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Abstract
Previous research (Li et al., Understanding the disharmony between dropout and batch normalization by variance shift. CoRR
abs/1801.05134 (2018). http://arxiv.org/abs/1801.05134 arXiv:1801.05134) has shown the plausibility of using amodern deep
convolutional neural network to detect flaws from phased-array ultrasonic data. This brings the repeatability and effectiveness
of automated systems to complex ultrasonic signal evaluation, previously done exclusively by human inspectors. The major
breakthrough was to use virtual flaws to generate ample flaw data for the teaching of the algorithm. This enabled the use of
raw ultrasonic scan data for detection and to leverage some of the approaches used in machine learning for image recognition.
Unlike traditional image recognition, training data for ultrasonic inspection is scarce. While virtual flaws allow us to broaden
the data considerably, original flaws with proper flaw-size distribution are still required. This is of course the same for training
human inspectors. The training of human inspectors is usually done with easily manufacturable flaws such as side-drilled
holes and EDM notches. While the difference between these easily manufactured artificial flaws and real flaws is obvious,
human inspectors still manage to train with them and perform well in real inspection scenarios. In the present work, we use a
modern, deep convolutional neural network to detect flaws from phased-array ultrasonic data and compare the results achieved
from different training data obtained from various artificial flaws. The model demonstrated good generalization capability
toward flaw sizes larger than the original training data, and the effect of the minimum flaw size in the data set affects the a90/95
value. This work also demonstrates how different artificial flaws, solidification cracks, EDM notch and simple simulated flaws
generalize differently.

Keywords NDT · Ultrasonic testing · Machine Learning · Image classification

1 Introduction

Ultrasonic inspectors are commonly trained using simple
artificial flaws, such as EDM notches and side-drilled holes.
These two types offer a quick and cost-effective way of
demonstrating where the flaw indication should appear, but
their signal shape differs from a real service-induced crack,
like amechanical or thermal fatigue crack. Inspectors can use
reasoning to estimate real reflectors based on these simpli-
fied signals. However, more than simple artificial flaws are
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usually required for qualification of a technique, for exam-
ple in nuclear power plants [7], to confirm performance in a
representative setting.

Difficulties arise when the inspection material is noisy
and the inspector needs to use expert judgement to distin-
guish flaws from structural noise. For example, an EDM
notch might be found much more easily than a thermal
fatigue crack in a dissimilar metal weld (DMW) inspection.
While their signals can be distinguished from each other, a
human inspector is not only looking for a specific reflector
or thermal fatigue crack but also for an explanation for any
unusual reflector. Therefore, while training and conducting
the inspections, the inspector focuses on learning and detect-
ingwhere the flaw indicationsmay appear and how they stand
out compared to the surrounding noise. A human inspector
can intuitively ignore possible artefacts in the artificial flaws
and still successfully find real flaws in the inspection data.
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For machine learning, the task is muchmore difficult. Due
to the training process, the model can learn any and all fea-
tures related to the training data; thus, the teaching data set
determines the boundaries of the capability of the algorithm.
This learning method is useful when the task is to determine
specific features from images with high accuracy and the
training data are largely available. For ultrasonic inspection,
this is a problem since training data are not readily available
and the detection probability for the algorithm needs to be
high, while still avoiding false calls. The model may learn
incidental features of the training data, i.e. it may overfit to
the training flaws and fail to generalize to unseen flaw indica-
tions. Conversely, underfitting may cause an excessive false
call rate. Therefore, this paper aims to study how training
data from different sources can be used to train ML algo-
rithms to detect other flaw types and how the minimum flaw
size in the training set affects the a90/95 value.

1.1 Effect of Different Kinds of Flaws and Artificial
Flaws

The flaw response for ultrasonic testing is highly related to
the kind of reflector fromwhich the soundwaves are reflected
back to the transducer. The characteristics that primarily
affect the flaw response are the location and orientation of
the crack, size of the crack, opening of the crack through the
whole path and at the crack tip, fracture surface roughness
and filling of the crack with a substance. An in-depth study
of the flaw responses and crack characteristics has already
been conducted by [9,10]. For the most representative flaw
response signal, it is reasonable to assume that these charac-
teristics should be met in order to achieve the best possible
training data for machine learning as well. These character-
istics are the main reason real cracks are preferred over EDM
notches and side-drilled holes when conducting actual per-
formance demonstrations for human inspectors. In addition,
it is assumed that the larger the crack, the easier it is to detect.
This should apply for the machine learning model as well.
As the larger cracks are more critical, these types of cracks
should be reliably found.

1.2 Teaching and Generalizing theMachine Learning
Model

Since humans can use their theoretical reasoning and target
their focus on the relevant part of the data, it is possible (to a
certain extent) to use simple flaws to teach and train human
inspectors to find real flaws in inspection cases. Machine
learning models lack this theoretical reasoning and imag-
ination, and the training data must explicitly provide the
variation that the models need to learn.

