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Abstract: Tetrathionates have been found in significantly high concentrations in recycled process
waters from massive sulphide ore processing plants. These polythionates react with xanthate added to
flotation pulps thus reducing xanthate dosages in solution potentially affecting flotation performance.
The current study focused on the effect of the tetrathionate-xanthate reaction on sulphide mineral
recoveries. Ore dissolution studies confirmed the generation of tetrathionates by copper-lead-zinc
ores. In 20 min, the tetrathionates consumed more than half of the xanthate in solution at pH 7. Rest
potential measurements and Fourier transform infrared spectroscopy (FTIR) showed that the degree
of collector-mineral interactions of xanthate and both galena and chalcopyrite was greatly reduced in
the presence of a 2000 mg/L tetrathionate solution. Microflotation tests showed that chalcopyrite
recovery was less sensitive to tetrathionates as indicated by small changes in mineral recoveries.
Galena was sensitive to the action of tetrathionates on the mineral surface as the galena recovery
significantly declined when floated with xanthate as a collector in both a 500 mg/L tetrathionate
solution and a 2000 mg/L tetrathionate solution. These fundamental results lay a sound base on
which more discussion into the significance and the effect of tetrathionates on flotation performance
of sulphide ores can be developed.

Keywords: kinetics; decomposition; adsorption; tetrathionates; xanthyl thiosulphate; ore dissolu-
tion; depression

1. Introduction

The oxidation and dissolution of sulphide ores in flotation process water leads to
the formation of thiosalts. Thiosalts are intermediate sulphur oxidation products namely
S2O3

2− (thiosulphates), S4O6
2− (tetrathionates), S3O6

2− (trithionates), and S5O6
2− (pen-

tathionates), where the three latter compounds are collectively known as polythionates.
The production of these polythionates has been described as a catalytic oxidation of thio-
sulphate primarily by pyrite (and other sulphide minerals) in the presence of oxygen [1–3].
Microorganisms also contribute to the formation of thiosalts from pyrite under the right
conditions. The microbial oxidation of pyrite produces thiosulphates as the initial decom-
position product, which upon further exposure to microbial oxidation, decomposes to
sulphates (SO4

2−) with S4O6
2− as a secondary by-product [4–6]. In alkaline conditions, the

proposed mechanism involves the alteration of the elemental sulphur inherently oxidising
thiosulphate ions to tetrathionate then sulphates [7]. The thermodynamically favoured
end product of sulphide oxidation is sulphate, however, in plant process water and plant
water effluents, mass transfer and kinetics limitations result in the production of partially
oxidised thiosalts or polythionates [8].

The generation of thiosalts is largely a function of operating conditions. These condi-
tions include pH, temperature, grinding time and size, sulphur content, and unit location
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within the mineral beneficiation circuit [8–10]. In flotation pulps, increasing the pH from
neutral to slightly alkaline conditions increases the rate of thiosalts generation and the
overall production of thiosalts. High temperatures in the flotation pulps of sulphide ores
and increased pulp dilution also result in increased thiosalt concentrations [8,10].

Massive sulphide ores, such as those processed in the New Brunswick region in
Canada and at a polymetallic sulphide minerals processing operation in Portugal, exhibit
the propensity to produce high amounts of thiosalts. Moreover, ores from stockpiles
already possess a high amount of thiosalts on the mineral surface before mixing with
process water [9]. Elemental sulphur is the primary oxidation product of the ores exposed
to atmospheric air, and it may be a precursor to thiosalts generation [9,10].

Of interest is the phenomenon that although galena and pyrrhotite oxidise relatively
faster [11], pyrite seems to generate a majority of thiosalts during processing in the grinding
stage [8,9].

Owing to their abundance in flotation plant process waters, thiosulphates ions and
tetrathionate ions are of interest to mineral processing researchers. More so, the increased
emphasis on plant water recycling at mining sites, closing water loops and short circuit
recycling of process water, has led to the accumulation of thiosalts in the flotation circuits.
As a result, the existence of partially oxidised sulphur intermediates in plant process waters
can no longer be ignored. Much work has considered the behaviour of thiosulphate ions
in flotation operations [12–15]. However, less focus has been channelled towards the
behaviour of the tetrathionate ions in the flotation process, until now.

This paper will discuss the solution interaction of tetrathionates with flotation reagents
i.e., collectors and their interactions with economically important sulphide minerals i.e.,
galena and chalcopyrite. Galena and chalcopyrite are usually floated in bulk in the first
stage of a two-stage sphalerite flotation process [16,17]. Owing to the rapid oxidation of
galena and its inherent sensitivity, the mineral is often affected by pulp conditions which
include Eh, pH, and other soluble species present in pulp slurries [18–21].

The current research improves the understanding of the flotation efficacy of xanthates
(as sulphide collectors) in water with high tetrathionate ion loads e.g., recycled process
waters. In addition to elucidating the reaction kinetics of the sodium isobutyl xanthate
(SIBX) and tetrathionate reaction, surface interactions of tetrathionates and SIBX on sul-
phide minerals are investigated. Electrochemistry i.e., rest potential measurements is also
considered as the degree of collector-mineral interactions can be analysed in this manner.

2. Materials and Methods
2.1. Materials
2.1.1. Mineral Sample Preparation

Galena and chalcopyrite used in this study were obtained in chunks from Ward’s
Science (Rochester, NY, USA). The purity of the samples was assessed using XRD and the
results are presented in Table 1. The XRD results table shows that the minerals were of a
high grade. Chalcopyrite was 94.3% pure with chlorite and magnetite making up the bulk
(5.2%) of remaining mineral impurities. Galena was 98% pure. To attain fine-sized particles,
the chunks were hammered down then pulverised for 20 s. The pulverised powder was
sieved to obtain three size fractions i.e., −25 µm, +25–38 µm, and +38–108 µm. The samples
were split into representative 2 g portions. The mineral samples were packed in bottles and
purged with nitrogen before storage in the freezer at −17 ◦C. The −25 µm size fraction was
used in FTIR and XPS studies, the +38–108 µm fraction was employed in microflotation
tests, whilst the +25–38 µm fraction was stored in the freezer.
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Table 1. XRD analysis of the mineral samples used in adsorption tests.

