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CONSPECTUS: For the past two decades, linear free energy scaling
relationships and volcano plots have seen frequent use as computational
tools that aid in understanding and predicting the catalytic behavior of
heterogeneous and electrocatalysts. Based on Sabatier’s principle, which
states that a catalyst should bind a substrate neither too strongly nor too
weakly, volcano plots provide an estimate of catalytic performance (e.g.,
overpotential, catalytic cycle thermodynamics/kinetics, etc.) through
knowledge of a descriptor variable. By the use of linear free energy
scaling relationships, the value of this descriptor is employed to estimate
the relative energies of other catalytic cycle intermediates/transition
states. Postprocessing of these relationships leads to a volcano curve that
reveals the anticipated performance of each catalyst, with the best species
appearing on or near the peak or plateau. While the origin of volcanoes is undoubtedly rooted in examining heterogeneously
catalyzed reactions, only recently has this concept been transferred to the realm of homogeneous catalysis. This Account summarizes
the work done by our group in implementing and refining “molecular volcano plots” for use in analyzing and predicting the behavior
of homogeneous catalysts.
We begin by taking the reader through the initial proof-of-principle study that transferred the model from heterogeneous to
homogeneous catalysis by examining thermodynamic aspects of a Suzuki−Miyaura cross-coupling reaction. By establishing linear
free energy scaling relationships and reproducing the volcano shape, we definitively showed that volcano plots are also valid for
homogeneous systems. On the basis of this key finding, we further illustrate how unified pictures of C−C cross-coupling
thermodynamics were created using three-dimensional molecular volcanoes.
The second section highlights an important transformation from “thermodynamic” to “kinetic” volcanoes by using the descriptor
variable to directly estimate transition state barriers. Taking this idea further, we demonstrate how volcanoes can be used to directly
predict an experimental observable, the turnover frequency. Discussion is also provided on how different flavors of molecular
volcanoes can be used to analyze aspects of homogeneous catalysis of interest to experimentalists, such as determining the product
selectivity and probing the substrate scope.
The third section focuses on incorporating machine learning approaches into molecular volcanoes and invoking big-data-type
approaches in the analysis of catalytic behavior. Specifically, we illustrate how machine learning can be used to predict the value of
the descriptor variable, which facilitates nearly instantaneous screening of thousands of catalysts. With the large amount of data
created from the machine learning/volcano plot tandem, we show how the resulting database can be mined to garner an enhanced
understanding of catalytic processes. Emphasis is also placed on the latest generation of augmented volcano plots, which differ
fundamentally from earlier volcanoes by elimination of the use of linear free energy scaling relationships and by assessment of the
similarity of the complete catalytic cycle energy profile to that for an ideal reference species that is used to discriminate catalytic
performance.
We conclude by examining a handful of applications of molecular volcano plots to interesting problems in homogeneous catalysis
and offering thoughts on the future prospects and uses of this new set of tools.

■ KEY REFERENCES

• Busch, M.; Wodrich, M. D.; Corminboeuf, C. Linear
Scaling Relationships and Volcano Plots inHomogeneous
Catalysis − Revisiting the Suzuki Reaction. Chem. Sci.
2015, 6, 6754−6761.1 This is an initial proof-of-principle
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study showing that linear scaling relationships and volcano
plots can be used to study homogeneous catalysis.

• Meyer, B.; Sawatlon, B.; Heinen, S.; von Lilienfeld, O. A.;
Corminboeuf, C.Machine LearningMeets Volcano Plots:
Computational Discovery of Cross-Coupling Catalysts.
Chem. Sci. 2018, 9, 7069−7077.2 This paper describes a
protocol for combining machine learning and molecular
volcano plots to rapidly screen thousands of prospective
catalysts.

• Wodrich, M. D.; Sawatlon, B.; Solel, E.; Kozuch, S.;
Corminboeuf, C. Activity-Based Screening of Homoge-
neous Catalysts through the Rapid Assessment of
Theoretically Derived Turnover Frequencies. ACS
Catal. 2019, 9, 5716−5725.3 This paper presents a method
to directly assess and screen homogeneous catalysts using an
experimentally measurable quantity of catalytic activity.

