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s u m m a r y

Objective: To develop and validate a machine learning (ML) approach for automatic three-dimensional
(3D) histopathological grading of osteochondral samples imaged with contrast-enhanced micro-
computed tomography (CEmCT).
Design: A total of 79 osteochondral cores from 24 total knee arthroplasty patients and two asymptomatic
donors were imaged using CEmCT with phosphotungstic acid -staining. Volumes-of-interest (VOI) in
surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-wise and subjected to dimen-
sionally reduced Local Binary Pattern -textural feature analysis. Regularized linear and logistic regression
(LR) models were trained zone-wise against the manually assessed semi-quantitative histopathological
CEmCT grades (diameter ¼ 2 mm samples). Models were validated using nested leave-one-out cross-
validation and an independent test set (4 mm samples). The performance was primarily assessed using
Mean Squared Error (MSE) and Average Precision (AP, confidence intervals are given in square brackets).
Results: Highest performance on cross-validation was observed for SZ, both on linear regression
(MSE ¼ 0.49, 0.69 and 0.71 for SZ, DZ and CZ, respectively) and LR (AP ¼ 0.9 [0.77e0.99], 0.46 [0.28e0.67]
and 0.65 [0.41e0.85] for SZ, DZ and CZ, respectively). The test set evaluations yielded increased MSE on
all zones. For LR, the performance was also best for the SZ (AP ¼ 0.85 [0.73e0.93], 0.82 [0.70e0.92] and
0.8 [0.67e0.9], for SZ, DZ and CZ, respectively).
Conclusion: We present the first ML-based automatic 3D histopathological osteoarthritis (OA) grading
method which also adequately perform on grading unseen data, especially in SZ. After further devel-
opment, the method could potentially be applied by OA researchers since the grading software and all
source codes are publicly available.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society
International. This is an open access article under the CC BY license (http://creativecommons.org/
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Introduction

Conventional microscopic histopathological grading of osteo-
chondral tissue is the gold standard for assessment of osteoarthritis
(OA) severity ex vivo. The most commonly used OA grading
methods are Osteoarthritis Research Society International (OARSI)1

and Mankin2 scoring systems3. Mankin scoring system was devel-
oped based on late-stage OA samples, having limitations for
assessment of early OA4 and disease extent5. Consequently, the
OARSI grading systemwas introduced later to address these issues,
offering more sensitivity to the mild and moderate progressive
changes in articular cartilage (AC), as well as functional information
on cartilage properties6. Generally, histopathological grading
methods sensitive to early changes are highly valuable for drug
development and basic OA research7. Furthermore, sensitive
grading methods might potentially be utilized in developing bio-
markers, which are essential when developing prevention of the
late-stage disease or non-surgical disease-modifying treatments8,9.

The conventional histopathological methods are complex,
destructive and time consuming4, and also unable to capture all of
the OA-induced changes within the full sample volume. Recently,
methods combining multiple thin sections into 3D volume through
image registration have been proposed10,11. However, such ap-
proaches can only avert partly the problem of two-dimensionality
with the expense of a more laborious protocol.

Multiple 3D histopathological grading methods for different
tissues have been proposed in the literature, based on magnetic
resonance imaging (MRI)12e15, optical imaging16, ultrasound17, and
atomic force microscopy18. 3D grading methods could possibly
serve as a reference for clinical 3D modalities, as well as higher
resolution 3D techniques. Contrast-enhanced micro-computed to-
mography (CEmCT) has shown potential in fast quantitation of
osteochondral features while preserving the sample and reducing
user bias19. We recently introduced a protocol for contrast-
enhanced micro-computed tomography (CEmCT) using phospho-
tungstic acid (PTA) as a collagen-specific contrast agent20,21, and
consequently, developed a 3D OA grading system to assess each AC
zone separately22. However, the current 3D mCT grading system still
requires manual assessment, thus, having a risk for user-dependent
bias. The automation of this process could provide more objective
evaluations.

Recently, methods for the quantitative 3D analysis of AC sur-
face23,24, calcified cartilage25 and full cartilage tissue19 degeneration,
as well as chondrocyte organization26,27 with CEmCT, have been re-
ported. However, most of the currentmethods are either limited to a
single osteochondral zone23e25 or not validated via independent
testing19. The current implementations could be improved by
developing more generalizable methods applicable to analyze mul-
tiple different osteochondral zones while utilizing more advanced
validation techniques that show their feasibility on unseen data.