The training data itself has a strong influence on training
and generalizing the model. First of all, it is imperative to

have enough flaw data for teaching. Secondly, the labelling
of the data needs special attention to non-destructive testing
(NDT). Labelling small flaws that are indistinguishable from
the noise may cause the model to overfit on noise features
and/or result in an excessive false call rate. Lastly, themodels
can converge in training, even in the absence of generalizable
features in the training data, as demonstrated by [26].

Overfitting can be mitigated by several approaches. The
obvious first choice is to increase the amount of training and
validation data. This ample data amount is seldom available
for ultrasonic testing. The second choice for decreasing over-
fitting is data augmentation when teaching data are scarce.
Traditional data augmentation, where the image is rotated,
reflected, scaled, cropped or translated, are common prac-
tices to artificially increase the amount of available data [3,6].
These methods have been used successfully in NDT and
ultrasonic inspection by [25]. For a weld scan, however, rota-
tion of the flaw might be out of the question as cracks can
form in a certain place and certain orientation for in-service
inspections. Data augmentation through virtual flaws pre-
sented in [23] has shown great promise as it allows scaling
the flaws to represent smaller flaws and changing the location
along the weld, allowing a larger variety of backgrounds for
the flaw to reside in.

In general, NDT data can be considered simple, thus there
exist options for generating data other than virtual flaws.
Alternative approaches for generating training data sets have
been used in eddy current testing by [15] to generate an ample
amount of data with an adaptive generation technique known
as Output Space Filling (OSF) with an efficient computation
time. Reference [1] used a similar approach by adding the
Partial Least Squares (PLS) feature extraction to OSF and
trained several machine learning models with this generated
data. Reference [1] stated that this data generation method
might be feasible for ultrasonic and thermographic testing.

Further generalization can be obtained by tuning the
hyperparameters. Batch size, for example, has a strong influ-
ence on learning. Reference [14] showed that generally, the
best generalization performance is achieved with a batch size
of 2 to 32 and up to 64 with a batch normalization layer. The
downside of using small batch sizes is that it slows down the
teaching of the model. Thus, large batch sizes are preferred.

Instead of further modifying or augmenting the teaching
data or decreasing the performance of the model, there are
also possibilities to affect the training of the model as well.
Dropout is one of the most common approaches. Dropout
works by zeroing out a certain amount of the layer’s out-
put values at random during training. The number of values
dropped out is determined by the dropout rate, which is
usually between 10 and 50% of the layer’s output values.
Essentially, this means that random variation is introduced
to the output, and less significant features that are only present
for the training data are valued less or cancelled out from the
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finalmodel, thus leading to amore generalized representation
of the task. During testing, the output values are allowed to
work fully, but scaled down with the dropout rate to compen-
sate all working output values [6,24]. Dropout has been used
in ultrasonic inspection by [16] with successful results as the
performance increase was significant compared to the neural
network without the dropout for the A-signal classification.

As overfitting is one of the major problems in teach-
ing modern deep learning models, the difference between
human image recognition and machine image recognition
needs to be understood as well. Unlike a human inspector, a
machine learning model does not know the actual concept of
its task, since that is determined through the teaching data.
Even though the data might look good enough for teaching
humans and estimating the probability of detection (POD)
curves [12,21], the data might contain artefacts from the arti-
ficial flaw manufacturing process or poorly designed virtual
flaw generation. This kind of teaching, i.e., with poor data, is
demonstrated in [17], where distinguishing between wolves
and huskies was based on the feature that wolves had snow in
the background in the training data set. The effect of the poor
data is the same for NDT.When the teaching data would have
some feature such as an artefact from implantation, the flaw
detection in themodel might focus on the implantation rather
than the actual flaw characteristics. Due to these reasons, it
is crucial for the NDT model to be actually tested with flaws
where these kinds of artefacts do not exist or to map which
features affect the decision the most with methods such as or
similar to grad-CAM by [18] and LIME by [17].

Generalization of the model can be increased through
adding the batch normalization layer introduced in [8]. Batch
normalization drives to remove the covariate shift from the
internal activations within the network. This has the effect of
faster learning rates and increased accuracy.Asbatchnormal-
ization works to generalize the model, it decreases the need
for a dropout layer in some cases. In fact, the performance
of the model might decrease drastically if a dropout and a
batch normalization layers are used together. Reference [13]
recommend the use of a dropout layer after all batch normal-
ization layers on large data sets. On the other hand, Reference
[5] reported a decrease in accuracy when both layers were
used together. In general, it is recommended to use a batch
normalization in the models first and then carefully observe
the effect of an added dropout layer for the best possible
result.

Therefore, the main problem is teaching a model with too
little real flaw data, while still keeping generalization to real
flaws that the model has never seen before and still main-
taining at least human-level performance. As the flaw data
is scarce in NDT, virtual flaws present a way to mitigate the
problem. However, the more diverse the data, the better, even
with the virtual flaws. Hence, simulating the flaw responses
for trainingmight be plausible to broaden the data efficiently.