Sample Mineral Phases Purity (%)

Galena

Galena 98.2
Quartz 0.9

Cerussite 0.7
Hydrocerussite 0.2

Chalcopyrite
Chalcopyrite 94.3

Chlorite 2.2
Magnetite 3

2.1.2. Reagents

Modified deionised water was used throughout the study unless otherwise stated.
Na2S4O6 from Sigma Aldrich was used to alter the deionised water. SIBX (99% purity)
(Senmin, Sasolburg, South Africa) was used as the thiol collector. The collector was
prepared as a 1% (w/v) stock solution from which the desired aliquot of stock solution was
drawn and used in the respective experimental tests. A fresh stock solution was prepared
before each set of experiments.

For microflotation tests, the dosing strategy was based on the available mineral
surface area as calculated from Brunauer–Emmett–Teller (BET) surface areas and the active
collector content. The BET surface areas are shown in Table 2. A 50% pseudo-monolayer
coverage dosage was assumed based on previous literature which observed that at this
monolayer coverage, there is the direct interaction between the collector molecules and the
mineral surface instead of intramolecular interactions between collector molecules [22]. The
average cross-sectional area of the thiol collector molecule head was assumed to be around
28.8 Å [23]. NaOH (Merck, Germany) and HCl (37%) obtained from VWR Chemicals
(Darmstadt, Germany) were prepared as required and used as pH modifiers in all the tests.
Bis (2-hydroxyethyl) amino-tris(hydroxymethyl)methane (Bis-Tris) and Na2S2O3 (Sigma
Aldrich) were employed in Capillary Electrophoresis analysis.

Table 2. BET surface areas of galena and chalcopyrite.

Mineral BET Surface Area (m2/g)

Galena 0.0688
Chalcopyrite 0.2327

2.2. SIBX Decomposition Tests

SIBX solution decomposition tests were studied using a Hach Instruments DR6000
UV/Vis spectrophotometer (Hach Lange GmbH, Düsseldorf, Germany). The reaction was
initiated by adding 50 µL of a 1% (w/v) stock solution of SIBX to 30 mL of the desired
tetrathionate solution concentration and pH. Similar decomposition tests were also con-
ducted in gas purged solutions. In separate tests, oxygen and nitrogen were respectively
purged in tetrathionate-solutions for an hour before SIBX was added. The gases were con-
tinuously bubbled in the solution during the duration of the experiment. At selected times,
aliquots of the reacting solutions were drawn and measured with the spectrophotometer
using a quartz glass cuvette. The absorbance of xanthate was recorded at a wavelength of
301 nm. The absorbance peak values were used to calculate the extent of decomposition
and residual xanthate in solution. Nonlinear least squares regression curve fitting and
Microsoft Excel’s solver function were employed for kinetics studies. Nonlinear least
squares regression is preferred as it avoids skewing owing to mathematical manipulation
of raw data [24].

2.3. Ore Dissolution and SIBX Decomposition Tests

As a validation step to show the generation of polythionates in the flotation circuit
and their effect on reagent consumption, an ore dissolution experiment was conducted
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using a polymetallic Cu-Pb-Zn ore obtained from a polymetallic sulphide ore processing
mine in Portugal. A detailed description of the dissolution loop strategy and its importance
to mineral processing has been described by Le et al. [25]. A 1 kg sample of ore was ground
to 80% passing 45 µm at a solid pulp density of 67% in a stainless-steel ball mill. The
milled slurry was transferred to a 2 L batch flotation cell and makeup water was added to
the cell to achieve the required slurry level (35% slurry density). The slurry was aerated
without froth collection and addition of reagents for 50 min. After aeration was completed,
the slurry was filtered, and the solids were discarded whilst the water was recycled for
milling a fresh ore. The tests were conducted at 25 ◦C and 60 ◦C. The high temperature was
achieved by using a thermostatic heating element. After 6 loops of grinding and aeration,
30 mL of the sample was drawn and vacuum filtered using 1.6 µm filter paper followed by
filtration using a 0.45 µm filter paper. SIBX was added to the filtered water sample and
xanthate decomposition was monitored over 1 h. Two extra samples were collected and
filtered: (i) was used as a baseline in UV analysis and (ii) was quantitatively analyzed for
polythionates using the capillary electrophoresis machine.

2.4. Capillary Electrophoresis

The separation and quantitation of tetrathionates and thiosulphates were conducted
using the Agilent 7100 Capillary Electrophoresis (CE) equipment (Agilent Technologies,
Santa Clara, CA, USA). This robust technique entails the separation of the analytes in an
electrolyte medium employing an electric field and spectrometry (UV) [26]. A method
developed by O’Reilly [27] was applied with some modifications to suit the in-house unit.
An uncoated fused silica capillary tubing (50 µm internal diameter and 375 µm outer
diameter) with a total length of 0.385 m was used for the separation of electrolytes. The
data was collected using two wavelengths: 195 and 214 nm with 50 mM Tris-Bis, pH 6 used
as a background electrolyte (BGE). A voltage of −30 kV was used in the separations. Before
analysis, the silica capillary was flushed with 1 M NaOH for 10 min, Milli-Q water for 10
min, and the BGE for 10 min. During analysis, Milli-Q water was injected at 30 mbar for 3 s
just before the sample injection to concentrate the sample by field amplified sample stacking.
Liquid samples were then injected using a pressure of 50 mbar with the injection time set at
10 s. Where multiple samples were analysed, shorter 1 min washing steps were conducted
in between successive injections to clean the capillaries. Above pH 9, tetrathionates are
unstable in solution, hence, fresh standards were always prepared immediately before the
CE analysis using sodium tetrathionate (Na2S4O6·2H2O).

