIG. 3. (a) Spectral function in the bulk in the presence of in-
teractions, and (b) at the edge showing the emergence of a zero
Majorana mode. (c) The spectral function at ω = 0 for a finite junc-
tion, featuring edge zero Majorana modes. We used now � = 0.4t ,
mAF = 0.8t , V1 = t , and V2 = 2t .

topological invariant [1,55] and surface spectral function. We
revealed that the gapped system has a topologically nontrivial
Z2 invariant, signaling the existence of a topological super-
conducting state. This is further verified when computing the
density of states at the edge of the interface in a ribbon that
spans from x = 0 to x = ∞, as shown in Fig. 3(a). The edge
of the system hosts a zero-mode resonance associated with the
unpaired Majorana stemming from the nontrivial electronic
structure. This is contrasted with the finite gap present in the
bulk of the system shown in Fig. 3(b). The localization of
the zero mode can also be seen when computing the spectral
function for ω = 0, Fig. 3(c).

Let us now move on to look at the impact of long-range
interactions, and in particular at the interplay between the
first and second neighbor interactions at the mean-field level.
For the sake of simplicity in the following discussion we will
only consider effects that appear by means of a mean-field
decoupling of Eq. (5), without considering beyond mean-field
effects or additional t-J contributions. At the mean-field level,
the interaction term of Eq. (5) can give rise to two potential
effects: first, interaction induced hoppings and second, sym-
metry broken states such as charge density waves. In the weak
coupling regime considered here, only interaction-induced
hopping terms arise. In particular, the time-reversal symmetric
and spin-dependent part of χi jss′ yield an effective spin and
spatially dependent synthetic spin-orbit coupling term of the
Kane-Mele form [7,56]. This interaction-induced term creates
spin mixing in the solitonic modes, opening up a topological
gap.
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FIG. 4. (a) Evolution of the topological gap with the electron-
electron interaction: (a) As a function of V2 taking V1 = 0 and (b) as
a function of V1 taking V2 = 2t . (c) The topological gap as a function
of the two electronic interactions V1 and V2, highlighting that only the
second neighbor interaction opens up a gap. We took � = 0.2t and
mAF = 0.4t .

The interplay of first and second neighbor interactions
can be easily rationalized within this language. From the
mean-field point of view, first neighbor interactions can give
rise to interaction induced Rashba spin-orbit coupling terms
[57], whereas second neighbor interactions can give rise
to interaction-induced Kane-Mele spin-orbit coupling [58].
However, due to the valley polarized nature of the solitonic
modes, interaction induced Rashba-spin-orbit coupling does
not open up a gap in them [57], whereas Kane-Mele like
spin-orbit [58] can create a gap. As a result, second neighbor
interactions are the only ones capable of an interaction-
induced gap opening in the system. In contrast, the effect
of the first neighbor interactions is to simply create a Fermi
velocity renormalization [59,60] increasing the kinetic energy
of the solitonic modes, yet without any competing mechanism
for gap opening.

It is crucial to understand whether the gap opening requires
a finite minimum value of interaction strength. We investi-
gate this by taking the first neighbor interaction V1 = 0, and
looking at the topological gap as a function of the repulsive
second neighbor interaction V2. It is clearly observed that the
topological gap becomes stronger as V2 is increased, without
the existence of a critical value for the transition [Fig. 4(a)].
In particular, a logarithmic plot of the gap [inset of Fig. 4(a)]
at small coupling strength reveals that the topological gap

δ follows an exponential dependence δ ∼ e− vF
V2 [61]. Inter-

estingly, whereas exponential dependencies of that form are
typical for superconducting instabilities driven by attractive
interactions [62], in our present case interactions are actually
repulsive. This behavior stems from the projection of the
interactions in the low energy solitonic model of Eq. (7),

driving a topological phase transition at arbitrarily small cou-
plings. At large coupling strengths V2, the topological gap
saturates to the gap of the superconductor. This behavior
should be contrasted with the other schemes proposed for
topological superconductivity, in which the topological gap is
usually substantially smaller than the original superconductor
gap. This saturation of the topological gap can be ascribed to
the absence of competition between the superconductor and
the antiferromagnet. Including finite first neighbor interac-
tions V1 keeps the picture qualitatively unchanged, yet with
a slightly renormalized topological gap [Fig. 4(b)]. The inter-
play between V1 and V2 shown in Fig. 4(c) shows that, whereas
V2 opens the topological gap, V1 leaves the system gapless
or slightly renormalizes the topological gap. Finally, we note
that imperfections and disorder are known to potentially im-
pact topological superconductors by limiting the localization
length and reducing the topological gap [63–65]. We verified
that the phenomenology presented above is resilient towards
Anderson disorder and happens for generic AF-SC interfaces
[66]. Disorder slightly decreases the topological gap, yet with-
out qualitatively impacting our results.

Finally, we address the potential experimental realization
of our proposal. For a solid-state realization, no specific
requirements are necessary for the superconductor besides
conventional s-wave pairing, as realized in NbSe2. The funda-
mental requirement is having a two-dimensional honeycomb
antiferromagnetic insulator [67], as its electronic structure is
expected to have the gapped Dirac points required for the
emergence of the topological solitonic modes. Within van der
Waals materials, trihalides host a magnetic honeycomb lattice
[68], and in particular antiferromagnetic strained trihalides
[69,70] would be suitable for our proposal. This pathway
would require creating superconductor/antiferromagnet de-
vices with those strained van der Waals materials. Within
oxides, thin films of InCu2/3V1/3O3 [71] or β-Cu2V2O7 [72]
has the required antiferromagnetic honeycomb lattice. For this
possibility, a single layer of the bulk oxide should be epi-
taxially grown. Generic two-dimensional antiferromagnetic
insulators hosting Dirac points in their normal state [73]
would be suitable materials for our proposal, whose specific
V1,V2 parameters can be inferred by first-principles meth-
ods [74–78]. Finally, future ultracold atom setups [79] are
potential platforms for the realization of our model, as hon-
eycomb structures [80], antiferromagnetic correlations [81],
long-range interactions[82–84], and s-wave correlations [85]
in the normal state have been separately demonstrated. Inter-
actions can be tuned from attractive to repulsive by magnetic
fields; spatially dependent fields could be one way of creating
the AF-SC interface, once superfluid correlations in a lattice
have been reached.

To summarize, we have shown that an interface between
a topologically trivial two-dimensional superconductor and
antiferromagnetic insulator gives rise to a one-dimensional
solitonic gas. Upon introduction of repulsive long-range in-
teractions, we have demonstrated that a topological gap gets
generated, giving rise to Majorana zero energy modes. The
emergence of topological superconductivity appears in the
absence of intrinsic spin-orbit coupling and is driven by re-
pulsive Coulomb interactions. We showed that the topological
gap appears at arbitrarily small interactions, and rapidly satu-

L012021-4



INTERACTION-INDUCED TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 3, L012021 (2021)

rates to the gap of the parent superconductor, in stark contrast
with conventional proposals involving competition between
ferromagnetism and superconductivity. Our results propose
a new mechanism to generate topological superconductivity
based on interacting solitons, putting forward antiferromag-
netic insulators as a potential materials platform for Majorana
physics.
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