Simulated flaws have been previously used together with
virtual flaw augmentation to calculate POD by [11]. While
humans did not detect the difference between simulated and
real flaw responses, the research showed that simulated flaws
were slightly easier to detect. Thus, it might be assumed that
an ML model could be able to adequately generalize to real
flaws.

2 Materials andMethods

Inspection data was gathered from scanning a DMW mock-
up and generating flaw responses from CIVA simulations.
The location of the flaws was the same for all flaw types,
on the edge of the buffer zone, 7 to 10 mm to the carbon
steel from the weld center. The scanned flaws were aug-
mented with Trueflaw’s eFlaw [21] software, and data sets
for machine learning purposes were created.

2.1 Scanned Samples

For initial inspection data, a DMW pipe mock-up from
SwedishQualificationCentreAB (SQC)was used. The spec-
imenwas 32mm thickwith an outer diameter of 898mm.The
specimen had implanted flaws and an EDM notch as defects.
The original sample consisted of two “small” solidification
flaws 2 mm and 3 mm in size. Two large solidification flaws,
ofwhich 17mmwas tilted toward the carbon steel side and 26
mmwas straight oriented. There were two 6 mm sized flaws,
an EDM notch and a solidification flaw. In total, six differ-
ent flaws were available for training. In addition, the sample
consisted of three axial solidification flaws with heights of
6, 17 and 26 mm and one axial EDM notch with a height of
6 mm. The flaw scanning was optimized for circumferential
flaws; thus, the axial flaw indications were removed from the
teaching and testing data sets with the eFlaw process.

The inspection procedure was an optimized version of
Zetec Inc.’s procedure C3467 Zetec OmniscanPA 03 Rev A.
The inspection equipment that was used was Dynaray Lite
with two Imasonic 1.5 MHz 32 element phased array probes
in a wedge with a 7◦ roof angle set-up for TRL acquisition.
The coupling was applied through a feed water system. In
order to minimize data, only one scan line was utilized, with
a 60◦ angle. The focal lawwas focused on the inner surface of
the pipe and the probe positioned such that the best amplitude
response from the flaws was achieved. Data recording was
done at a 16-bit depth for best possible data quality. The
schematic of the inspection procedure can be seen in Fig. 1.
The scanned flaws were augmented with eFlaw software by
scaling down the recorded amplitude, thus representing a
wider size range of flaws similarly as in [22].
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CSSS

Flaw area in cladding

Fig. 1 Diagram of the inspection setup. TRL probe was situated on the
carbon steel side of the test mock-up and focused on inner diameter
of the pipe. The original flaws were situated on the cladding marked
with black stripes on the image. Due to export control restrictions, the
exact details of the test block’s dimensions, materials and weld cannot
be made public

2.2 Simulation Set-up

The same set-up was created in CIVA2019 simulation soft-
ware with different-sized notches. For signal generation, the
Hanning type was used, and for flaw response calculation,
the Kirchhoff and GTD model was used as per CIVA guid-
ance [4,20] in a similar simulation case, which is optimal for
simulating reflection and diffraction echoes from crack like
flaws. Unlike the paper by [20], the weld was modelled with
orthotropic anisotropy. The buttering layer of the DMWwas
modelledwith a polycrystalline cubic structure, with an aver-
age grain size of 1.5µm to represent the simple simulation
case. In order to reduce calculation time, only the flaw and
the immediate surroundings of the flaw were simulated. The
resolution of the simulation was aimed to be the same as for
the scanned samples’ 2 mm scan step and 103.2 mm sound
path.

In total, six different-sized notches were simulated; at
heights of 1 through 6 mm, the width of the flaw was three
times the height. Just as with the scanned plate samples, the
flaw responses were extracted from the simulation data and
implemented in the pipe mock-up scan through the eFlaw
software and more flaws were generated by scaling down
the recorded amplitude from the simulated flaws to a total
of 10,000 simulated flaws generated by the eFlaw augmen-
tation.

Figure 2a demonstrates the original simulated B-scan
image from CIVA and Fig. 2b the pre-processed B-scan
image for a better comparison. The raw simulated signal was
used when implanting the flaw onto the scanned image with
eFlaw and pre-processed for model training. Figure 2c shows

the pre-processed simulated flaw image show to the model
and Fig. 2d pre-processed scanned EDM notch implanted
with eFlaw. The width of the simulated flaw matches well
with the scanned one. Along the sound path, the simulated
flaw is slightly longer; and after post-processing, the simu-
lated flaw looks denser than the scanned EDM notch.

As Fig. 2 demonstrates, the scanned 6 mm EDM notch
and the simulated 6 mm EDM notch look different. This
is because the aim was to use a simple simulation setup
in CIVA to set a base-line for teaching data. The size of
the flaw is accurate, and the implanted signal is plausible
for human eye as well due to the accurate modelling of
the flaw and model geometry. However, a closer simulation
could be achieved with increased accuracy in the material
and anisotropy parameters of the DMW as well as increased
detail in the simulated signal representing the used probe
more accurately as only the frequency was matched to rep-
resent the scanned signal.