2.5. FTIR Measurements

FTIR measurements were conducted with the aid of a Perkin Elmer-Two Spectrum
(FTIR-ATR) spectrometer (Perkin Elmer Inc, Waltham, MA, USA). The equipment is fitted
with a LiTaO3 (lithium tantalate) detector and KBr detection windows for data collection
from 350 to 8000 cm−1. Infrared (IR) readings of species on the mineral surface were col-
lected after 32 scans. Before IR readings were taken, 1 g of mineral sample was conditioned
in a solution of deionised water with 5 × 10−4 M SIBX or a 500 mg/L tetrathionate solution
with 5 × 10−4 M SIBX at the desired pH. The mixture was conditioned for 30 min before
filtration. A freshly conditioned mineral sample was filtered and washed with water and
acetone to remove any residual solution before being placed on the crystal. The same
filter paper used in microflotation tests was used in this stage of experiments. The mineral
sample was pressed down on the Attenuated Total Reflection (ATR) crystal to allow enough
contact for reliable IR data readings.

2.6. Rest Potential Measurements

Rest potential measurements were carried out under three experimental conditions: in
the presence xanthate and tetraborate buffer (pH 9); in the presence of tetraborate buffer +
xanthate + 500 mg/L tetrathionate ions and in the presence of tetraborate buffer + xanthate
+ 2000 mg/L tetrathionate. Galena and chalcopyrite electrodes were used as test minerals.
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A detailed description of the mineral electrode construction is available in Tadie et al. [28].
A three-electrode electrochemical cell was set up with potentials measured relative to the
Ag/AgCl and reported against a platinum standard hydrogen electrode (SHE). Before rest
potential measurements, the mineral was first polished using a 600 grit silicon carbide paper,
followed by finer polishing using alumina powders from IMP Scientific and Precision (Pty)
Ltd., (Boksburg, South Africa). Rest potentials were controlled and measured under the
desired conditions using a Gamry 3000 Potentiostat (Gamry Instruments Inc, Warminster,
PA, USA) and Gamry Framework computer software. Rest potentials were measured in the
absence of reagents for 600 and 1500 s for galena and chalcopyrite, respectively, allowing
the surface to equilibrate, followed by SIBX addition at 2.4 × 10−4 M.

2.7. Microflotation Tests

Microflotation tests were performed using the University of Cape Town microflotation
rig. A detailed description of the rig design is provided elsewhere [29]. First, 50 mL of
deionised water or tetrathionate solution at pH 8–9 was added to 2 g of a previously
weighed mineral sample and the mixture was sonicated for 5 min to remove agglomerates.
Post sonication, the desired concentration of SIBX required for a 50% monolayer coverage
of the mineral surface was added to the mixture followed by conditioning for 3 min. If
necessary, the pH was adjusted using NaOH and HCl. The mixture was transferred to the
microflotation cell. Tetrathionate concentrations of 500 and 2000 mg/L were tested based
on previous water quality survey results from a polymetallic sulphide ore processing plant,
Portugal (confidential reports) (see Table 3). Makeup deionised water or tetrathionate
solution when appropriated was added to the cell to reach the recommended water level
mark. Air was introduced into the cell at a flow rate of 8 L/min using a peristaltic pump
attached to a needle injector. Concentrates were collected from the top of the cell at 2, 6, 12,
and 20 min of flotation. The concentrates were filtered using an MN615 grade cellulose
filter paper (Macherey-Nagel- Duren, Germany) with a thickness of 0.16 mm and a pore
size of 4–12 µm. After filtration, the solids were dried in the oven at 70 ◦C before weighing.
A mass balance between the tails and concentrates was used to calculate the recoveries.

Table 3. Chemical species and their concentration ranges in plant waters at a polymetallic sulphide
ore processing operation in Portugal (Site survey reports).

Species Concentration Range Units

S4O6
2− 200–2500 mg/L

S2O3
2− 5–900 mg/L

SO4
2− 300–4000 mg/L

Ca2+ 2–900 mg/L
Dissolved Oxygen Content 6–11 ppm

TOC 5–13 mg/L
Cl− 100–3600 mg/L

NO3− 5–100 mg/L
Pb2+ 0.01–20 mg/L
Na+ 5–1100 mg/L

Mg2+ 0.1–300 mg/L
K+ 2–120 mg/L
pH 6–9 -

3. Results
3.1. Xanthate Degradation Kinetics in the Presence of Tetrathionates

Previous studies have shown that no appreciable xanthate decomposition occurs in
deionised water at neutral to alkaline pH i.e., in the absence of sulphoxy compounds. These
results are confirmed and published in [30,31]. In the current study, the concentration of
SIBX in tetrathionate solutions was normalised by the initial SIBX concentration. Residual
xanthate concentrations in the presence of tetrathionate solutions were measured over 1 h
at pH 3, 5, 7, 9 and 11. As shown in Figure 1, at least 50% of the xanthate is consumed in the
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first 10 min of exposure to tetrathionate ions. After 1 h, all the xanthate is almost completely
degraded at all pH conditions investigated. Investigations into the use of oxygen and
nitrogen, Figure 2, showed no statistically significant results from those presented in
Figure 1 (refer to Supplementary Materials Tables S1–S3 for the two-way ANOVA results).
The results, therefore, suggested that the reaction was not affected by the nature of gas in
the solution and no further investigation into gases was considered.
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Figure 2. SIBX decomposition in the presence of (a) oxygen and (b) nitrogen purging. SIBX starting concentration = 20 mg/L.