• Wodrich, M. D.; Fabrizio, A.; Meyer, B.; Corminboeuf, C.
Data-Powered Augmented Volcano Plots for Homoge-
neous Catalysis. Chem. Sci. 2020, 11, 12070−12080.4
This paper presents a new tool to measure and assess the
closeness of the energetics for an entire catalytic cycle to
that of an ideal reference species.

■ INTRODUCTION
Volcano plots are efficient tools for optimizing catalytic
reactions and correspondingly have found widespread use
within many areas of catalysis. Historically, these plots are
derived from Sabatier’s principle,5,6 which states that an ideal
catalyst should neither bind the products too strongly nor bind
the reactants too weakly. This concept was put into practice in
the 1950s independently by Gerischer7 and Parsons8 as a means
to visualize the activities of metals toward electrochemical H2
evolution. As in modern volcano plots, those early works utilized
a descriptor variable (e.g., the binding energy of hydrogen)
plotted along the x axis and a measurement of catalytic activity
(e.g., the experimental current density) plotted on the y axis. In
line with Sabatier’s principle, the resulting volcano shape (see
Figure 1) demonstrates a clear relationship between the value of
the descriptor variable and catalytic activity. The volcano shape
can be subdivided into three regions: the left slope, where
catalysts bind intermediates too strongly (i.e., the “strong-
binding” side of the volcano); the right slope, where catalysts
bind intermediates too weakly (i.e., the “weak-binding” side of
the volcano); and finally an ideal binding region on the volcano
plateau, where catalysts bind intermediates neither too strongly
nor too weakly. Catalysts that fall into this region (i.e., those
located at or near the volcano plateau or peak) satisfy Sabatier’s
principle and are likely to be among the best catalysts for a given
reaction.
The appealing simplicity of the volcano concept led to

numerous applications in the fields of electrocatalysis9,10 and
heterogeneous catalysis11−16 over the following decades.
Beginning in the early 2000s, theoretical treatments of volcano
plots began appearing with increasing frequency, largely as a
result of the work by Nørskov. In part, this growth can be
ascribed to the rise of density functional theory (DFT)
computations that provided direct access to the key energetic
quantities needed to construct the plots, specifically the energy
of the descriptor intermediate and a measure of activity, such as
the thermodynamic overpotential.17−19 The subsequent realiza-
tion that linear free energy scaling relationships (LFESRs)
govern the relative stabilities of different catalytic cycle

intermediates in the form of binding energies20,21 as well as
transition state barriers18,22 further provided a route for
obtaining the overall volcano shape for any given reaction
mechanism through mathematical manipulation of the LFESRs.
Correspondingly, the global limitations for many reactions of
interest were obtained, as exemplified by Rossmeisl for the water
oxidation reaction over transition metal oxides.23,24 Other more
recent advancements include employing volcano plots to
examine the stability of materials25 or account for competing
reaction mechanisms.26,27

In spite of their simplicity and predictive power, volcano plots
and the LFESRs on which they are built have remained nearly
exclusively the province of electrocatalysis and heterogeneous
catalysis. Although abstractly proposed by Swiegers in 2008,28 in
2015 our group first constructed “molecular volcano plots”1 by
examining a prototypical homogeneous catalysis reaction,
Suzuki−Miyaura cross-coupling. This initial work opened a
new research line aimed at, broadly speaking, identifying new
and improved catalysts for relevant chemical problems by
developing and expanding a computational framework based on
creating and applying volcano plots to the study of
homogeneous catalysis. This Account explores the key develop-
ments and chemical findings that constitute the emerging field of
molecular volcano plots.

■ THERMODYNAMIC VOLCANO PLOTSPROOF OF
CONCEPT

Our initial work1 began by selecting a homogeneously catalyzed
reaction with available experimental data that would serve as an
important “check” on the validity of the results obtained from
our yet-unproven molecular volcanoes. As a proof-of-principle
example, we examined a Suzuki−Miyaura cross-coupling
reaction of a vinyl bromide and a vinylboronic acid to form
butadiene (eq 1). Invoking a typical heterogeneous/electro-
catalysis protocol, we restricted our analysis only to thermody-
namic aspects of the catalytic cycle (i.e., intermediates only) for a

Figure 1. Schematic volcano plot. The descriptor value is plotted along
the x axis and the negative of the free energy of the most difficult
reaction step of the catalytic cycle (or another measure of catalytic
activity) along the y axis. Catalysts with the best thermodynamic/
kinetic profiles (Cat2 and Cat3) appear near the volcano plateau (or
peak) in the Sabatier ideal binding region (purple). Catalysts having
overly strong catalyst−substrate interactions (Cat1) appear along the
left “strong-binding” slope (gray), while catalysts with overly weak
catalyst−substrate interactions (Cat4 and Cat5) appear along the
“weak-binding” right slope (blue).