2.3 Training Data and Used Data Augmentation

Reference [23] used only thermal fatigue flaws as scan input;
thus, it is proven that it is viable to use thermal fatigue flaws as
teachingmaterial to find thermal fatigue flaws. For this paper,
we generated several different teaching data sets, where cer-
tain flaw types were only shown during testing to investigate
how well the model detects the completely new flaw type.

In order to generate sufficient trainingdata from the six dif-
ferent scanned flaws and six different simulated flaws, eFlaw
software was used to augment the flaw locations and sizes
within the training and testing data. These virtual flaws have
been previously used successfully in training humans and
evaluating POD by [12,19,21]. The indications of the six dif-
ferent scanned flaws and simulated flawswere scaled down to
represent smaller sizes up to 40% of the original indication.
This allowed the generation of 7000 different variations for
the scanned data to be used as training, validation and testing
data with roughly 50% containing flaws and 50% without
flaws. In addition, great care was taken to prevent the model
from learning the virtual flaw introduction process by copy-
ing and replacing the unflawed data as well within the set. A
total of 10,000 images were created from the simulated flaws
with the same method as for the scanned flaws.

The raw RF signal was pre-processed by fully rectify-
ing the signal to an absolute positive value. The scan data
was processed for more efficient teaching purposes, thus the
sound path was narrowed down to 2000 samples to repre-
sent the inner diameter of the mock-up where the flaws were
located. Theflaw image contained 480 scan steps in total. The
B-scan dimension of 480× 2000 proved to be too slow to han-
dle, as the whole data set could not fit into the GPU memory
at the same time. In order to reduce the data set size, without
losing information from the sound path, the original B-scan
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Fig. 2 Comparison of the
simulated 6 mm EDM notch
signal and scanned 6 mm EDM
notch implanted trough the
eFlaw software. a Raw
simulated RF signal with sound
path of 2000 samples, b raw
simulated signal post processed
with max-pooling and rectified
to absolute positive value, c
simulated flaw implanted to the
weld b-scan with eFlaw and d
scanned 6 mm EDM notch
implanted to the weld B-scan
with eFlaw for comparison. The
simulated flaw seems to be
slightly longer and denser along
the sound path and more
symmetric than the reference
scanned EDM notch

was pre-processed by max-pooling the sound path with 1
4λ.

This provided original data in the size of 480 × 118. To
further optimize the image for machine learning, the image
was normalized according to [3]. The image was reduced by
the mean value and divided by the standard deviation. If the
image was labelled as flawed, one flaw would be introduced
in the image through the eFlaw process at a random loca-
tion along the weld. Since only one weld was scanned as the
background canvas, it later showed that themodel learned the
weld pattern when it was shown the whole 480-sample-wide
weld in a single training image. This led the model to overfit
on the weld rather than detecting the actual flaw indications.
This is clearly the wrong target as this would work only if
the actual inspected weld would provide an exactly identi-
cal weld image as that recorded from the mock-up, which is
impossible. This wasmitigated by cropping the image area in
half. Once the image size was 240 samples wide, it allowed
the generation of images at multiple locations along the weld
and maintaining a generalization on the clean weld, as the
background kept changing. This meant that the model was
shown a “new” clean weld with no flaws as for the flawed
samples as well; thus, the initial image data was 240 × 118
samples in size.

For a proper comparison to the previouslymentionedVRR
data, themodel was adjusted to handle 48× 118 sized images
to determine the proper location from the data. As the image
was smaller than the original teaching data, the sound path
was further cropped to 112 samples. This allowed randomly
moving the crop window along the sound path for 6 samples,
increasing the different backgrounds for training data. The

variability of the images was further increased by a similar
data augmentation used by [25]. The image was randomly
flipped from left to right during training using the built in
function from the Tensorflow package, but not rotated or
scaled. To further validate that the taught model would not
overfit, the images with no flaws were shown only 90% of
the weld area. During testing the model would see the whole
weld.

The model was trained with the following flaw type
combinations from (a) through (f), shown inTable 1 for solid-
ification cracks and an EDM notch. The model taught with
the simulated flaws was run with two different types of com-
binations, (i) and (j) in Table 2. The tables show the amount
of flaws available for training. The total number of images is
doubled when the images without flaws is added to the data
set. 20% of this said data set would be selected as the valida-
tion set. In addition, the model was taught with only 6 mm
solidification crack (g) consisting of 558 flaw images and
only a 6 mm EDM notch (h) consisting of 599 flaw images
not included in the tables.