The reaction kinetics of the tetrathionate and SIBX system were evaluated using
regression fitting. Equations (1) and (2) show the nonlinear and linearised equations
respectively used to analyze the reaction progress. (Ct/Co) represents the normalised
residual concentration at any time t, (Ct/Co)∞ is the normalised residual concentration at
an infinite time and k is the rate constant:

(Ct/Co) − (Ct/Co)∞ = [(Ct/Co)initial − (Ct/Co)∞]. e−kt, (1)

Ln[(Ct/Co) − (Ct/Co)∞] = Ln [(Ct/Co)initial − (Ct/Co)∞] − kt. (2)

The reaction is first order with respect to the xanthate in solution. The dependence
of the natural logarithm of residual xanthate concentration on time is also shown in the
inset in Figure 1. The inset shows a linear relationship between the natural logarithm of
normalised xanthate concentration and time, supporting the nonlinear curve fitting results.
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Rate constants for the data presented from curve fitting are also presented in Table 4. The
fastest SIBX decomposition rate in all solutions is observed at pH 3 with a rate constant
(k) of 0.136 min−1 in the 500 mg/L tetrathionate solution. This is expected as xanthates
are unstable in highly acidic conditions. Therefore, the impact of tetrathionates on SIBX
decomposition was considered for pH values above pH 5. Beyond pH 5, decomposition
rates are almost the same. This result suggests that above pH 5, pH had no significant
bearing on the decomposition rate. As can be seen from Table 4, SIBX decomposition
rate constants double as the concentration of tetrathionates doubles which is expected for
first-order reaction.

Table 4. Removal ratio of SIBX and related rate constants after 1 h of conditioning at pH 3–11.

S4O62− Concentration - Solution pH

3 5 7 9 11

500 mg/L Rate (k) min−1 1.36 × 10−1 8.20 × 10−2 7.94 × 10−2 7.86 × 10−2 8.45 × 10−2

% removal SIBX 98 97 96 96 88

250 mg/L Rate (k) min−1 1.25 × 10−1 5.27 × 10−2 4.45 × 10−2 4.11 × 10−2 4.49 × 10−2

% removal SIBX 97 91 90 91 78

100 mg/L Rate (k) min−1 1.32 × 10−1 2.49 × 10−2 2.87 × 10−2 1.94 × 10−2 2.45 × 10−2

% removal SIBX 97 62 61 59 35

As validation of SIBX consumption in process waters, SIBX decomposition was mon-
itored in water loaded with polythionates generated naturally in a real ore dissolution
loop. The decomposition of SIBX in dissolution loop water over 1 h at two temperatures
i.e., 25 ◦C and 60 ◦C, is also presented in Figure 1. The absolute SIBX decomposition
and kinetics follow a similar pattern to decomposition in artificial tetrathionate solutions.
The pH values of the water samples, pH 7 (25 ◦C) and pH 4 (60 ◦C), were not adjusted
and SIBX decomposition was initiated at this natural pH. An increase in temperature is
accompanied by a decrease in pulp pH corroborating findings made by Le et al. [25] where
the dissolution loop was set up for a Cu-Ni ore. This observation was attributed to the
release of H+ ions as the sulphur in elemental sulphur was oxidised to higher oxidation
states forming thiosalts and sulphate [9,25]. High temperatures can be generated in ball
mills and in processing plants located in hot regions such as Portugal and South Africa
where temperatures have been observed to reach 60 ◦C in the mill and 40−50 ◦C in the
pulp. These temperatures potentially introduce processing problems related to collector
adsorption efficiency and collector consumption [32].

3.2. Evaluation of Ore Dissolution and SIBX Decomposition Products in the Presence
of Tetrathionates
3.2.1. Identification of Xanthate Derivates

Figure 3 presents the ultraviolet absorption spectra of xanthates in a tetrathionate
solution at pH 7. The spectra were collected at selected times during the reaction. The
starting concentration of SIBX was 20 mg/L. In the early stages of the reaction i.e., the first
10 min, the absorbance peak is centred around 301 nm. However, as the reaction progresses
the peaks shift towards lower wavelengths.

The pattern in Figure 3 is consistent with observations by Yamamoto and Jones and
Woodcock [33,34], who reported on peak shifts from 301 nm towards 295 nm when assess-
ing xanthate decomposition in the presence of sulphite ions. Misra et al. [35] suggested
the shift is controlled by perxanthate (xanthate derivative) in acidic solution. Their studies
were, however, conducted at pH 4.9, hence this species may not be present in our system
which was at neutral pH. Furthermore, the characteristic peak of perxanthate expected
with an absorbance at 347 nm [33–35], was not observed in our system even at pH 5 and 3.
Jones and Woodcock [34] proposed an alkyl xanthyl thiosulphate as the species responsible
for the shift in absorbance peaks of xanthate ions. Xanthyl thiosulphates have absorption
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peaks between 285 and 295 nm. It can be inferred that the overall absorption peak observed
in the current studies were a combination of the xanthate absorbance at 301 nm and the
alkyl xanthyl thiosulphate absorbance, explaining the peak shift from 301 nm towards
290 nm as xanthate degrades. Care was taken to record true xanthate contributions to
absorption peaks by lowering the pH to below pH 2, rapidly degrading xanthate in sample
aliquots. By measuring the difference in absorption peak heights before and after xanthate
removal, the real residual xanthate in solution according to method 2 developed by Jones
and Woodcock [36] was calculated.
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The oxidation of xanthate ions by tetrathionate ions occurs according to Equation (3)
where xanthyl thiosulphates and thiosulphates are reaction products. This reaction favours
acidic conditions to alkaline conditions (pH 5–10). Thiosulphates have a detrimental
effect on flotation performance of Cu-Pb-Zn ores [37]. Thiosulphate ions inhibit xanthate
adsorption on sulphides possibly through competitively adsorbing on the mineral surface
and through the formation of complexes with metals leading to mineral passivation [14,15].
In this study, it can be inferred that thiosulphate generation can contribute to surface
passivation of the galena and chalcopyrite surface, supporting the lower mineral recoveries
observed in the presence of tetrathionate ions.