Accounts of Chemical Research pubs.acs.org/accounts Article

https://dx.doi.org/10.1021/acs.accounts.0c00857
Acc. Chem. Res. 2021, 54, 1107−1117

1108

https://pubs.acs.org/doi/10.1021/acs.accounts.0c00857?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00857?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00857?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00857?fig=fig1&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00857?ref=pdf


series of 36 catalysts comprising six metal centers (Ni, Pd, Pt,
Cu, Ag, Au) appended with a set of six electronically diverse
ligands. From this catalyst set, we identified robust LFESRs
between the relative free energies of the different catalytic cycle
intermediates, which were critical for constructing the
corresponding molecular volcano. Ultimately, the relative
energy of intermediate 2 with respect to the isolated catalyst
and substrate (equivalent to oxidative addition; Scheme 1, Rxn

A) was found to be the best descriptor variable. Expressing each
reaction energy in terms of the descriptor by postprocessing the
LFESRs (see the Supporting Information of ref 1 for details) led
to Figure 2a, where the descriptor variable is plotted along the x

axis and the negative of the reaction free energy for the most
difficult reaction step in the catalytic cycle (by convention
termed the potential-determining step, pds) is given on the y
axis. Adding the points for the 36 catalysts to the volcano showed
that the results aligned well with experimental trends: palladium
catalysts appear near the plateau while most other group 10
metal catalysts (nickel and platinum) are located along the
volcano’s strong-binding left slope (where the free energy of Rxn
C is the costliest catalytic cycle step). On the other hand, all of
the coinage-metal catalysts were found along the volcano’s weak-
binding right slope (where the free energy of Rxn A is the
costliest catalytic cycle step), indicative of generally worse
thermodynamic profiles than for the group 10 catalysts. Overall,
the existence of unambiguous LFESRs, the reconstitution of a
typical volcano shape, and the theoretical finding that
experimentally verified catalysts lie atop the volcano validated
that the volcano concept is applicable to homogeneous catalysis.
While our initial work established the viability of molecular

volcano plots, a number of questions concerning their overall
robustness and transferability persisted. In cross-coupling
reactions, for instance, some catalysts (e.g., those with bulky
ligands) likely transit the catalytic cycle in a monoligated state
rather than a bisligated state (as examined in our original work).
Moreover, it is also plausible that some catalysts exist in higher
oxidation and/or alternative spin states, which would also
influence their reactivity. This raises the following question: do
these alterations lead to separate sets of LFESRs and unique
volcano plots? To answer this question, we reexamined Suzuki−
Miyaura cross-coupling, placing emphasis on how changes in the
ligation, spin, or oxidation state influence both the accuracy of

Scheme 1. Abbreviated Catalytic Cycle for C−C Cross-
Coupling Reactions

Figure 2. (a) Thermodynamic volcano plot for a Suzuki−Miyaura C−C cross-coupling reaction. (b) Volcano plot highlighting the thermodynamic
influence induced by changes in oxidation state. It should be noted that the same linear free energy scaling relationships and volcano plot describe both
sets of species. (c) Volcano plot depicting changes in the transmetalation energy from different named chemical reactions. (d) Three-dimensional
volcano showing the energetic relationship of the different cross-coupling variants. Panel (a) is from ref 1. CC BY 3.0. Panel (b) is reproduced with
permission from ref 29. Copyright 2018 Wiley-VCH. Panels (c) and (d) are from ref 30. Copyright 2017 American Chemical Society.
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the LFESRs and the volcano shape.29 We found that while the
overall thermodynamic profiles of the catalysts change when the
ligation, spin, or oxidation states are altered, the same sets of
LFESRs remain. As a result, a single volcano describes catalysts
with any (or all) of the aforementioned changes. This is nicely
illustrated by the monoligated Ni catalysts shown in Figure 2b,
which possess good thermodynamic profiles when traversing the
catalytic cycle in the Ni(I)/Ni(III) oxidation states but are less
active in their Ni(0)/Ni(II) states. Indeed, Figure 2b shows that
moving from Ni(0)/Ni(II) to Ni(I)/Ni(III) weakens the
interaction between the catalyst and the reaction intermediates,
causing a rightward shift in the volcano plot that corresponds to
improved thermodynamic profiles. However, it should be noted
that the robustness of the LFESRs observed for C−C cross-
coupling is not expected for all situations and reactions,
particularly if the change of spin or oxidation state affects the
performance of density functionals. For instance, for metal-oxo
intermediates in the oxygen evolution reaction, we have shown
that density functional approximations do not properly balance
the effects brought on by static correlation and spurious electron
delocalization.31