2.4 UsedML Architecture

A more refined deep neural network model was constructed
based on [23]. To further enhance the accuracy, the dimen-
sions of the latter convolutional layers and the dense layer
were increased, and themax pooling layer with the batch nor-
malization layer was added after each convolutional layer
for increased generalization and overfitting reduction. The
model architecture can be seen in Fig. 3. The optimized net-
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Table 1 Flaw sets for training
and flaw images ������Size

Set a) All flaws b) Small c) Medium d) Large e) No larges f) No smalls

Flaws total: 3442 1090 1157 1195 2247 2352

2 mm

3 mm

6 mm

6 mm (EDM)

17 mm

26 mm

Table 2 Simulated flaw sets for training and flaw images

������Size
Set i) All j) No smalls

Flaws total: 4982 3360

1 mm

2 mm

3 mm

4 mm

5 mm

6 mm

work structure was a result of trial and error by adjusting
the dimensions of each layer. Dropout was left out of the
model as batch normalization proved to be sufficient and
using both dropout and batch normalization together seemed
to yield variability in the results. The model was taught with
the training data variations presented in Sect. 2.3.

2.5 Performance Evaluation

POD and false calls were used to measure the performance
of the model. The POD curve was a hit/miss POD calculated
according to regular standard MIL-HDBK-1823a [2]. POD
is a valid way to measure the performance of the model,
since it is used for evaluating the performance of humans
as well. In addition, this enables comparison between the
model result and humanVRRdata, since theywere evaluated
with the same data and standard. If the model were overly
sensitive, it would show as false calls in the evaluation or if
the model would overfit and constantly miss flaw types never
seen before, this would easily be seen in the POD curve as
erratic behaviour.

The performance evaluationwas divided into two data sets
from the virtual flaws described in Sect. 2.3. The first test data
set would contain 4700 to 7000 samples, depending onwhich
flaw set from Table 1 was used for training. Only the flaw
types that were not used in training would be shown to the
model to evaluate the generalization capability. The second
data set would contain 1000 samples with all the available
flaw types. Even though the same flaw types used in training
are expected to be more easily found, they do not have an
effect on finding the flaw types never shown to the model in
training and are in the data set only to avoid flaw size gaps
in the POD evaluation.
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Fig. 3 Used optimized network
structure

Input
shape: 48, 112, 1

Convolution 1
output: 48, 112, 96

Maxpool 1
output: 24, 28, 96

Batch norm 1
output: 24, 28, 96

Convolution 2
output: 24, 28, 80

Max pool 2
output: 12, 14, 80

Batch norm 2
output: 12, 14, 80

Convolution 3
output: 12, 14, 74

Max pool 3
output: 6, 7, 74

Batch norm 3
output: 6, 7, 74

Convolution 4
output: 6, 7, 30

Max pool 4
output: 1, 1, 30

Batch norm 4
output: 1, 1, 30

Flatten
output: 30

Dense
output: 30

Logits
output: 1

After testing with the data set, which contained images
from random locations of the DMW with or without a flaw,
the model was shown the same ultrasonic weld image as a
human would see in a traditional inspection. This was done
by dividing the whole weld image to 48-sample-wide images
with the location coordinate as metadata. The images would
be shown to themodel, and themodelwould evaluatewhether
or not the location contains a flaw. In case of a hit, the image
centre line would be highlighted in green on the weld image.

3 Results

The results have been divided into two sections: testing the
generalization capability of the model; and comparison to
human performance with similar ultrasonic data.

3.1 Testing the Generalization

For POD calculations, the data was adjusted similarly as in
[22] when there were no missed flaws; 0 to 0.2 mm sized
misses were added to the calculation. When the data faced
zero separation, a missed flaw was added with a size 0.1
mm larger than the smallest flaw found. These adjustments
needed to be done for the POD calculation to converge some
of the results. However, this has little effect on the final POD.

The predictions for the differently trained models have
been plotted in Fig. 4. The model was trained with the flaw
combinations (a)–(j) described in Sect. 2.3 and in Tables 1
and 2. The tested flaws have not been shown to the said
model before. This enables testing how well the model is
capable of generalization when trained with different flaws
and tested with completely different flaws. For POD hit/miss
evaluation, all the indications scoring higher than 50% was
considered as hits, and false calls when no flaw was in the
data. If the prediction was less than 50% and flaw existed in
the data, it was marked as a miss. The PODwas tested with a
data set containing all the flaw types and 1000 samples. The
PODs for different models can be found in Fig. 5, except for
the simulated flaws, as the performance was so unreliable
due to false calls that it was not comparable to other models.

For cases (a), (b) and (e) in Fig. 5, adding zeros from size 0
to 0.2 mm and zero separation management have been used
due to low or no misses. (a) and (e) gave no POD before the
adjustment and (b) changed to a more conservative a90/95
value of 1.05 mm from 0.75 mm.

As expected, the model trained with all the available flaw
types provided perfect results with no missed flaws and zero
false calls. This test was done to set the benchmark for other
training data sets.