Simultaneous oxidation of xanthate by tetrathionate ions results in the formation of
dixanthogen as in Equation (4) [12,34,38]. Although dixanthogen was not detected in the
current tests, probably due to low concentrations, dixanthogen is produced via this reaction
in conditions where recycled water with high tetrathionate concentrations prevail e.g.,
plant waters processing massive sulphide ores:

S4O6
2− + RX− = RX.S2O3 +S2O3

2− (3)

S4O6
2− + 2RX− = (RX2) + 2S2O3

2− (4)

Jones and Woodcock [34] recognised these interactions, acknowledging the potential
interference of tetrathionates with flotation efficacy and highlighting the need for such
studies to be conducted. Given that no further studies on this reaction have been explored
yet, this paper becomes more pertinent.

3.2.2. Identification of Thiosalts Using Capillary Electrophoresis

The electropherograms of tetrathionates and thiosulphates under different reaction
conditions for 1 h are shown in Figure 4. In all tests, the starting solution consisted of
100 mg/L of a tetrathionate solution. The migration time of tetrathionates is between 1.8
and 2 min whilst that of thiosulphates is between 1.3 and 1.4 min. The peak areas were
converted to concentrations against calibration curves. After 1 h of reacting with SIBX, the
area under the tetrathionate peak decreases. Concurrently the peaks areas for thiosulphates
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increases with reaction progress. The changes in thiosalt concentrations are reported in
Table 5 and support the reaction stoichiometry in Equation (3). As expected, in the presence
of 100 mg/L SIBX, more thiosulphates are produced in comparison to when 60 mg/L
of SIBX was added to the tetrathionate solution. Freestanding 100 mg/L tetrathionate
solution at pH 7 was stable and does not decompose even after 1 h.
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electropherogram of water harvested from a dissolution loop in the absence of SIBX.

Table 5. Thiosalt concentration after reacting 100 mg/L tetrathionates with 60 mg/L SIBX and 100 mg/L SIBX for one hour
at pH 7.

Sample ID S4O62− Concentration (mg/L) S2O32− Concentration (mg/L)

S4O6 100 mg/L, fresh 96.89 0
S4O6 100 mg/L, after 1 h 96.89 0

S4O6 100 mg/L + SIBX 60 mg/L, after 1 h 50.24 46.84
S4O6 100 mg/L + SIBX 100 mg/L, after 1 h 25.12 84.31

The polymetallic sulphide ore mine site survey results summarised in Table 3 confirm
the high concentrations of tetrathionate ions and sulphates ions present in process plant
waters. The inset in Figure 4 equally shows the naturally occurring thiosalts generated
during ore dissolution of a Portuguese polymetallic sulphide ore sample in the absence
of reagents. Multiple sulphoxy compound peaks appeared; however, some could not be
assigned i.e., at 1.45 and 2.2 min. As noted by Miranda-Trevino [26], the challenge with
analytical techniques is their inadequacies in identifying all the species present in complex
solutions. For example, challenges arise in the detection of sulphites and sulphates using
CE due to little or no UV absorbance in direct CE method prompting the need for indirect
techniques [39]. Instrument modifications may be required for the confident assignment of
some peaks. What is certain from Figure 4 is the presence of tetrathionates and thiosulphate
as indicated by the retention times similar to those exhibited by standard thiosalt reference
solutions. A shift of the tetrathionate peak to 1.74 min is attributed to interference in the
more complex solutions. The concentrations of tetrathionates and thiosulphates obtained
from the dissolution loop were recorded in addition to sulphate concentrations which
were obtained using Hach Instruments sulphate kits. These concentrations are presented
in Table 6.
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Table 6. Thiosalt concentrations measured in ‘process’ water harvested after ore dissolution tests.

Experiment SO42− (mg/L) S2O32− (mg/L) S4O62− (mg/L) Thiosalts Overall (mg/L)

Dissolution Loop at 25 ◦C 2034 244 733 1648
Dissolution Loop at 60 ◦C 2056 136 567 1404

As seen in Table 6, tetrathionates are more prevalent in solution in comparison to
thiosulphate ions. This result agrees with earlier studies by Goldhaber [40], who observed
that in short term experiments lasting less than 48 h, tetrathionates and sulphates are major
oxidation intermediates at pH 6–7.

As multiple oxidation-reduction couples exist in the pulp, the overall thiosalts concen-
tration presented in Table 6, is a combination of various other unidentified sulphoxy species
plus tetrathionates and thiosulphate ions. There is a decline in thiosalt concentrations as
the temperature is raised from 25 to 60 ◦C. As generally accepted, thiosalt chemistry is
complex. Besides reacting with oxygen, the thiosalts also react with each other making
the system more difficult to predict [3,8,26]. Further oxidation of thiosalts to sulphates
and degradation or rearrangement of polythionates to other sulphoxy species is possible.
Interestingly the overall thiosalt concentration decreases as the temperature is raised, which
is contrary to results presented in previous literature studies [8,9].

Mineralogical analysis of the Cu-Pb-Zn ore shows that the mineralisation is abun-
dant in pyrite, 86%. Being a massive sulphide ore, the pyrite is the major contributor to
tetrathionates formation via the formation of thiosulphates as the first oxidation prod-
uct [3]. In the absence of the pyrite, the reaction between thiosulphate and oxygen is
extremely slow [2]. However, due to its semiconducting property [2,8], pyrite acts as
a pathway for electron transfer from the thiosulphate (donor) to the oxygen (terminal
electron acceptor). As 3d electrons fill the conduction band in pyrite, it develops strong
metallic properties allowing easy transportation of electrons. From this hypothesis, we
can infer that the production of tetrathionates in the presence of galena and sphalerite,
also semiconductors, follows the same path. Copper (II) ions have also been reported to
catalyze the decomposition of thiosulphate presenting fouling problems of exchange resins
in gold processing [1]. The copper released from chalcopyrite oxidative dissolution and
reagents such as copper (II) sulphate employed as a sphalerite activator may result in the
generation of tetrathionates in solution.