The previously described works applied molecular volcanoes
to a Suzuki−Miyaura cross-coupling reaction. However,
Suzuki−Miyaura coupling is only one of a number of “named”
cross-coupling reactions (e.g., Kumada, Negishi, Stille, Hiyama)
that differ only by the chemical agent employed during
transmetalation (“Y” in Scheme 1, Rxn B). Indeed, the free
energy associated with transmetalation is often the largest
thermodynamic barrier encountered in the catalytic cycle for
“good” catalysts (i.e., this reaction defines the volcano plateau).
Thus, altering the cross-coupling partner influences the energy
of transmetalation that dictates the height of the volcano plateau
(Figure 2c), where more reactive coupling partners (e.g., LiR)
raise and less reactive partners (e.g., SiF4

−, Hiyama) lower the
plateau height in the corresponding volcano plots.
Because a relationship exists between each of these individual

cross-coupling volcanoes, we utilized a three-dimensional
volcano plot (Figure 2d) to create a unified thermodynamic
picture of cross-coupling reactions.30 This three-dimensional
volcano is most easily understood as a series of standard two-

dimensional volcanoes (e.g., Figure 2a) pasted together, where
the descriptor variable is displayed on the x axis and −ΔG(pds)
on the z axis. The three-dimensional volcano also uses the
transmetalation energy as a second descriptor variable on the y
axis. Knowing the value of the transmetalation step associated
with a specific chemical reagent (e.g., SiF4

− for Hiyama
coupling) reveals the location of the specific two-dimensional
volcano “slice”. In this case, as the transmetalation step becomes
easier (i.e., moves toward more exergonic transmetalation
energies), the value of the pds decreases (shifts from blue to
green to red) (Figure 2d). This increase in the reaction’s
thermodynamic drive is accompanied by a narrowing of the
volcano plateau, meaning that fewer catalysts will have ideal
thermodynamic profiles. Ultimately, the transmetalation
becomes so energetically facile that the plateau disappears
entirely (represented by the Sabatier line in Figure 2d), leaving
only a peak where the energies of either reductive elimination
(left slope) or oxidative addition (right slope) dictate the
catalytic cycle thermodynamics. Overall, this generalized picture
of C−C cross-coupling provides routes for improving the
thermodynamics of any catalyst (i.e., reducing the energy of the
pds) by identifying the cross-coupling variant that leads to the
most energetically balanced catalytic cycle. The three-dimen-
sional volcano concept can also be used to examine other facets
of homogeneous catalytic reactions, such as the energetic role
played by the electrophilic coupling component in cross-
coupling reactions.32

■ KINETIC VOLCANO PLOTSPROOF OF CONCEPT

The molecular volcanoes described above considered only
catalytic cycle thermodynamics. However, we knew that kinetics
must also be considered to have a meaningful impact in
homogeneous catalysis. With this in mind, we created “kinetic
volcanoes”33 by examining the industrially important hydro-
formylation reaction (eq 2 and Scheme 2a), which produces
millions of tons of aldehyde annually, using a catalyst database
created by combining eight metal centers from groups 8−10
with four monodentate phosphine ligands having different steric
parameters (PH3, PMe3, PPh3, and PCy3). This work showed
that transition state barriers could be predicted with acceptable

