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We investigate multicomponent fermions in a flat band and predict experimental signatures of non-Fermi-
liquid behavior. We use dynamical mean-field theory to obtain the density, double occupancy and entropy in a
Lieb lattice for N = 2 and N = 4 components. We derive a mean-field scaling relation between the results for
different values of N , and study its breakdown due to beyond mean-field effects. The predicted signatures occur
at temperatures above the Néel temperature and persists even in the presence of a trapping potential, thus they
are observable in current ultracold gas experiments.
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As interaction effects are enhanced in a flat Bloch band,
remarkable ordered phases such as flat band ferromagnetism
[1] and superconductivity [2–5] have been predicted. Quasi-
flat bands, whose bandwidth is comparable or smaller than
the typical energy scale of interactions, seem to explain why
the critical temperature of the superconducting state recently
observed in magic-angle twisted bilayer graphene is large
compared to the Fermi energy [6–9]. Also the normal states
above the critical temperature of ordered phases are expected
to be nontrivial: since a noninteracting flat band system does
not have a Fermi surface and is an insulator at any filling, a
Landau-Fermi liquid is generally not expected [10,11].

The strange metal phase of copper-based superconductors
(cuprates) is the most well known example of a non-Fermi-
liquid phase, and is still not fully understood [12–14]. The
repulsive Fermi-Hubbard model on a square lattice is consid-
ered a minimal model for the cuprates, and according to recent
numerical studies the crossover from a metallic (Fermi liquid)
state at weak coupling to an antiferromagnetic insulator at
strong coupling occurs through an intermediate non-Fermi
liquid [15]. Strange metal behavior has been observed exper-
imentally both on the square lattice Hubbard model realized
with optical lattices [16] and in twisted bilayer graphene [17].

For the Hubbard model on lattice geometries other than
the simple square lattice, the existence of a non-Fermi-liquid
normal state is currently much less investigated. In the case of
the Lieb lattice—a typical flat band model—clear signatures
of non-Fermi-liquid behavior have been found at low temper-
ature in the self-energy and quasiparticle weight behavior by
means of dynamical mean-field theory [18,19]. Experimental
evidence of non-Fermi-liquid behavior on composite lattice
geometries such as the Lieb lattice is at present lacking. Here,
we identify and calculate the experimental signatures of a
non-Fermi liquid that can be most directly probed in ultracold
gas experiments on composite lattice geometries.

Since spin-related order or correlations, for instance mag-
netic order and pairing, are typically induced by a flat band,
it is of interest to ask what happens if one goes beyond the
case of spin-1/2 fermions [20–24]. Recently a degenerate gas
of bosonic isotopes of ytterbium was loaded in a Lieb lattice
[25], and the same can be done with fermionic ones [26]. This
would provide the quantum simulation of the Fermi-Hubbard
model with N > 2 spin components [21,27,28], in a paradigm
flat band system. We investigate the non-Fermi-liquid normal
state of the repulsive Hubbard model on a Lieb lattice for
both N = 2 and N = 4 cases, and find a scaling relation
between them. We predict that the non-Fermi-liquid prop-
erties manifest in the sublattice-resolved double occupancy
and entropy—all quantities that can be observed in ultracold
gas experiments [29–32]—in contrast to predictions regarding
the self-energy [18] that are difficult to probe. In particular,
the sublattice-resolved double occupancy for ytterbium atoms
can be measured by combining the sublattice-mapping tech-
nique, already demonstrated for the Lieb lattice [25,33], with
photoassociation-induced atom loss [34].

As the temperatures considered here are above the mag-
netically ordered phase, as compared to the previous works
[18,19] where low temperature magnetically ordered phases
were explored, standard ultracold gas setups can be used to
verify our predictions and to experimentally demonstrate the
non-Fermi-liquid nature of a flat band system for the first
time. Flat band lattices have been demonstrated with ultracold
gas setups [25,35], and the Lieb lattice has been recently
realized also in atomic scale artificial matter [36–38] and
photonic systems [39–43]. Our calculations in the N = 2
case are relevant for non-Fermi-liquid physics in a variety of
systems, while ultracold ytterbium and strontium gases in the
electronic ground state 1S0 [44–48] provide both the N = 2
and N = 4 cases and allow testing of the predicted scaling
relation.
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FIG. 1. (a) 2D Lieb lattice: The convention for the unit cell (grey
square box) and the labeling of the three sublattices (α = A, B,C) are
shown. The links represent hoppings with magnitude t . A localized
state of the flat band is the linear superposition of the four sites of the
B and C sublattices inside the dashed square box. (b) The density of
states ρ(ε) of the noninteracting model.