3.3. Surface Analysis—FTIR Studies
3.3.1. Galena FTIR Spectra

Figure 5a shows the baseline corrected FTIR spectrum of galena conditioned in
deionised water without the addition of SIBX. The conditioning was carried out for
30 min at pH 7. Galena surfaces are easily oxidised and the sulphoxy oxidised species
are present on the mineral surface. From the FTIR spectrum, bands at 837 and 1390 cm−1

originate from PbCO3 whilst the bands appearing at 965 and 1165 cm−1 are indicative
of the presence of PbSO4 [41–43]. Conditioning in (i) deionised water (ii) in 500 mg/L
tetrathionates and SIBX (5 × 10−4 M/80 mg/L) and (iii) 2000 mg/L of tetrathionate ions
and SIBX (5 × 10−4 M/80 mg/L), resulted in the FTIR spectra (i), (ii), and (iii), presented
in Figure 5b.

The concentration of SIBX in solutions used in FTIR tests is higher than what is
normally present in process waters, however, to obtain decent infrared spectra, the higher
concentration was used. New peaks appear at 1210, 1188, 1138, and 1027 cm−1. The peaks
at 1210 and 1188 cm−1 are related to C-O-C and S-C-S asymmetric stretching. The band
at 1027 cm−1 is attributed to the vibration of the S-C-S group which shifts from 1022 to
1027 cm−1. All these bands correspond to the monocoordinated form of lead butyl xanthate
and multiple layers of surface precipitated lead butyl xanthate [42]. The results have no
indication of dixanthogen forming on the galena surface. The surface precipitated lead alkyl
(ethyl, amyl, butyl) xanthates has been proposed to form on the galena surface according
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to two mechanisms (1) lead salts such as carbonate and sulphate dissolve into solution
allowing free Pb2+ ions in solution. In the presence of butyl xanthate ions interactions
between the xanthate and Pb2+ allow the formation of lead xanthate. (2) As the solubility
limit of the lead alkyl xanthate is surpassed, islands of solid lead alkyl xanthate form on
the galena particles acting as nuclei for further precipitation [12,17]. In cases where the
galena is highly oxidised, there is a higher probability of precipitates forming, and these
have been reported to be enough to induce mineral hydrophobicity when short chain lead
ethyl xanthate is employed [43].
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After conditioning was carried out in tetrathionate solutions, the intensity of the peaks
attributed to lead butyl xanthate decreased as the concentration of tetrathionates increases.
This is more evident in spectra (ii) at the high concentration of 2000 mg/L of tetrathionates.
The decrease in peaks could be a result of xanthate consumption in solution or limited
adsorption on the mineral surface owing to passivation by metal-thiosalt complexes [37].
This rendered the mineral hydrophilic. At high tetrathionate concentrations, there is also a
decrease in intensity of the surface oxidised lead carbonates species bands (837 cm−1 and
1400 cm−1) in the presence of tetrathionates. This may be indicative of the propensity of
tetrathionates to increase the dissolution of the carbonate species in solution through an
ion-exchange mechanism allowing the other sulphoxy ions to form on the galena surface.
Minimal changes in the intensity of the sulphate bands (1164 cm−1 and 965 cm−1) even
in the presence of the tetrathionates may indicate minimal dissolution of the sulphates
from galena in the presence of tetrathionates. This could be explained by contributions
to sulphate and thiosulphate species build up on the mineral surface due to oxidation of
thiosulphates and tetrathionates, however, the speed of thiosalt oxidation to sulphate is yet
to be established.

3.3.2. Chalcopyrite FTIR Spectra

Figure 6a is an illustration of the baseline corrected FTIR spectrum of chalcopyrite
conditioned in deionised water in the absence of any collectors. The spectrum contains no
peaks, which shows that there is not much oxidation on the chalcopyrite surface. After
conditioning in deionised water, spectrum (i) in Figure 6b was attained in 5 × 10−4 M SIBX
solution.

Two major peaks are identified together with smaller peaks characterised by lower
intensities in the regions between 1100 to 1200 cm−1. From comparisons with past findings,
the intense peaks at 1027 and 1257 cm−1 are due to the C-O-C asymmetric stretching
vibrations and C=S stretching vibrations respectively [44,45]. These peaks are attributed
to butyl dixanthogen (BX)2. The lower intensity peaks identified at 1160, 1146, 1124, and
1046 cm−1 are attributed to C-O-C symmetric vibrations associated with (BX)2, C-O-C
symmetric vibrations associated with cuprous(I) butyl xanthate (CuBX) and C=S stretching
vibrations linked to CuBX [44,46,47]. From the infrared spectrum, it is quite clear that
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the dominant feature present on the chalcopyrite surface was the adsorbed (BX)2 with
some xanthate adsorbing as CuBX in smaller amounts. These results corroborate findings
made by Li et al. [47]. Studies by Zhang et al. [44], suggested that cupric(II) butyl xanthate
(Cu(BX)2) is unstable leading to the dissociation of the cupric butyl xanthate into cuprous(I)
butyl xanthate CuBX and dixanthogen which are more stable on the mineral surface.
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Conditioning of chalcopyrite in tetrathionate solutions (spectrum (ii) and (iii)), re-
vealed interesting properties of the chalcopyrite surface. At a low tetrathionate concentra-
tion i.e., 500 mg/L, there is hardly any change in the FTIR spectrum of chalcopyrite. From
this lack of change in the spectrum, it can be inferred that the tetrathionates did not affect
xanthate adsorption on to the mineral surface. Possibly the low concentration of thiosul-
phate produced by the tetrathionate led to reduced mineral passivation by metal-thiosalt
complexes. The presence of strong dixanthogen peaks is indicative of the dixanthogen per-
mitting potentials which allow dixanthogen to remain on the surface as will be confirmed
by rest potential measurements. At higher tetrathionate concentrations, almost all the peaks
produced via the adsorption of sodium butyl xanthate disappear. Of the adsorbed species,
CuBX is the most affected. It can be suggested that increased xanthate solution degradation
and competitive adsorption on the mineral surface between the xanthate species and the
thiosulphates (or thiosulphate complexes) formed according to Equation (1), resulted in
low collector adsorption. The results presented in Section 3.3 indicate that high concentra-
tions of tetrathionates result in decreased interaction between sulphide minerals and alkyl
xanthates. To confirm this observation, rest potential measurements were performed.