Scheme 2. Proposed Catalytic Cycle for theHydroformylation Reaction with (a) Ethylene, Leading to a Single Product,33 and (b)
a Substituted Substrate, Leading to Two Regioisomers34
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accuracy directly from the descriptor variable and reproduced
experimental trends with Rh catalysts found near the volcano
peak (Figure 3a). A closer examination of the LFESRs revealed
that differences in ligand bulk led to slightly different sets of
scaling relationships. By constructing separate volcanoes for
each ligand, we demonstrated that increasing steric bulk reduces
the key transition state barrier (i.e., the largest energy difference
between a connected intermediate and transition state found in
the catalytic cycle, termed the kinetic-determining step, kds) and
leads to more active catalysts (Figure 3b). Furthermore,
establishing relationships between the peaks of the different
volcanoes and a measure of steric bulk led to simple structure−
activity relationships that estimated the height of the volcano
peak (corresponding to anticipated catalytic activity) for any
phosphine ligand from the Tolman cone angle.
Eager to expand the utility of kinetic volcanoes, we revisited

the hydroformylation reaction by probing the ability of
volcanoes to predict product regioselectivity, an aspect of clear
interest to experimentalists.34 Our initial application used
ethylene as the substrate, which leads to a single product (eq
2). To introduce regioselectivity, 2-methylpropene was used as
the substrate (eq 3), which yields branched (2,2-dimethylpro-
panal) and linear (3-methylbutanal) regioisomers (Scheme 2b).
In addition to identifying active catalysts (i.e., those with low
transition state barriers) directly from a descriptor variable, we
also wanted to accurately predict the reaction’s regiomeric
excess (re). This represents a challenging task given the
sensitivity of the re to small changes in the free energy
differences between product-distinguishing transition states.
Since identifying highly accurate LFESRs was key, we restricted
our analysis to rhodium catalysts bearing bidentate phosphine
ligands. Ultimately, two volcano plots were constructed [one for
the linear product (blue) and one for the branched (green)
product; Figure 4a] that estimated both catalytic activity and
selectivity through the use of two descriptor variables.
Remarkably, of 10 catalysts predicted to be highly selective
(i.e., re > 95), nine had similar re values when the free energy
differences of the transition states that dictate regioselectivity
were directly computed. After construction, the volcano plots

were used to screen a database of 68 additional ligands to search
for active species that selectively form themore elusive branched
regioisomer, which ultimately identified several promising
ligands (Figure 4b).
Despite the utility of the kinetic volcanoes, we remained

interested in creating stronger links with experiment, where
theoretical estimations of catalytic activity could be directly
compared to experimental observables. An ideal quantity to
accomplish this feat is the turnover frequency (TOF), as defined
in eq 4:

=
[ ]

≈ δ−N
C t

k T
h

TOF e E RTB /

(4)

One way to achieve this is to use the energy span model of
Kozuch and Shaik35−37 to convert a computed catalytic cycle
free energy profile into a theoretical TOF (eq 4) bymeasuring its
“energy span” δE (eq 5):

δ δ= − +E T I Gmax ( )i j i j ij, (5)

where Ti is the energy of the turnover-determining transition
state (TDTS) (i.e., the rate-limiting TS), Ij is the turnover-
determining intermediate (TDI) (i.e., the most populated
intermediate), and δGij is a correction for the cyclic nature of
the catalytic cycle.38 In contrast to earlier volcanoes, where only
the free energy differences between intermediates and transition
states (or intermediates and other intermediates for thermody-
namic volcanoes) directly linked in the catalytic cycle were
measured, the energy spanmodel assesses the TDI and TDTS of
the entire catalytic cycle. Thus, all intermediate/transition state
combinations are checked to identify the largest energy span.
Since we already established that a descriptor variable can
predict the relative energies of all intermediates and transition
states through LFESRs, we can estimate the energy span for any
prospective catalyst and plot the theoretical TOF (i.e., number
of catalytic cycles completed per second) as a function of the
descriptor variable, resulting in a TOF volcano.3 Figure 5
compares a traditional energy-based volcano (Figure 5a) to the
corresponding TOF volcano (Figure 5b) for the conversion of
CO2 and H2 to formate using transition metal pincer complexes
(eq 6). In addition to directly relating to experimental

Figure 3. (a) Kinetic volcano plot for the hydroformylation reaction using ethylene as a substrate. (b) Ligands separated by sterics reveal increasing
bulk yields a higher volcano that corresponds to a catalytic cycle with lower free energy barriers. From ref 33. CC BY-NC 3.0.