Model and methods. We consider in this work a Fermi-
Hubbard model defined on the two-dimensional Lieb lattice,
which features a flat band at zero energy [5]. The tight-
binding model with nearest-neighbor hoppings on the Lieb
lattice and its density of states are shown in Fig. 1. The
fermionic annihilation (creation) operator relative to sublat-
tice α and unit cell i = (i1, i2)T is ĉiασ (ĉ†

iασ
), while the

occupation number operator is n̂iασ = ĉ†
iασ ĉiασ . The compo-

nent (or “spin”) index σ labeling the fermionic operators
takes values σ = 1, . . . ,N , and we consider the case of
four-component fermions (spin-3/2, N = 4) on top of the
usual two (spin-1/2, N = 2). With this notation, the nonin-
teracting Hamiltonian Ĥ0 = ∑

i,j,α,β,σ Kα,β (i − j)ĉ†
iασ ĉjβσ

−
μ

∑
i,α,σ n̂iασ , where Kα,β (i − j) encodes the hopping matrix

elements of magnitude t between the nearest-neighbor sites
in the Lieb lattice (see Fig. 1 and Ref. [49]). The hopping
matrix is independent of the spin index σ , thus Ĥ0 possesses
an internal SU(N ) spin symmetry. In the following we use t
as the energy scale and set t = h̄ = kB = 1.

The full many-body Hamiltonian Ĥ = Ĥ0 + Ĥint is the
sum of the noninteracting Hamiltonian and an interaction
term Ĥint = U

∑
i,α d̂iα − U (N − 1)N̂/2 + const., which is

the generalization of the usual Hubbard interaction term for
N � 2 and preserves the SU(N ) symmetry as well.

The operator d̂iα = ∑
σ<σ ′ n̂iασ n̂iασ ′ is the double oc-

cupancy operator for N -component fermions and N̂ =∑
i,α,σ n̂iασ is the total particle number operator. We consider

only the case of repulsive interactions (U > 0). In the fol-
lowing we focus on the expectation values of diα = 〈d̂iα〉 and
niα = ∑

σ 〈n̂iασ 〉 as the main observables. We compute them
using dynamical mean-field theory (DMFT) [50,51] with the
continuous time quantum Monte Carlo as impurity solver
[49].

The filling of the lattice is defined as n = ∑
α nα , thus n =

3N /2 corresponds to half filling for N -component fermions.
In our computations, we set the temperature high enough so
that magnetic ordering does not occur and the SU(N ) symme-
try is unbroken. As a consequence, the expectation values are
also independent of the spin index, that is 〈n̂iασ 〉 = 〈n̂iασ ′ 〉 =
niα/N for all σ, σ ′ and 〈n̂iασ1 n̂iασ2〉 = 〈n̂iασ3 n̂iασ4〉 = diα/

(N
2

)

for all σ1 �= σ2, σ3 �= σ4. Another observable of interest is the
entropy per lattice site, s, which has been measured in many
optical lattice experiments [32,52]. The entropy is obtained

from the occupation number using the relation s(μ,U, T ) =
1
3

∫ μ

−∞ ∂T n(μ,U, T )dμ [49].
Entropy and double occupancy. If f (T, n,U ) denotes

the free energy per lattice site, one has s = −∂T f while the
derivative with respect to the coupling constant U gives the
double occupancy averaged over the unit cell d = 1

3

∑
α dα =

∂U f . Thus one has the Maxwell’s relation

∂s

∂U
= − ∂d

∂T
. (1)

Note that there is no sensible way to separate the entropy into
contributions associated to single sublattices, which makes
sense for the double occupancy. For a Fermi liquid the
double occupancy decreases as temperature is increased start-
ing from T = 0, attains a minimum at T = T ∗

F , where T ∗
F

is the quasiparticle coherence scale, and then increases for
larger temperatures [29,53]. Maxwell’s relation (1) provides
an explanation of this peculiar nonmonotonic behavior of the
double occupancy. The entropy in a Fermi liquid is linearly
proportional both to the temperature and to the quasiparti-
cle effective mass, s ∝ meff T , and since the effective mass
generally increases with the coupling constant ∂U meff > 0 for
repulsive interactions [54], one has from Eq. (1) that ∂T d < 0
for T < T ∗

F . This effect is observed for instance in liquid
helium-3 where it is at the root of Pomeranchuk cooling
[22,23,53,55]. Pomeranchuk cooling has been demonstrated
for N = 6 component fermions loaded in a cubic lattice
[28,56].