The development of machine learning (ML) techniques has
enabled a data-driven approach in pattern recognition and decision
makingwithout the need for explicit programming. Several grading
methods have been proposed in fields outside OA research28,29. ML
has been applied in clinical OA research in several domains, such as
the prediction of OA severity30e33 and progression15,34,35 using X-
ray radiographs30,31,33,34 or MRI analysis15,32,35. However, little
attention has been paid to ML in pre-clinical OA research26,36,37.

In this study, we aim to automate the recently proposed histo-
pathological grading22 of CEmCT imaged osteochondral samples
using ML. The feasibility of performing the automatic grading in
different cartilage zones, and the robustness of the developed
models to a sample acquisition protocol change, are assessed with
an independent test set.

Materials and methods

Sample preparation

Osteochondral cores were harvested from tibial plateaus and
femoral weight-bearing areas of human knee joints (Supplemen-
tary Fig. 1). A total of 90 cores were extracted from 24 total knee
arthroplasty (TKA) patients and two asymptomatic donors. Sub-
sequently, 79 samples that contained both the cartilage and bone
layers were included in the study, and split into two datasets based
on the core diameter Ø:

� Cross-validation set; 19 patients, n ¼ 34, Ø ¼ 2 mm, ethical
approval PPSHP 78/2013, Ethical committee of Northern
Ostrobothnia's Hospital District

� Test set; seven patients, n ¼ 45, Ø ¼ 4 mm, ethics approval
PPSHP 78/2013; PSSHP 58/2013 & 134/2015, Research Ethics
Committee of the Northern Savo Hospital District

Detailed sample and patient distributions are given in Supple-
mentary Table 1. After the core extraction, all the samples were kept
frozen at �80�C. Before the imaging, the samples were thawed and
then fixed in 10% neutral-buffered formalin for 5 days. Fixationwas
followed by a minimum of 8h wash in 70% ethanol and minimum
48h immersion in 70% ethanol, 1% w/v PTA solution20,21. PTA is
negatively charged and can bind to collagen ionically since collagen
has a positive net charge in low pH solution. Electromagnetic
repulsion of the negative proteoglycans might hinder the effect of
PTA binding, and sufficient time for the passive diffusion of the
contrast agent should be allowed21. To prevent sample drying
during mCT imaging, each sample was wrapped in Parafilm (Paraf-
ilm M, Bemis Company Inc, Neenah, WI, USA) and orthodontic wax
(Orthodontic Wax, Ortomat Hepola, Turku, Finland).

Imaging

The imaging was conducted right after the PTA immersion was
completed. Samples were imaged using a desktop mCT setup

Dataset Zone Grade 0 Grade 1 Grade 2 Grade 3

S 7 11 13 3
Cross-validation D 8 16 8 2

C 8 16 7 3
S 2 19 9 14

Test D 0 16 15 13
C 0 24 11 9

S ¼ Surface zone, D ¼ Deep zone, C ¼ Calcified zone.

Table I

Distribution of mCT grades
assessed from the re-
constructions (used as
ground truth). The cross-
validation set contained
only a small number of
samples from grade three
and a reduced number of
healthy samples, while
almost no healthy samples
were found in the test set.
Otherwise, samples were
distributed relatively evenly
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(Skyscan 1,272; Bruker microCT, Kontich, Belgium; Scanning pa-
rameters: 45 kV, 222 mA, 3.2 mm voxel side length, 3,050 ms, two
frames/projection, 1,200 projections, additional 0.25 mm
aluminum filter).

During the imaging of the test set, we improved the data
acquisition protocol by checking the sample voids e areas of deep
cartilage with no PTA accumulation (Supplementary Video 2 in
Nieminen et al.20). We observed that the voids appeared due to the
insufficient diffusion time, especially in samples with a very thick
AC layer. In the new protocol, upon detection of a void in the mCT
scan, the sample was re-immersed in PTA to allow full diffusion to
deep AC.