+ + → +− −CO H OH HCOO H O2 2
cat

2 (6)
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measurements, the TOF volcano also reveals additional features
that are more ambiguous in energy-based volcanoes. For
instance, Figure 5b shows a rapid decline in catalytic activity
when moving from the volcano top to more negative descriptor
values (i.e., moving leftward), while catalysts having descriptor
values located to the right of the volcano top retain greater
catalytic activity. Overall, TOF volcanoes represent a computa-

tional tool that is useful to experimentalists because it provides a
quickly determined estimation of the TOF for any catalyst prior
to synthesis.
All of the previously discussed works used molecular

volcanoes to estimate catalytic performance. Recently, we
moved beyond catalyst screening and highlighted how volcanoes
can be used to analyze a reaction’s substrate scope.39

Figure 4. (a) Regioselective molecular volcano plots [linear product (blue), branched product (green)] for the hydroformylation reaction. Circle size
indicates the range of re values for each catalyst according to the provided color codes. (b) Screening for catalysts that selectively form the branched
product revealed several ligands with predicted re values greater than 90. The “L” values correspond to ligands in the original work. Reproduced with
permission from ref 34. Copyright 2018 Wiley-VHCA.

Figure 5. (a) Energy-based volcano plot and (b) TOF volcano plot for the catalytic formation of formate from CO2 and H2. Reproduced from ref 3.
Copyright 2019 American Chemical Society.

Figure 6. (a) Substrate volcano plots made from six-membered-ring (black) and five-membered-ring (red) substrates for a Suzuki−Miyaura cross-
coupling reaction and (b) detailed plot showing how electronic and steric elements influence the energy of the catalytic cycle. Reproduced from ref 39.
Copyright 2020 American Chemical Society.
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Understanding the breadth of substrate reactivity is a crucial
component of experimental research, and thus, computational
tools aimed at probing this often-overlooked aspect of chemistry
are welcome. To accomplish this, we assessed how changing the
substrate varied the catalytic cycle energetics by examining a
series of electrophile reactants (aryl bromides) possessing
differing skeletal, electronic, and steric components for Suzuki−
Miyaura cross-coupling with a single catalyst, Pd(PPh3)2. These
“substrate volcanoes” uncovered a detailed picture of the
energetic interplay between steric and electronic properties.
Specifically, different core structures lead to unique volcano
plots (Figure 6a), mainly based on modulation of the electronic
properties. Further, we saw that steric influences played a major
role in dictating the energetics of transmetalation (Figure 6b),
while oxidative addition was more heavily influenced by
electronic factors. With the better understanding of how
substrates and catalysts interact with one another provided by
tools of this type, the catalytic cycle energetics can be tuned for
any substrate by selecting an appropriate catalyst, which
represents an additional aspect of volcano plots that should
lead to more targeted experimental studies. In the future, we
envision placing greater emphasis on these substrate volcanoes.

■ TOWARD BIGGER DATA/MACHINE LEARNING

Over the past several years, “big data”-oriented chemical studies
have begun to appear with greater frequency, an aspect that has
coincided with the increasing use of machine learning (ML)
applications. An underlying idea of volcano plots is that after the
volcano plot is constructed, the performance of any prospective
catalyst can be quickly established by determining the value of
the descriptor variable. In this sense, volcano plots already
represent a route toward big(ger) data analytics, where
hundreds of species can be analyzed through a handful of
DFT computations. Nonetheless, further upscaling (to reach
10000+ catalysts) still requires bypassing the computational
bottleneck associated with determining the descriptor variable.
To overcome this, in collaboration with the von Lilienfeld group,
we employedMLmodels to directly predict values of the catalyst
descriptor variable for a Suzuki cross-coupling reaction (eq 1).2

To accomplish this, a kernel ridge regression-based ML model
was trained on 7054 catalysts derived from the database shown
in Figure 7a and yielded predictions of the descriptor variable
with a mean absolute error (MAE) of only 2.73 kcal/mol. Using
these ML-determined descriptor variables together with a
preconstructed volcano plot (Figure 7b), we estimated the