N = 2 components. As shown in Fig. 2(a), in the Lieb
lattice the behavior of the entropy as a function of the coupling
constant U changes qualitatively depending on the filling. The
triple peak structure of the entropy in Fig. 2(a) is a conse-
quence of the density of states of the Lieb lattice, Fig. 1.
The interesting observation is that for fillings close to n = 2
one has ∂U s > 0, on the other hand for n = 3 the entropy
decreases with U . The opposite behavior of the entropy at
the two fillings n = 2 and n = 3 is emphasised in the inset
Fig. 2(a). For higher temperatures [Fig. 2(b)] the entropy is al-
ways a decreasing function of U at any filling. In Fig. 2(c) we
show the region in the n-U plane where the non-Fermi-liquid
behavior is observed at the fixed temperature T = 0.17. This
is the region between the grey lines where we find ∂U s < 0.

The behavior of the double occupancy is consistent with
that of the entropy as dictated by Maxwell’s relation (1). As
shown in the insets of Figs. 2(d) and 2(e) the average double
occupancy is a monotonically increasing function of tempera-
ture for a half filled flat band (n = 3), while it is decreasing
at filling n = 2. Moreover, the behavior of the sublattice-
resolved double occupancy dα depends qualitatively on the
sublattice. We see from Figs. 2(d) and 2(e) that on sub-
lattice A the double occupancy decreases with temperature
(∂T dA < 0), while on sublattices B and C the behavior is
opposite (∂T dB/C > 0). This striking difference is observed
in the whole temperature range 0.15 < T < 1 considered in
Fig. 2 and is particularly evident at half filling n = 3. This
temperature range is above the magnetic phase, which occurs
at around T ∼ 0.1 for U = 2 according to our DMFT simu-
lations, and just below the quasiparticle coherence scale T ∗

F
at which the double occupancy on the A sublattice takes its
minimum value.
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FIG. 2. (a) Entropy per lattice site s as a function of total filling n = ∑
α nα for N = 2 component fermions at T = 0.17 and for three

different values of the interaction strength. In the inset the entropy as a function of interaction strength is shown for filling n = 3 (half filling)
and n = 2 (fully filled lowest band). (b) Same as panel (a), but at the different temperature T = 0.92. (c) Color map of the entropy in the n-U
plane at the fixed temperature T = 0.17. In the region between the grey lines, the entropy is a decreasing function of the interaction strength
(∂U s < 0), a manifestation of the flat band-induced non-Fermi-liquid behavior. (d) Sublattice resolved double occupancy dα v. filling n at
U = 0.5 and for the same two values of temperature of panels (a) and (b). In the insets the double occupancy (both sublattice-resolved and
averaged) vs temperature at fixed fillings n = 2, 3 is shown. (e) Same as panel (d), but for the different value of the interaction strength U = 3.

The interpretation of the results shown in Fig. 2 is that
the flat band is responsible for the non-Fermi-liquid behav-
ior (∂U s = −∂T d < 0). Indeed, the sublattice-resolved double
occupancy provides the most compelling argument in this
sense. The non-Fermi-liquid behavior manifests only in the
double occupancy of sublattices B and C, where the flat
band states have their support (see Fig. 1), while the double
occupancy in the A sublattice has the same behavior as in,

for instance, a cubic lattice in the same temperature range
[53]. The flat band-induced non-Fermi-liquid behavior can be
observed for not too large interaction strength and modestly
low temperatures. As shown in Fig. 2(b) the entropy decreases
with U for all fillings at high temperatures, but this is a
different effect, incoherent in nature, in which the flat band
plays no role, and is observed also in simple square and cubic
lattices.
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FIG. 3. Average double occupancy d (T, n,U ) rescaled by its
value at the lowest temperature considered in this work d (T =
0.17, n,U ) as a function of temperature for different values of U
and for fillings n = 3 (top panel) and n = 2 (bottom panel). The data
for U = 0.5 and 3 are the same as the ones shown in the insets in
Figs. 2(d) and 2(e).