3D histopathological grading

We used reconstructed data to determine the semi-quantitative
3D histopathological grades for each sample, corresponding to the
analyzed zones22. J. Leino conducted the grading according to the

published method22, assessing each sample independently. In this
study we used the following grades:

� Surface continuity: Smooth and continuous ¼ 0; Slightly
discontinuous ¼ 1; Moderately discontinuous ¼ 2; Severely
discontinuous ¼ 3,

� Deep cartilage (zone 3, DZ) extracellular matrix (ECM) disor-
ganization: Normal ¼ 0; Slightly disorganized ¼ 1; Moderately
disorganized ¼ 2; Severely disorganized ¼ 3

� Calcified cartilage (zone 4, CZ) ECM disorganization:
Normal ¼ 0; Slightly disorganized ¼ 1; Moderately
disorganized ¼ 2; Severely disorganized ¼ 3

Grade distribution is presented in Table I and graphically in
Supplementary Fig. 2. Besides the multiclass grades, we also used
dichotomized grades and split them into intact/mild VOI degener-
ation and moderate/severe VOI degeneration groups (Grades zero
and one were grouped against two and three). In our analyses, we
excluded the grades from the middle zone (zone 2), since we

Fig. 1
The workflow of the analysis methods used for CEmCT imaged samples. SZ ¼ surface zone, DZ ¼ deep
zone, CZ ¼ calcified zone.
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believe that the automatic selection of transitional zone is error-
prone, especially in the late-OA samples with a delaminated surface
layer (ECM loss extending to the transitional zone).

Basic data pre-processing

A python ad hoc software was developed to preprocess the
image stacks and train the regression and classificationmodels. The
method workflow is illustrated in Fig. 1. The reconstructed samples
were loaded and oriented using an optimization algorithm. The
center of the sample in the XY plane was detected by finding the
center of mass of the image stack summed along the Z-axis (Z e

sample's depth dimension). Edges of the sample were cropped
using detected center and pre-defined VOI size (1300 mm ‧ 1300 mm
‧ Z for Ø¼ 2 mm, 2600 mm ‧ 2600 mm ‧ Z for Ø¼ 4 mm). Orientation
and edge cropping processes are further described in Supplemen-
tary Fig. 3.

Calcified cartilage segmentation and VOI extraction

After cropping the sample edges, the calcified cartilage interface
(tidemark) was segmented in a slice-by-slice-manner. We adapted
the method from38 and utilized U-Net39 e a Deep convolutional
neural network (CNN). The proposed modification included the use
of transfer learning, for which we utilized a ResNet-34 encoder
pretrained on the ImageNet dataset40 (~14 million natural images
labeled into 1,000 generic classes). The segmentation model was
trained on the cross-validation set (Ø ¼ 2 mm). To enrich the
training data, we used such data augmentations as random trans-
lations, rotations, scaling, flips, added noise, brightness and
contrast modifications. During inference, the model predictions
were averaged along coronal and sagittal planes, and the

segmentation probability map was thresholded with 0.5 (cross-
validation set) or 0.2 (test set). The lower thresholding was applied
for the test set due to images having a lower signal (see Supple-
mentary Fig. 4).

Once the calcified tissue mask was acquired, the average depth
of AC was calculated using the mask and the surface coordinates of
the samples. The depth for DZ was set as 60% of AC depth to ensure
that the full zone was included also on the samples with the
delaminated surface layer. The lower limit for DZ was set to 30 mm
above the segmentation mask to ensure that the interface and
calcified tissues were not included in DZ. The surface was detected
using the Otsu threshold, and surface zone (SZ) was set extending
80 mm below (25 slices). CZ was set as 80 mm thick volume
immediately below DZ. Here, we used small zone thickness values
to focus on the detailed surface features and account for samples
with thin CZ. Extracted volumes (Figs. 2 and 3) were collapsed into
two-dimensional (2D) texture images summing their mean and the
standard deviation depth-wise.

Finally, all the Ø ¼ 4 mm samples included in the test set were
split into nine smaller sub-images (with dimensions half to the
original image) to increase prediction reliability. This was also done
to make sure that the textural features of the large image have
similar relative size and impact on the resulting feature descriptor
used to predict the 3D grades of the sample, compared to the fea-
tures trained on cross-validation.

Feature extraction

Prior to the feature extraction, possible misalignment artifacts
that appeared during preprocessingwere automatically cropped out.
In the algorithm, possible defects on the image corners were
detected using adaptive thresholding and cropped. Subsequently,
we performed a local normalization by subtracting from each pixel
of its neighborhood's weighted intensity. Here, we used a gaussian
kernel for intensity weighing. The kernel parameters were opti-
mized independently for each sample zone (Supplementary Table 2).

To extract the features related to cartilage degeneration, Median
Robust Extended Local Binary Patterns (MRELBP) were calculated
according to Liu et al41. In this case, the texture analysis is conducted
by comparing median filtered patches in the 2D images on multiple
scales. A total of 32 features were extracted. Two features were
obtained by thresholding the image patch by the full images’mean
intensity. Ten features from small, large and radial local binary
pattern (LBP) images are collected, comparing the center patch to
eight neighboring patches using rotation-invariant uniform map-
ping (nine uniform- and one non-uniform patterns). The combined
histogram was normalized. Features that did not have any occur-
rences were excluded, resulting in 28 features. Finally, we mean-
centered the data.