Figure 7. (a) Schematic of database construction for ML. (b) Volcano plot for Suzuki−Miyaura cross-coupling used to define the plateau range
representing ideal catalysts. (c) Sketchmaps of eachmetal colored by the value of the energy descriptor variable [ΔE(Rxn A), in kcal/mol]. Each group
corresponds to different metal−ligand combination (P = phosphine, C = carbene, N = pyridine, O = oxazole). Panels (a) and (b) are from ref 2. CC
BY-NC 3.0. Panel (c) is reproduced with permission from ref 40. Copyright 2019 Wiley-VCH.
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catalytic cycle thermodynamics of over 18 000 out-of-sample
catalysts and ultimately identified 557 possessing optimal
thermodynamics (i.e., lying on the volcano plateau).
After demonstrating the successful coupling of volcano plots

and ML for the Suzuki cross-coupling reaction2 and having
previously demonstrated the thermodynamic link between
Suzuki and other types of cross-coupling reactions,30 we
undertook a data-mining study using 25 116 catalysts in our
cross-coupling database (constituting the training and test sets
discussed above) with the objective of better understanding the
underlying chemistry. To accomplish this, a dimensionality
reduction algorithm (sketch map)41,42 was employed to unravel
the effects of both the metal and the ligand. On the basis of the
chemical and structural details of each complex, individual
sketch maps were created for catalysts bearing the same metal.
These sketch maps then subdivided the set of metal complexes
into groups based on the metal−ligand connectivity (Figure
7c).40 Because the thermodynamics of the various cross-
coupling reactions are interrelated by a 3D volcano (Figure
2d), the point representing each catalyst was colored according
to the cross-coupling reaction for which it had ideal
thermodynamics (i.e., black for Suzuki, darker to lighter
green/red shades for Kumada, Negishi, Stille, Hiyama,
respectively). The colors in Figure 7c illustrate the behavior
induced by each metal, showing that group 10 species (Ni, Pd,
Pt) often make better catalysts than group 11 metals (Cu, Ag,
Au). Diving deeper into the data reveals how the ligand type
affects the value of the descriptor variable. For instance,
phosphines polarize the metal complexes, causing group 10
and 11 metals to have similar energetic patterns, while pyridine
ligands induce an opposing effect, causing group 10 and 11
catalysts to have distinctly different energy profiles. Overall, big-
data-type analyses uncover broad trends regarding catalyst
behavior that would likely remain hidden in analyses of only a
small amount of data. In turn, this not only provides specific
examples of catalysts possessing desirable properties but also
reveals those features likely to be important when choosing a
family of catalysts to examine for a specific reaction. We believe
that the volcano plot/ML tandem represents an important
milestone in the ability to quickly generate large quantities of
data that can subsequently be mined using tools such as
dimensionality reduction algorithms. Together, these tools
represent a unique route to apply data science approaches to

study homogeneous catalysis, which should propel new
explorations of catalysis space.
Big-data approaches not only accelerate the screening process

but also can be used to create new types of molecular volcanoes.
Very recently, we introduced “augmented volcano plots”4 that
differ conceptually from typical molecular volcanoes in both
their construction and how the catalytic activity is measured.
Rather than relying on LFESRs to construct the volcano shape
by plotting a single reaction energy as a function of the
descriptor variable to represent the catalytic cycle thermody-
namics, in augmented volcanoes the energy of the entire
catalytic cycle of each species is compared to an ideal reference
species (such as the Sabatier ideal profile) using a dimensionality
reduction algorithm. The resulting global “similarity measure”
can then be plotted as a function of the descriptor variable,
which results in an augmented volcano [shown here for the
thermodynamics of the hydroformylation reaction (eq 2)]. This
unique volcano type identifies catalysts with the best energy
profiles [which appear near the ideal, Sabatier, reference point
(Figure 8a)] and reveals the multiple sets of scaling relationships
that control the catalytic process (Figure 8b). Overall,
augmented volcanoes represent another tool that allows trends
that may be obscured in traditional molecular volcanoes (e.g., the
ameliorated thermodynamics of iridium shown in Figure 8a)
and the importance of multiple reaction steps in establishing
overall catalyst quality (as shown by the presence of orange, red,
and light-blue points on the left side of Figure 8b) to be
identified.