3.4. Rest Potential Measurements
3.4.1. Galena Rest Potential Measurements

Figure 7 presents the rest potential (mixed potential) measurements of galena elec-
trodes in different tetrathionate solutions. At all tested conditions, there is a drop in
mixed potential after SIBX is added. The extent of the drop in mixed potential and the
associated gradient after collector addition is indicative of the degree of collector-mineral
interaction [28]. From Figure 7, in the absence of tetrathionates (0 mg/L, S4O6

2−) there
is a 72 mV drop in mixed potential. In the presence of 500 mg/L of tetrathionates, the
mixed potential drop is similar to that observed in the absence of tetrathionates. Whilst at a
tetrathionate concentration of 2000 mg/L, the mixed potential drop is 30 mV. These results
are indicative of strong collector-mineral interactions when SIBX is added to deionised
water and the 500 mg/L tetrathionate solution. In the 2000 mg/L tetrathionate solution,
there is less collector-mineral interaction alluding to the passivation of the mineral surface
by the species in the solution.
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Na2B4O7 (pH 9.3) at 25 ◦C, 500 mg/L tetrathionates, and 2000 mg/L tetrathionate solutions.

In agreement with previous literature, the equilibrium potential of galena in the
absence of thiosalts exhibits a negative potential with respect to the dixanthogen couple
(X−/X2) [48]. For SIBX in neutral to slightly alkaline pH (pH 7–9), the dixanthogen
couple has been studied and the literature proposes a corrected potential of ca. 0.108 V
as shown in Figures 7 and 8 [49,50]. Regarding interactions of sulphide minerals with a
xanthate collector, positive equilibrium potentials with respect to the dixanthogen couple
are indicative of dixanthogen species on the mineral surface whilst a metal thiolate is
predicted to exist at a negative potential to the dixanthogen couple [28,48,49]. An interesting
observation is the positive equilibrium potentials with respect to the dixanthogen couple
alluding to equilibrium potentials in an oxidative environment suitable for dixanthogen
generation on galena in the presence of tetrathionate ions. In this study tetrathionates,
are potential determining by promoting an oxidizing environment in the system. It must,
however, be recalled that dixanthogen was not observed on galena surfaces during FTIR
studies. This inconsistency could be because the electrochemical cell environment is an
ideal system and more sensitive and differs significantly from the conditioning environment
used for FTIR studies.
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3.4.2. Chalcopyrite Rest Potential Measurements

Figure 8 presents the rest potential measurements for chalcopyrite in different solution
conditions. In deionised water, the rest potential drops by 70 mV after interaction with
SIBX. In the 500 mg/L tetrathionate solution, the chalcopyrite rest potential declines by
50 mV whilst at 2000 mg/L there is minimal interaction as the potential slightly declines
upon xanthate addition, however, recovering to its original value. The drop in potential
followed by a subsequent increase in the potential to original potential values could be
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indicative of an initially chemisorbed but unstable xanthate species which was consumed
from the mineral surface. In all conditions investigated, the equilibrium mixed potential
was positive with respect to the xanthate/dixanthogen couple. It is therefore expected that
dixanthogen must form on the mineral surfaces. Albeit the presence of dixanthogen on the
chalcopyrite surface, chemisorbed xanthate which eventually converts to metal thiolate
has been reported to exist on minerals such as chalcopyrite and pentlandite [28,51]. In
separate studies, spectroscopic analysis of chalcopyrite has identified a metal thiolate layer
co-adsorbed with dixanthogen on the mineral surface [52–54]. FTIR explored in the current
study also identified dixanthogen and cuprous(I) butyl xanthate (CuBX) on the mineral
surface.

The rest potential measurements on galena and chalcopyrite have revealed that at
high tetrathionate concentrations, the collector-mineral interaction is significantly reduced.
This result supports the FTIR studies and the hypothesis that, tetrathionates in high concen-
trations have the potential to render the mineral surface inactive due to the consumption
of xanthate and subsequent formation of decomposition products and stable metal-thiosalt
complexes that passivate sulphide mineral. The instability of metal-xanthate complexes and
chemisorbed metal thiolate species increases in solutions where xanthate-thiosalt reaction
products exist. This result shows that the chemisorption of xanthate is limited in the pres-
ence of high tetrathionate concentrations in accord with previously stated electrochemical
observations.