After the data centering, a principal component analysis
(PCA) -based whitening was used, and consequently, the dimen-
sionality of the extracted feature vectors was also reduced. Here,
90% of the explained variance was set as a threshold for finding
the optimal number of principal components. Eventually, three
components were automatically selected for all the cartilage
zones.

Automatic grading

After the PCA, we used the obtained features to train two
regression models on cross-validation. In particular, we used leave-
one-patient-out (LOPO) cross-validation, using samples from each
individual patient as a validation set, against a model trained on the
rest of the patients in the dataset. The cross-validation set had two
samples per patient (Supplementary Table 1). Firstly, a linear

Fig. 2

a) Oriented and edge-crop-
ped VOI from a healthy/mildly
degenerated osteochondral
sample in the test set (har-
vested from an asymptomatic
donor), b) Sub-VOI from the
cartilage surface, c) deep
cartilage, and d) calcified tis-
sue. A smooth and contin-
uous surface is visible. Deep
and calcified ECM are well
organized.
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regression model was trained against the ground truth mCT grades.
Here, we used L2 (ridge) regularization with a coefficient of 0.1 and
assumed a continuous outcome. Secondly, a binary logistic
regression (LR) model (also with L2 regularization) was trained to
assess the sample's degeneration.

For the test set images, the developed models were evaluated
for all the nine sub-images separately and the average of their
predictions was finally used. The models trained with the best
hyperparameters from the cross-validation set were selected. To
also estimate the effect of switching the cross-validation- and test
sets, separate models were subsequently trained for Ø ¼ 4 mm
samples using LOPO cross-validation (Replication experiment, see
Supplementary Table 3).

Model interpretability

To assess the interpretability of the model's decisions, we used
the SHapley Additive exPlanations (SHAP) method42. Briefly, it is a
game-theoretic approach capable of assessing the impact of indi-
vidual MRELBP features used via analytical calculation of the
Shapley values. The results describe the user if low or high values of
the feature contribute to a higher or lower predicted grade.

Parameter optimization

To tune the hyperparameters for MRELBP and grayscale
normalization, we used the Bayesian hyperparameter optimization
algorithm from the Hyperopt package43. To avoid overfitting, we
performed a “nested leave-one-out” cross-validation (Fig. 4). In

particular, during the leave-one-out (LOO), we used a hyper-
parameter search on the N-1 (33 out of 34) samples using another,
nested LOPO cross-validation split. A regression model was trained
for each optimization batch of 33 samples. Optimization was con-
ducted on the cross-validation set evaluating a maximum of 100
parameter sets per iteration. The algorithm converged to the same
solution on most of the iterations (30/34 for SZ, 34/34 for DZ and
18/34 for CZ) and we used the most frequent solution as the
hyperparameter selection for each zone. Optimized sets of pa-
rameters are listed in Supplementary Table 2.

Statistical analyses

Predictions of the linear regression models were assessed using
the mean squared error (MSE) and Spearman's correlation analysis.
For the LR models, receiver operating characteristic (ROC) curves
and precisionerecall curves (PRC) were calculated. We evaluated
the area under the ROC curve (AUC) and the average precision (AP)
of PRC. The 95% confidence intervals were estimated via stratified
bootstrapping with 2000 iterations. To further analyze the perfor-
mance of the binary classification models, we calculated the pre-
cision, recall and F1 scores under the threshold of 0.5.

Results

Detection of sample degeneration

Themain results of the experiments are presented in Table II and
Figs. 5e6. For the cross-validation set, we obtained the AUCs of 0.92
(0.80, 0.99), 0.62 (0.41, 0.81) 0.71 (0.48, 0.90) for SZ, DZ and CZ,
respectively. Here, the parentheses indicate 95% confidence in-
tervals. Having the threshold of 0.5 for LR's predictions, the preci-
sion (positive predictive value) of the model was found to be high
on SZ (0.83), while it remained weak and moderate on DZ and CZ
(0.35 and 0.50, respectively). The recall was found to be very high
on SZ (0.94) and strong for DZ and CZ (0.70 and 0.60, respectively).
F1 scores were 0.88, 0.47 and 0.55 for SZ, DZ and CZ respectively.
APs from PRC curves were 0.89 (0.77, 0.99), 0.46 (0.28, 0.67) and
0.65 (0.41, 0.85) for SZ, DZ and CZ, respectively.