■ APPLICATIONS TO SPECIFIC CHEMICAL
PROBLEMS

The preceding sections highlighted the various molecular
volcano plot flavors, yet the application of these tools to unravel
the interesting chemistry catalyzed by homogeneous species is
also important. Below we feature three selected applications: the
hydrogenation of CO2 to formate using transition metal pincer
catalysts,43 aryl ether cleavage using nickel catalysts,44 and
molecular water oxidation catalysts.31 Aside from these selected
works, other groups have also used linear scaling relationships
and volcano plots in homogeneous settings. This includes
examining reactions such as water oxidation,45,46 N2 reduc-
tion,47 C−N coupling,48 asymmetric hydrogenation of ke-
tones,49 oxygen reduction50 and others.51−54 Notably, three

Figure 8.Augmented volcano plots for the thermodynamics of the hydroformylation reaction (eq 2) colored by (a) the metal center of the catalyst and
(b) the most thermodynamically difficult reaction step. The y value for each catalyst is a measurement of similarity to the ideal reference catalyst
(depicted as a black star). From ref 4. CC BY-NC 3.0.
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perspective articles55−57 have recently appeared in the literature
that partially touch on aspects of the above work.
The hydrogenation of carbon dioxide to C1 compounds is an

intriguing route for the production of chemical feedstocks.
Toward this end, we used molecular volcano plots to examine
the catalytic hydrogenation of CO2 to formate (eq 6). The
volcanoes revealed the influence of each catalyst component and
suggested a straightforward route to enhance the activity by
coupling group 9 transition metals (Ir, Rh, Co) with π-acidic
pincer ligands.43 The strong π-acceptor ligand facilitates more
facile heterolytic cleavage of H2, which is the rate-determining
step in the catalytic cycle.
Reductive cleavage of the C−O bond in aryl ether complexes

can be used to create chemical feedstocks from renewable
resources.44 In this work, a volcano plot/ML tandem approach
(similar to Figure 7a) was used to predict the activity of 143 000
nickel catalysts bearing phosphine and carbene ligands for the
reaction shown in eq 7. The distribution of descriptor values

(Figure 9a) revealed that neither phosphine nor carbene ligands
are ideally suited to catalyze this reaction. However, several
phosphine species lying in the leftmost tail of the blue
distribution were identified as promising candidates. Analysis
of the geometries of key catalytic cycle intermediates revealed
assorted non-covalent interactions that modulate the binding of
the substrate/product with the catalyst, which leads to a more
energetically facile catalytic process.
Solid-state and molecular water oxidation catalysts have been

well-studied individually by computation, yet a unified energetic
picture is lacking. To better comprehend the similarities and
differences between these two types of catalysts, we created
volcano plots that revealed a dissimilarity in the LFESRs of
*−OH and *O species and corresponding unique shapes for
the solid-state and molecular volcano curves.31 While the solid-
state volcano (orange dashed line in Figure 9b) has a sharp peak,
the molecular variant (black solid line in Figure 9b) has a broad
plateau, indicating that a large number of molecular catalysts
should have ideal reaction thermodynamics.

■ CONCLUSION
This Account has provided an overview of the unique types of
molecular volcano plots ranging from proof-of-concept origins
to the latest variants incorporating aspects of big data and
machine learning. Since 2015, we have steadily introduced new
theoretical refinements aimed at crafting a set of comprehensive
tools tailored to address key aspects of homogeneous catalysis
such as predicting the kinetic profiles of species, creating unified
pictures of reaction classes, addressing issues of product
selectivity, and integrating aspects of machine learning and
big-data analysis. Although much of the work has focused on
deriving the theoretical framework of molecular volcanoes, we
hope that this Account serves as an inspiration to other
researchers to apply these tools to their own interesting catalytic
reactions, particularly in situations where theoretical predictions
can lead to experimental testing and verification. While the
computational toolbox we have built already addresses many
aspects of the behavior of homogeneous catalysts,58 it will be
particularly interesting to see how the latest emerging methods
from big data and machine learning can be incorporated into
future volcanoes to both improve their predictive ability and
enhance their utility in data mining to achieve greater chemical
understanding.
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