When training with only the smallest flaws, the model
generalizes well on the larger flaws. Predictions for the flaws
can be seen in Fig. 4b. There is a slight deviation for the pre-
dictions for the EDM notch and 17 mm solidification crack,
which was slightly tilted compared to the 6 mm and 26 mm
solidification cracks, both of which yielded almost perfect
predictions but also had with three reported false calls. The
POD for the model trained with only small flaws can be seen
in Fig. 5b for which no misses on the 17 mm flaws were
reported while few of the smaller flaws were missed. The
POD is the same as for the case with all available flaws (a),
since the smallest flaw available for training is the same.

When the model was trained with the 6 mm solidification
crack and the 6 mm EDM notch, the model managed to gen-
eralize well on the larger flaws, while generalization towards
the smaller solidification cracks was not impressive. As seen
in Fig. 4c the model missed one 17 mm solidification crack
for the larger testing set but found all with the smaller test set
size for POD. This is well within the a90/95 limit, as the larger
test set contained over 500 samples of virtually augmented
17 mm solidification cracks, which were not shown to the
model during the training of the (c) set. The augmentation
for this flaw group was from 2.4 to 6 mm, and the a90/95
value was 3.45 mm, which can be seen in Fig. 5c.

The results for the model trained with only large flaws
yielded similar results in Fig. 4d and the POD in Fig. 5d.
Through the augmentation process, the smallest flaw for
trainingwas 6.8mm. Themodel did poorly in finding smaller
flaws, with the exception of the 6 mm solidification cracks,
for which every flaw was found. This also has a decreasing
effect on the POD and a90/95 values.
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Fig. 4 Predictions vs. flaw size
when testing with unseen flaws,
with exception to a. Threshold
for detection was set to 50% a
all flaws used for training. All
flaws found with no false calls.
b Only small flaws, 2 and 3 mm
used for training. All flaws
found, 3 false calls. c Only
medium flaws, 6 mm
solidification crack and EDM
notch used for training. One
miss on 17 mm flaw, no false
calls, poor performance on
smaller flaws. d Only large
flaws, 17 and 26 mm used for
training. Only 6 mm
solidification cracks found
reliably, no false calls. e Large
flaws, 17 mm and 26 mm
removed for training. Some of
the 17 mm flaws missed, no
false calls. f Small flaws, 2 and 3
mm removed for training.
Smaller flaws are not found with
high consistency, no false calls.
g Only 6 mm solidification
crack used for training. Only
largest flaws are found reliably,
consistent misses on 6 mm
EDM notch, no false calls. h
Only 6 mm EDM notch used for
training. Generalizes well on
larger flaws and 6 mm
solidification crack, missing
constantly smaller flaws, no
false calls. i Trained with all
simulated flaws. 131 False calls,
missing constantly every flaw
type. j Small simulated flaws
removed. 78 Calls, misses from
every flaw type, slightly better
performance compared to i

When training without the large flaws, the model general-
izeswellwith the larger flaws. Predictions for the flaws can be
seen in Fig. 4e. There is a slight deviation for the predictions
for the 17 mm solidification crack, as similarly seen when
training only with the medium sized flaw in Fig. 4c, com-
pared to 26 mm solidification cracks, which yielded perfect
predictions. Again, the testing set for never before seen flaws
was significantly larger than the testing set for PODmeasure-
ment, which contained all the flaw types. Thus, missing 6 of

the 17 mm flaws in a testing set containing over 500 flaws is
within statistical limits. The POD for the model trained with-
out the large flaws can be seen in Fig. 5e where no misses
on 17 mm flaws were reported, which meant that the model
made no misses or false calls.

When the small flaws were excluded from training, the
result was the same as when training with only the medium
sized flaws in Fig. 4c. Predictions can be seen in Fig. 4f and
the POD in Fig. 5f.
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Fig. 5 POD when testing with
all flaw types. a All flaws used
for training. All flaws found
with no false calls. 0 to 0.2 mm
sized misses added for POD
convergence. b Only small
flaws, 2 and 3 mm used for
training. Two 2 mm sized flaws
missed with no false calls. 0 to
0.2 mm misses added for more
conservative POD. c Only
medium flaws, 6 mm
solidification crack and EDM
notch used for training. Smallest
flaw size in training set was 2.4
mm and a90/95 was 3.45 mm. d
Only large flaws, 17 and 26 mm
used for training. As the 6 mm
solidification cracks are found
reliably, it improves the POD
whereas the 6 mm EDM notches
are mostly missed. e Large
flaws, 17 mm and 26 mm
removed from the training set.
No false calls and 0 to 0.2 mm
sized missed added for
convergence. f Small flaws, 2
and 3 mm removed from
training set. Smaller flaws are
not found with high consistency,
same a90/95 result as in c since
smallest flaw size was the same.
g Only 6 mm solidification
crack used for training. Only
largest flaws are found reliably,
consistent misses on 6 mm
EDM notch, the worst a90/95. h
Only 6 mm EDM notch used for
training. Generalizes well on
larger flaws and 6 mm
solidification crack, missing
smaller flaws, but performs
better than c and f with a90/95 of
2.55