For the test set, we obtained the AUCs of 0.81 (0.68, 0.92), 0.68
(0.51, 0.83) and 0.77 (0.62, 0.89) for SZ, DZ and CZ, respectively.
Precisions were 0.77, 0.86 and 0.62 for SZ, DZ, and CZ, respectively.
The recall was 0.74 on SZ, 0.66 for DZ and 0.62 for CZ. F1 scores were
0.76, 0.75, and 0.62 for Z, DZ and CZ, respectively. APs from PRC
curves were 0.85 (0.73, 0.93), 0.82 (0.70, 0.92) and 0.80 (0.67, 0.90)
for SZ, DZ and CZ, respectively. Comparable detection accuracy was
found for SZ compared to the cross-validation set, while a perfor-
mance increase was seen on DZ and CZ. The AP of the DZ and CZ
models increased by 0.36 and 0.15 compared to the cross-validation
set.

ROC and PRC curves (Fig. 5) show that the model for SZ is per-
forming best compared to all zones. On the cross-validation set,
ROC curves show that CZ performs slightly better compared to DZ,
but the difference is even more obvious in the PRC plot. Similar
results can be seen on the test set.

Automatic grading

The performances of all the linear regression models are sum-
marized in Table II and Fig. 6. In particular, the linear regression
model yielded MSEs of 0.49, 0.69 and 0.71 for SZ, DZ and CZ,
respectively. Strong Spearman's correlation was observed for SZ
(r ¼ 0.68), while weak correlations were observed for DZ (r ¼ 0.24)
and CZ (r ¼ 0.18) compared to the manual grades.

Fig. 3

a) Oriented and edge-crop-
ped VOI from a degenerated
osteochondral sample in the
cross-validation set (har-
vested from a TKA patient), b)
Sub-VOI from the cartilage
surface, c) deep cartilage, and
d) calcified tissue. Surface
discontinuities, as well as
deep and calcified ECM
disorganization, are clearly
visible. Vascular infiltration
and surface discontinuities
are shown with a red arrow.
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For the test set, we evaluated the predictions using the models
that were saved during the training of the cross-validation set. The
test set yielded MSEs of 0.87, 1.33 and 1.01 for SZ, DZ and CZ,
respectively. Spearman's correlation was moderate (r ¼ 0.46, 0.59)
on SZ and CZ, and weak (r ¼ 0.28) on DZ.

Interpretability analysis

The results of the interpretability analysis are shown in Sup-
plementary Figs. 6e7. The most significant features from the image
are the center (threshold by image mean), non-uniform features
(Large and Small radius) as well as uniform patterns consisting of
three or four connected neighbors on the Small and Large radius
(U-3 and U-4). High sample degeneration is associated with a high
amount of image patches below mean intensity (high Center -, low

Centerþ), low amount of non-uniform patterns and a high number
of uniform patterns.

Replication experiment

The replication experiment was performed to assess the trans-
ferability of the developed texture-based volume analysis tech-
nique. The results from the model trained separately for the test set
with LOPO cross-validation are shown in Supplementary Table 3.
Ridge regression showed improvement in MSE (0.87 / 0.82,
1.33/ 0.81, 0.73/ 0.55, for SZ, DZ and CZ, respectively) but not in
Spearman's correlation. LR yielded worse results using ROC/AUC
and PRC analysis based on AP (0.85 / 0.74, 0.82 / 0.77 and
0.80 / 0.69, for SZ and CZ, respectively). However, additional pa-
rameters show that recall and F1 score are improved in SZ, when

Fig. 4

Flowchart describing the nested cross-validation method used in the parameter optimization. First, LOO is
performed resulting in n - 1 samples in the optimizations. A maximum of 100 parameter sets are evaluated
in the optimization algorithm, where regression is performed with the LOPO split. Initial LOO results in 34
optimization results, and the most frequent parameter set is used as a final solution.
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using the threshold of 0.5 for the LR model (recall: 0.74 / 0.83, F1
score: 0.76 / 0.79).

Software prototype

We implemented the developed automatic 3D grading method
in an open-source software package for Windows OS (Supple-
mentary Video). Currently, themodels trained using a python script
are exported into an intermediate format and loaded by the soft-
ware to predict the degeneration of unseen samples. Additional
features of the software are manual tools for artefact cropping and
also the advanced visualization pipeline. The source code of the
software is available on GitHub: https://github.com/MIPT-Oulu/
3DHistoGrading.