Figure 3 illustrates how the flat band-induced non-Fermi-
liquid behavior is eventually destroyed for large interaction
strength. In Fig. 3 the average double occupancy, which does
not resolve the different sublattices, is shown rescaled by
its value at the lowest temperature considered here, that is
d (T, n,U )/d (T = 0.17, n,U ), to ease the visual comparison.
From the top panel of Fig. 3, one can see that the average
double occupancy at n = 3 is a monotonically increasing
function of temperature for U = 0.5 and 1.5. In this regime,
ferromagnetic exchange ∝ U dominates and the interaction
lifts the degeneracy due to the band flatness and lowers the
entropy. A local minimum starts to develop at U = 2, and be-
comes very visible for U = 2.5 and 3. Indeed, as U is further
increased, the antiferromagnetic exchange ∝ 1/U becomes
important and spin entropy dominates. As consequence the
Pomeranchuck effect typical of a Fermi liquid comes back.
On the other hand, the standard Landau-Fermi liquid behavior
always dominates in the averaged double occupancy away
from half filling, as shown in the bottom panel of Fig. 3.
Indeed, at filling n = 2 the averaged double occupancy is
always a decreasing function of temperature up to T ∗

F ≈ 0.9,
at which it attains its minimum as in the case of the cubic
lattice [29].

N = 4 components. In Fig. 4 we compare the cases of N =
2 and N = 4 component fermions. For N = 2 components
and U = 2 the behavior of the averaged double occupancy
is in the crossover region in between a Landau-Fermi liquid
and a non-Fermi liquid, as discussed above in relation to
Fig. 3. In contrast, as shown in Fig. 4, for N = 4 components
the averaged double occupancy as a function of temperature
at the same value of U looks more like that of a Landau-
Fermi liquid with the characteristic minimum at T ≈ 0.9. We

FIG. 4. Sublattice-resolved and average double occupancy at
half filling and U = 2 rescaled by its values at the lowest
temperature (Tmin = 0.17), namely dα (T, n,U )/dα (Tmin, n,U ) and
d (T, n,U )/d (Tmin, n,U ), respectively.

note also that the variation of the double occupancy with
temperature is reduced for N = 4 compared to N = 2, and
that the double occupancy in the B and C sublattices does
not increase monotonically as it does for N = 2. Apparently,
the flat band-induced non-Fermi-liquid behavior disappears as
the number of components is increased. Here we propose a
scaling argument to understand the results of Fig. 4. At the
mean-field level it is possible to show [49] that the solution of
the problem for a given pair of parameters (U,N ) provides
also the solution for all pair of values (U ′,N ′) which satisfy
the scaling relation

U (N − 1) = U ′(N ′ − 1) . (2)

Inserting U ′ = 2, N ′ = 4, and N = 2 in Eq. (2) gives U = 6.
In other words the result for N ′ = 4 components in Fig. 4
can be equivalently understood as the double occupancy of
a model with N = 2 and U = 6. At this large value of the
coupling strength, one expects the non-Fermi-liquid behav-
ior induced by the flat band to be suppressed, and this is
indeed the case as one can see from the data for N = 4 in
Fig. 4.

In order to check the validity of the mean-field approxima-
tion underlying the scaling relation (2), we compare DMFT
results for pairs of parameters (U,N ) which satisfy the scal-
ing relation; see Fig. 5. One can observe that there is better
agreement between the results for N = 2 and N ′ = 4 for
the lower values of the coupling constants (left column) with
respect to the higher ones (right column). Indeed, one expects
the mean-field approximation to be accurate in the weakly
interacting regime. Moreover a larger deviation is seen in the
case of the double occupancy compared to the occupation
number. This is also expected since the double occupancy is a
quantity which is more sensitive to beyond mean-field corre-
lations; indeed at the mean-field level it is simply the product
of the occupation numbers (〈n̂iασ n̂iασ ′ 〉 = 〈n̂iασ 〉〈n̂iασ ′ 〉 for
σ �= σ ′). From Fig. 5 one can conclude that the scaling relation
holds qualitatively in the range of couplings of interest here
(0 � U � 3 for N = 2).

Trap effects. Combined with the lattice potential, a har-
monic trap is often used in ultracold gas experiments to
confine the atoms. To take into account the effect of the
trapping potential, we use our DMFT results to compute the
spatially averaged double occupancy, the observable defined

L031301-4
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(a) (c)

(d)(b)

FIG. 5. Comparison of DMFT results between pairs of values
(U,N ) satisfying the scaling relation (2). On the left (right) column
the black lines are results for the sublattice-resolved occupation num-
ber ñα = nα/N and double occupancy d̃α = dα/

(N
2

)
for U = 1.5

(U = 3) and N = 2, while the grey lines are results for U ′ = 0.5
(U ′ = 1) and N ′ = 4. The occupation number and the double oc-
cupancy are normalized in such a way that the curves for different
number of components would coincide if the mean-field approxima-
tion were exact.

by Dα = ∑
i〈d̂iα〉 within the local density approximation [49].