When using only one flaw type, the training set tends to get
dangerously small.When themodel was trainedwith only a 6
mm solidification crack, the result deteriorates considerably.
All the smaller cracks are missed, EDM notches are barely
detected and the model struggles to detect the larger 17 mm
and 26 mm cracks without false calls. The predictions can be
seen in Fig. 4g and the POD in Fig. 5g. However, the model
trained with only a 6 mm EDM notch proved to perform
well compared to the same-sized solidification crack. The
predictions of the model trained with only a 6 mm EDM

notch can be seen in Fig. 4h and the POD in Fig. 5h. There is
a slight deviation for the 17mmsolidification crack, but 6mm
and 26 mm are found consistently. The majority of the 3 mm
solidification cracks are found, while the 2 mm solidification
crack tends to go unnoticed, which has an improving effect
on the POD. When training with only the EDM notch, the
model achieves the best a90/95 value when there are no small
flaws included in the training set.

The results when training with all the simulated flaws can
be seen in Fig. 4i and results for the training with simulated
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flaws without the smaller flaws in Fig. 4j. A generalization
to real defects proved to be not possible for the simple simu-
lated flaw. Even though the flaw sizes ranged from 1 to 6mm,
there were no indications of improvement, as false calls were
an issue when tested with real flaws. The most concerning
observationwas that,while themodelwas capable of general-
ization to larger flaws fromsmaller flaws, thiswas not the case
for the simulated flaws. The model kept constantly missing
some of the largest flaws for both training data sets. The only
difference was that when the smallest flaws were removed
from the data set, performance increased by decreasing the
false calls and a number ofmissed flaws. Unfortunately, there
were still inconsistent misses on the large flaws as well.

3.2 Testing with FullWeld B-Scan and Comparison
with Human Performance

Instead of the previous training and testing, the ultrasonic B-
scan image was divided into 48-sample-wide windows with
a step of one sample and shown to the model in consecutive
order moving from left to right. The centre line of the image
would be highlighted as green if prediction would exceed
over 50%. The results for VRR data performance can be
seen in Fig. 6 for three different training methods: (a) model
trained without smallest and largest flaws, (b) model trained
without the 3 mm and 17 mm flaws and (c) model trained
with only the largest flaws left in the training data. The grey
colored prediction shows the centre line of themodelwindow
with size 48 × 112 samples (window width 96 mm).

When the model was presented with similar ultrasonic
data as for humans, Sample 8 from [22], the model kept its
performance well and acted predictably. When the model
came across an edge of the flaw and moved forward it kept
detecting it until the window had completely moved past the
flaw. The exception can be seen in (a) and (b) in Fig. 6, where
the 13.6 mm flaw is detected only by the edges of the flaw
and not at all in the middle of the flaw. This might be due
because when the window is on top of the large flaw and the
training set has not consisted of enough large flaws over the
size of the inspection window, the model cannot detect the
flaw in those areas. In Fig. 6c, where the training data set
has contained only the large flaws, the model is capable of
detecting the large flaws in the middle as well, granted the
detection is easy as the model has been taught with the same
flaw type.

When considering human performance, all human inspec-
tors found all the large flaws, but the two 1.6 mm and 2.4 mm
flaws were missed by a couple of inspectors. Those misses
might have been caused by interpreting the flaw as not large
enough to indicate a flaw. Model (a), which had no 2 mm
and 26 mm flaw types in training, barely found the 1.6 mm
flaws. Case (b) in Fig. 6 which was trained without the 3
mm and 17 mm flaw types got the perfect score on the small

flaws. Case (c), which was trained with only the large flaw
types, found the 3 mm flaw type and the second 2 mm flaw
type easily while having difficulties with the other 2 mm
flaw types. One of the reasons for these detections is that the
same flaw is presented to the model multiple times as the
window moves over it. Thus, there are more opportunities
for finding the right features for detection compared to the
test in Sect. 3.1, where detection was based only on a sin-
gle attempt. This explains why the 1.6 mm flaw gets detected
partially formodels (a) and (c). This shows that themodel has
the potential for human-level performance, as these smaller
flaws had not been shown to the model before.

4 Discussion

Detection accuracy seems to be highly related to the smallest
flaw size used in training. While the model is capable of
finding larger flaws than it is used to train with, the detection
probability decreases once the tested flaws start to be smaller
than those used in the training data set. This is good for
qualification purposes, as it can be shown that the model
generalizes better in finding the larger flaws consistently, as
they are also the most critical ones to be found. In addition,
the model’s accuracy can be adjusted by using the flaw size
range required for the task.

