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An analytical approach to identify indirect multisensory cortical
activations elicited by TMS?

Dear Editor,

Electroencephalography (EEG) is widely used for detecting
transcranial-magnetic stimulation (TMS) evoked responses in the
human brain. TMS-evoked potentials (TEPs) may contain both
direct activations due to the TMS-induced cortical electric field
and indirect cortical activations due to the subsequent multisen-
sory responses to TMS [1]. Distinguishing between direct and indi-
rect sources of cortical activation has largely been attempted using
careful experimental designs [2e5]. Here, we complement those
advances by providing a novel statistical approach. Our results
convergewith the pattern of indirect activation identified by recent
experimental work [3], which provides encouraging support for the
potential utility of this novel approach.

Several different experimental strategies have been used to deal
with the indirect response of stimulation. One approach is to sup-
press the sources of multisensory stimulation and consequently
minimize indirect cortical activations. This is powerfully illustrated
in a recent study, in which the sound of the coil was very efficiently
masked by playing noise-masking via earplugs as well as using ear
defenders, and the vibrations of the coil were attenuated by using a
foam layer beneath the coil [3]. Whether this suppression approach
is completely effective is debated (e.g. [4,6]). An alternative exper-
imental approach is to use sham stimulation to mimic, and conse-
quently isolate multisensory sources of indirect cortical activation
[3e5]. Yet, this requires techniques to accurately reproduce the
multisensory response elicited by TMS [3,4], which is challenging
to achieve. Both of these approaches deal with indirect responses
to stimulation using experimental manipulations within-subjects.
We offer a complementary approach using between-subjects anal-
ysis to indentify the indirect cortical activations due to stimulation.

Commonly in TMSeEEG studies, participants receive a stimula-
tion intensity tailored to their individual susceptibility to stimula-
tion. When stimulating the primary motor cortex (M1) this is
called the resting-motor threshold (rMT, [7]; relative intensity).
This corresponds to a percentage of stimulator output (absolute in-
tensity). For example, for one participant 80% of rMT may require
48% of the maximum stimulator output (MSO); while for another
participant 80% of rMT will be achieved with only 36% of MSO
(Fig. 1A). The administered relative intensity (e.g. 80% of rMT) rep-
resents a normalization implying that the magnitude of direct mo-
tor cortical activation should be comparable across subjects. By
contrast, the indirect activation of a TMS pulse may be closely
related to the amount of sensory input, which itself is higher
with higher absolute intensity (e.g. 36% vs 48% of MSO; i.e., louder
sound, stronger coil vibration, and stronger stimulation of

somatosensory fibres). As a consequence, in a between-subjects
design, those receiving a higher absolute intensity of stimulation
may experience moremultisensory stimulation, and in turn display
a higher amplitude of indirect cortical activation. We tested how
well absolute intensity could explain the between-subject vari-
ability of EEG responses, and whether this corresponded to the
spatiotemporal pattern of indirect cortical activations identified
in earlier work [3].

We analysed a pre-existing TMSeEEG dataset (58 participants,
41 females, 23 ± 4 years old (mean ± std); right-handed (defined
by Edinburgh Handedness Inventory); neurologically and psychi-
atrically normal participants, meeting the safety criteria for the
use of TMS). Participants received 126 neuro-navigated biphasic
single TMS-pulses to left primary motor cortex (M1), while EEG
(a 62-channel system) was concurrently recorded. Stimulation in-
tensity was set at 80% of participants’ rMT ([7]; 54 ± 8% MSO
(mean ± std), range from 31 to 77% MSO). Individually adjusted
white noise (the volume was gradually increased until participants
could not hear the coil click anymore or their threshold of discom-
fort was reached) was played during the stimulation via padded
earplugs.

In our analysis, we concentrated on the most commonly
assessed dimension of TMSeEEG signal (i.e., TEPs [3]; Fig. 1B).
Initially, the signal was cleaned from the typical noise and TMS-
induced artifacts, via the MATLAB-based toolbox EEGLAB and the
TMSeEEG signal analyser plugin (TESA [8]). For evaluating the
spatio-temporal effects of absolute stimulation intensity, we
computed TEPs (as the average time-course over trials) for each
channel and each subject separately (in the average reference).
Then, at each resulting time point (331; i.e. 20 e 350 ms after the
TMS pulse) and at each channel (62 channels) we used linear
regression to test whether the independent variable, subject-
specific absolute intensity, can predict the subject-specific TEP
amplitude (FieldTrip [9]). To test for possible significance, we ran
independent-samples regression coefficient t-tests (two-tailed, a
level p < 0.025). To control the multiple comparison problem (the
familywise error rate [10]), clusters were built by assembling neigh-
bouring significant spatio-temporal samples and tested against cor-
responding permutation statistics (5000 iterations, cluster a level
p < 0.025 [10]).

We found that absolute stimulation intensity showed a signifi-
cant regression against TEP amplitude in three different clusters.
All three of the clusters occurred at later latencies. One of these
was a negative cluster showing a negative TEP deflection (Fig. 1C,
bottom row). The first was a positive cluster visible at
174e241 ms after the TMS pulse and mainly involved central
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Fig. 1. Experimental design and results (A) Despite receiving the same relative intensity (80% rMT), every participant (P1 vs. P2) received a different, absolute intensity (48% vs.
36%; for example), which determines the magnitude of multisensory stimulation (coil vibration, coil click and excitation of nerves in the skin; see table). (B) The grand average TEP
(i.e. mean over C1, C3, CP1 and CP3), showing a typical response when targeting M1. (C) On the left are shown the TEPs and the different time windows when their amplitude is
related significantly with absolute intensity. The three clusters likely represent non-specific multisensory contributions from multiple sources. TEPs are averaged for those channels
included within the significant cluster (black dots on scalp distribution). On the right are shown the respective topographical plots for each of the three clusters. Black box: time-
window excluded from the analysis due to TMS-artifacts (i.e., 0-20ms). Grey box: significant time window in the cluster-based analysis. TEPs shadowing: standard error of the mean.
Black asterisk (*): p < 0.05. Black dots: significant channels in the cluster-based analysis. rMT: resting motor threshold. MSO: maximum stimulator output. TEP: TMS-evoked
potential.
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electrodes (corrected p ¼ 0.025; Fig. 1C, top row). The second pos-
itive cluster occurred later at 264e337 ms and was located above
the left sensorimotor cortex (corrected p ¼ 0.034, Fig. 1C, middle
row). Finally, the negative cluster was found at 259e303 ms and
involved central electrodes as well as electrodes located above
left-frontal regions (corrected p ¼ 0.038, Fig. 1C, bottom row).
Based on their spatio-temporal patterns, the three clusters may
be due to indirect cortical activations elicited by the sensory stim-
ulation caused by TMS (e.g. a combination of auditory and somato-
sensory processes [3]).

These results show that the amplitude of late (>170 ms) TEPs
were related to the absolute stimulation intensity. This may identify
indirect cortical activations, and suggests that in a between-subject
design absolute intensity is linked to the multisensory stimulation
elicited by delivering TMS. Despite the methodological differences,
our results converge both temporally and spatially with the pattern
of indirect activation identified by recent experimental work [3].
Hence, our analytical method makes the identification of indirect
activations possible e unconstrained by experimental design e

allowing new questions to be posed using innovative designs,
which were previously impossible. Yet, further work is needed to
fully validate this between-subject analytical approach. Nonethe-
less, it may prove to be a simple yet effective tool to identify and
potentially remove multisensory contributions from TMSeEEG
data; without the need to include additional experimental condi-
tions within a study.
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