As we show below, our prediction that the double occupancy
in the Lieb lattice behaves in a qualitative different way de-
pending on the sublattice [Figs. 2(d) and 2(e)] can be tested
even in experimental setups that give access only to the spa-
tially averaged double occupancy and not to the site-resolved
double occupancy diα .

The quantity Dα as a function of temperature is shown
in Fig. 6. The specific form of the harmonic trap potential
is specified in the Supplemental Material [49]. One can see

FIG. 6. (a) Sublattice-resolved and spatially averaged double oc-
cupancy Dα = ∑

i〈d̂iα〉 vs temperature T for U = 2 and N = 2, 4,
in the presence of harmonic trapping. The chemical potential is
fixed at μ = 0 (n = 3 at the trap center for N = 2, and n = 6 for
N = 4). (b) Same as in Fig. 4, with the only difference that the total
particle number N is kept fixed, specifically N = 1.2×104(2.4×104)
for N = 2(4) components.

that the different behavior of the double occupancy in the two
inequivalent sublattices remains visible even in the case of the
spatially averaged double occupancy. Indeed, DA decreases
with increasing temperature almost up to the highest temper-
atures provided in Fig. 6(a) for both N = 2 and 4. A change
in the sign of ∂T DA is visible around T = 0.8. On the other
hand, the spatially averaged double occupancy on the B/C
sublattices is monotonically increasing with temperature for
any number of components. The behavior is analogous to the
thermodynamic limit shown for N = 2 in Fig. 3. On the other
hand, it might be more convenient from an experimental point
of view to fix the number of particles rather than the chemi-
cal potential. The sublattice-resolved and spatially-averaged
double occupancy in the case of fixed particle number is
shown in Fig. 6(b). The total particle number is chosen in a
such a way that the filling is approximately n = 3 (n = 6) for
N = 2 (N = 4) components at the intermediate temperature
T = 0.5. In the case of fixed particle number the local density
decreases at the trap center since the atomic cloud becomes
more spread out with increasing temperature. This explains
why even on the B and C sublattices the double occupancy
decreases with increasing temperature, if the particle number
is fixed. This is simply a consequence of the fact that quite
generally the double occupancy is a monotonically increasing
function of the filling, as shown in Fig. 2. Even in the case
of fixed particle number, the different behavior of the double
occupancy on the two inequivalent sublattices is still revealed
by the different rates at which Dα decreases with temperature.
As shown in Fig. 6(b), the rate is higher on the A sublattice
than on the B and C sublattices, which is consistent with the
results for fixed chemical potential shown in Fig 6(a). This
shows that our predictions can be tested even in the presence
of a harmonic trap.

Conclusions. We identified signatures of non-Fermi-liquid
behavior in the entropy and double occupancy in the case of
the Lieb lattice with N = 2 and N = 4 component fermions.
We showed that the nonmonotonic behavior of the double
occupancy, the fingerprint of a Landau-Fermi liquid, is not
present at all for sufficiently small interactions. This is a con-
sequence of the presence of a flat band in the band structure
of the Lieb lattice. Indeed, the non-Fermi-liquid behavior in
the double occupancy can be observed only in the sublat-
tices on which the flat band states have their support, the B
and C sublattices, while on the A sublattice the conventional
behavior is observed. We note in passing that, besides the
entropy and the double occupancy, also the specific heat [57]
and the spin susceptibility [58] may be used to detect the
transition from a Fermi liquid to a non-Fermi liquid. Us-
ing mean-field arguments, we derived a scaling relation (2)
to describe the results for different numbers of components
N . The adequacy of the mean-field approximation was in-
vestigated by means of DMFT and the scaling relation was
found to be qualitatively correct in the range of couplings of
interest. It is interesting to probe the validity of this scaling
relation in experiments as a direct indicator of beyond mean-
field effects. Our results are relevant for currently available
ultracold gas setups for several reasons: temperatures above
the critical one are sufficient and only sublattice-resolved,
not spatially resolved, imaging of the double occupancy is
required, even in the presence of a harmonic trap. Therefore,
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our work opens the route for experimental investigations with
ultracold gases of non-Fermi-liquid behavior induced by flat
band singularities.
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