While the flaws available for trainingwere limited, certain
observations regarding the flaw type could be made. When
themodel was trained with an EDMnotch within the training
set or justwith theEDMnotch available, the generalization of
the model was better than with the solidification cracks only.
Themost drastic effect could be observed when training with
only the 6 mm solidification crack and 6 mm EDM notch in
Fig. 4g and h, respectively. The comparison of these two flaw
responses in Fig. 7 shows that the flaws look completely dif-
ferent. Also, the model trained with the EDM notch could
find the solidification cracks. Whereas the model taught with
only the 6 mm solidification crack struggled to find simi-
lar cracks and kept constantly missing the same-sized EDM
notch. This indicates that the model might have learned fea-
tures related to the solidification crack, not the pure crack
indication. While the data set size was small for the single
flaw types, the two types performed completely differently
with the same data size. This could also be observed when
the model was trained with only the larger flaws in Fig. 4d,
where the detection of the 6 mm EDM notch is clearly lower
and separated from the 6 mm solidification crack, which was
detected with high reliability.

When comparing the performance to the whole weld
image from the VRR data, the model showed consistent per-
formance with similar results to the initial testing. The major
observation was the performance drop for the larger 17 mm
flaw, especially when the model was taught with the largest
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Fig. 6 VRR test B-scan image,
flaw locations are 220, 350, 590,
720, 820 and 880 mm along the
scan axis and at a depth of 1100
samples on the sound path. Flaw
sizes are 20.8 mm, 4.8 mm, 13.6
mm, 1.6 mm, 2.4 mm, 1.6 mm
virtually augmented from 26, 6,
17, 2, 3 and 2 mm flaws
respectively. Flaw predictions
are highlighted as grey area. a
Model trained without the
smallest 2 mm and largest 26
mm flaw. Detection of the 17
mm flaw is unreliable on the
middle of the flaw but more
certain on the edges, 2 mm flaw
at 720 mm is barely detected. b
Model trained without the 3 mm
and 17 mm flaws. Detection of
17 mm solidification crack is
purely based on detecting from
the edges. cModel trained with
only the largest 17 and 26 mm
flaws. Detection of the 17 mm
solidification crack is reliable,
but one of the two 2 mm flaws at
720 mm seems to be difficult to
find

Fig. 7 Comparison between 6mmEDMnotch (above) and 6mm solid-
ification crack (below). The solidification crack clearly has two peaks
whereas the EDM notch has a clear single peak

flaws completely left out of the training set. While the large
flaw was found, the detection relied mostly on detecting the
flaw from its edges. This indicates that when the flaw is large
enough (i.e.,wider than theobservationwindow), themodel’s
performance decreases drastically, as it has not experienced a
similar situation when training with only small flaws. There-
fore, it is highly beneficial to have larger flaws in training

to compensate for this performance decrease. This observa-
tion is consistent with the results in Sect. 3.1 where some of
the 17 mm flaws were unexpectedly missed when the model
was taught without the large flaws. In addition, the 17 mm
solidification crack was slightly tilted, thus it gave a slightly
different flaw indication than the 26 mm solidification crack
in Table 1.

The effect of the smallest flaw in the data set could be
seen with all real flaws. When small 2 and 3 mm flaws were
included in the data set, the a90/95 value was 1.05 mm. This
result might be overly optimistic, as the flaw type was the
same for testing as for training, while the flaws themselves
were new through the virtual flaws.Withmedium6mmflaws
as the smallest flaws, the a90/95 rose to 3.45 mm and to 2.55
mm with the EDM notch. The better performance for the
lone EDM notch can be explained for better generalization
and focus on the real indication discussed above. When the
smallest original flawwas 17mm, the a90/95 rose to 7.65mm.
The decrease in performance can be explained bymissing the
EDM-type flaws in large number. However, there is a clear
link to the a90/95 value and the smallest available flaw for
training.
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The number of false calls seemed to increase as the small-
est flaw size in the data set decreased. For these data sets
and flaw types in Fig. 4a, b, the threshold for the increased
number of false calls seemed to be when only the small 2
and 3 mm flaws were used, resulting in 3 false calls and a
rise in prediction values where flaws did not exist. However,
these flaws might have been still too large and clearly visible
for a proper threshold determination. The effect of the small
flaw size is seen more clearly with the simulated flaws, as
the false calls are decreased by 40%when the simulated flaw
sizes 1 and 2 mm are excluded from the training set. These
said flaws were deemed undetectable by the human eye as
well.

Even though the simulated data did not provide reliable
results compared to the real flaws, it needs to be noted that
the simulation of the DMW case was largely simplified. It
may be plausible to enhance the performance by simulating
the subject in more detail, thus decreasing the false calls
and improving generalization if the simulated flaw response
represents the subject in greater detail.

5 Conclusions

Modern deep learning models have proven highly efficient
and reliable in image recognition tasks. It is clear that the
same approach can be used for NDT applications such as
ultrasonic inspection. However, as these models extract the
features related to detection on their own, great care needs
to be taken when designing a data set for training a machine
learning model for ultrasonic inspection:

• Smallest flaw size detected is related to the smallest flaw
size available in the training data set.

• Flaw types may generalize differently, e.g. solidifica-
tion cracks generalized worse to EDM notches than vice
versa.

• Using small flaws that are nearly undetectable in training
may lead to deteriorated model performance.
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