3.5. Microflotation Studies

Mineral recovery was used as a measure of flotation performance in the different
flotation conditions evaluated. Figure 9 shows the cumulative recovery of chalcopyrite
and galena subjected to different conditions. The collectorless flotation in deionised water
results in a chalcopyrite recovery of 70% and galena recovery of 45%. After molybdenite,
chalcopyrite has generally been accepted to be the most naturally floatable of the common
sulphide minerals. The natural floatability of chalcopyrite, galena, and sulphide minerals
in general is attributed to the presence of mildly oxidised species on a surface; elemental
sulphur and sulphur-rich/metal deficient polysulphide species which may build up dur-
ing grinding [55,56]. However, a heavily oxidised surface does not exhibit collectorless
floatability [17,21].
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The addition of enough collector for a 50% pseudo-monolayer mineral coverage re-
sulted in chalcopyrite and galena recoveries of 80% and 60%, respectively. The depressive
effect of tetrathionates can be seen more evidently for galena. The galena recovery declined
from 60% to 20% in the presence of 500 mg/L of tetrathionates and further declined to
8% in the presence of 2000 mg/L of tetrathionates. The reduction of tetrathionates in the
presence of xanthate producing thiosulphates which adsorb on the mineral surface could
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explain the depression observed in this study. This observation supports findings made
by Ozturk et al. [37]. The authors observed the significant depression galena in the Cu-Pb
flotation circuit in the flotation of a real complex ore after interaction of thiosulphate ions
with the sulphide minerals. Studies by Patridge and Shimiizoka [57,58] revealed galena
depression seldomly occurs on clean galena, but heavily oxidised galena is depressed
in the presence of sulphoxy compounds i.e., sulphite (SO3

2−) ions. This depression was
attributed to the formation of a sparingly soluble lead sulphite film on the mineral surface
which passivates the mineral surface. The depression of oxidised galena has been equally
shown in the current study as elucidated by FTIR studies. Bulatovic [59], also reported
that thiosulphate ions have the propensity to form complexes with metals that are more
stable than the metal-xanthate complexes. Other literature also exists which proposes that
the presence of thiosulphate and sulphate in solution is beneficial for collector adsorption
through the generally accepted ion-exchange mechanism between the thiosalts and xan-
thate ions described by Alvarez and Wells [12,60]. The studies, however, made no mention
of the extent of galena oxidation. There is a possibility that excess thiosalts in solution may
begin to reduce the recovery gains of having thiosalts on the mineral surface as observed
by the current study and that of Ozturk et al. [37].

As seen in Figure 9, chalcopyrite recovery was only affected by high tetrathionate
concentrations. The mineral recovery declined from 81% to 77% when floated in a 500 mg/L
tetrathionate solution which could be insignificant with the error range. On conditioning
in 2000 mg/L tetrathionate solution, chalcopyrite recovery declined to 65%. Due to the
presence of thiosulphate and xanthyl thiosulphate in solution, the depression on the
chalcopyrite surface could be due to the formation of a copper thiosulphate complex
according to Equation (5), [14]:

2Cu2+ + 6S2O3
2− = 2[Cu(S2O3)2]3− + S4O6

2−. (5)

The current study has demonstrated how galena is more sensitive to the presence
of tetrathionates confirming literature which showed that galena is more susceptible to
depression by process water [20,37]. At low concentrations, galena and chalcopyrite
depression may not be appreciated, however, as the sulphoxy ions begin to build up
depression is appreciable even for the more floatable chalcopyrite. This phenomenon can
have a significant bearing in Cu-Pb separation in circuits using recycled water loaded with
thiosalts or operations using sulphoxy compounds as depressants in the place of cyanide.
The microflotation tests also support the FTIR studies and rest potential measurements
which showed reduced collector-mineral interaction at high tetrathionate concentrations. It
must be borne in mind that using single mineral allows the use of relatively pure minerals
whilst minimising the effect of external influences such as purity, mineral associations, and
liberation on flotation performance. On the plant, flotation recoveries may not be as high
as seen in these microflotation tests, however these microflotation tests serve as a sound
base for fundamental studies. To complement these pure mineral studies further work will
be reported in which real ores will be tested in batch flotation studies.

4. Conclusions

This study has successfully shown that xanthate is degraded in the presence of
tetrathionates with significant impacts on the flotation recovery of sulphide minerals.
Tetrathionates produced due to the oxidative ore dissolution of sulphide minerals consume
xanthate producing thiosulphates and xanthyl thiosulphates which are capable of forming
complexes with metals that passivate sulphide minerals.

Microflotation tests have shown that chalcopyrite and galena are depressed at high
concentrations of tetrathionates in solution ca. 2000 mg/L. Galena is more sensitive to the
presence of tetrathionates as it is depressed to a greater extent in comparison to chalcopyrite.
At low concentrations ca. 500 mg/L, chalcopyrite flotation recoveries are unaffected by
tetrathionates in solution. It is common plant practice to assume that chalcopyrite is
unaffected by the presence of sulphoxy species in solution. This study has equally shown
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the resilience of chalcopyrite in the presence of tetrathionates. The sensitivity of galena to
tetrathionates may introduce recovery problems in Cu-Pb-Zn circuits where galena and
chalcopyrite are often bulk floated to separate them from sphalerite and pyrite.

FTIR measurements and rest potential measurements successfully showed that collector-
mineral interactions decrease when minerals are subjected to conditioning in solutions
with high tetrathionate concentrations. The formation of metal-thiosalt complexes on
the mineral surface passivates the mineral. Besides thiosulphate forming on the mineral
surface as a tetrathionate reduction product, it must be noted that there is a possibil-
ity of tetrathionate ions directly interacting with the mineral surface. The presence of
tetrathionates and thiosulphates on sulphide minerals can prevent electron transfer across
the mineral surface which acts as the semiconducting anodic site in the electrochemically
driven adsorption of thiol collectors on sulphide minerals. Metal xanthates formed on
the mineral surface are destabilised in the presence of tetrathionates. The poor flotation
performance could therefore be attributed to mineral passivation by sulphoxy compounds
and collector consumption in solution.

Massive sulphide processing plants that implement water recycling must bear in mind
the influence of water quality of flotation performance. As water recycling contributes to
the accumulation of thiosalts and polythionates in process water, reagent dosing regimens
may need to be aggressive to counter depressive effects of thiosalts on valuable minerals.
The current study is not exhaustive as other water quality parameters may be detrimental
or beneficial to sulphide flotation. This study, however, lays a solid foundation upon which
the importance of previously overlooked tetrathionates can be considered in water analysis
and flotation circuit performance.
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