Discussion

In this paper, we investigated the feasibility of automation of the
3D mCT grading system for osteochondral human samples. We
developed a method based on ML to predict the grades of degen-
eration for AC surface, deep and calcified cartilage zones in an
automatic manner. The trained models were evaluated in two
settings e via cross-validation and on a completely independent
dataset. This allowed the assessment of generalization of the
developed method to the unseen data, as well as its robustness and
applicability to new data acquisition settings.

From the experiments, we found that our models are more
suited for the detection of the presence of overall degeneration in
the analyzed VOI, instead of fine-grained grading. This is probably
due to the limited number of training samples. The results showed
that the surface degeneration can be detected reliably (AUC of 0.92
and AP of 0.89). Detection of CZ disorganization yielded moderate
performance (AUC of 0.71 and AP of 0.65). The lowest performance
was seen for the DZ (AUC of 0.62 and AP of 0.46). It could be that the
subtle changes in deep ECM organization are too difficult to
distinguish from the PTA contrast.

On the other hand, the results are highly generalizable to
different data acquisition settings as shown in our experiments. On
the test set, an AP increase of 0.15 was observed for the CZ model
and 0.36 for the DZmodel. The findings suggest that besides the SZ,
the precise segmentation pipeline could allow grading the CZ. To
further increase the reliability of the presented models, novel data
augmentation and semi-supervised grading techniques, e.g.,
domain adaptation44,45, could be utilized in the future.

To assess the interpretability of the trained models, we used the
SHAP method (Supplementary Figs. 6 and 7). We observed that the

SZ and CZ models (that had superior performance to the DZ model)
benefitted highly from the two center features. Especially, a higher
degeneration was predicted for high negative center values, i.e. in
the case of a large proportion of dark areas on the image. This
suggests that these zones have prevalent changes in the tissue 3D-
structure such as fissures and vascular infiltration. Also, even
though the non-uniform features and some uniform features (U-3
and U-4) were impactful, they likely provide only supplementary
information and perform poorly without the Center feature.

The replication experiment was conducted to study the effect of
switching the training and evaluation datasets. The lower perfor-
mance when training the models on the test set could be explained
by two phenomena: First, compared to the test set, the cross-vali-
dation set had a higher number of patients and more heteroge-
neous grade distribution (Table I, Supplementary Fig. 2). Second,
the mCT imaging parameters were optimized for Ø ¼ 2 mm. We
analyzed this both visually and quantitatively, comparing the im-
ages with the filtered data (Supplementary Figs. 4 and 5). For the
test set, MSE against the filtered data was higher (mean
MSE ¼ 29.6) compared to the cross-validation set (mean
MSE¼ 5.8). Both peak signal-to-noise ratio and structural similarity
index were higher in the cross-validation set (mean values 40.2 and
0.84 compared to 33.3 and 0.71). All three metrics suggest higher
image quality in the cross-validation set.

The concept of generalization is crucial in ML. If the training
process is not designed carefully, the models can overfit46 to the
training data, memorizing the individual samples instead of
learning broad and meaningful associations. In such cases, the
method works seemingly well on the training and validation
sets and fails to generalize to new samples outside the training
process. The risk of overfitting is elevated with a low number of
training samples. To facilitate the generalization of our method,
we used multiple techniques: MRELBP histogram normalization,
PCA-based dimensionality reduction (lower number of features
are more unlikely to result in overfitting), L2 regularization, as
well as choosing simple models (linear and logistic regression)
that do not overfit as easily as more complex ones (such as CNN,
random forest or support vector machine). We also used nested
LOO, where a Bayesian hyperparameter search was performed at
each iteration of cross-validation. Finally, we used an indepen-
dent test set to prove the generalization of the method to
samples with lower image quality and different grade
distribution.

Besides the robust validation scheme, we also tackled the issue
of a thorough evaluation of the results. When making a binary
classification, ROC curves are often reported47. They are easily

Dataset Zone Linear Regression Logistic Regression

MSE SC p-value AUC (95% CI) AP (95% CI) Prec. Recall F1

S 0.49 0.68 <0.0001 0.92 (0.80e0.99) 0.89 (0.77e0.99) 0.83 0.94 0.88
Cross-validation D 0.69 0.24 0.16 0.62 (0.41e0.81) 0.46 (0.28, 0.67) 0.35 0.70 0.47

C 0.71 0.18 0.30 0.71 (0.48, 0.90) 0.65 (0.41e0.85) 0.50 0.60 0.55
S 0.87 0.46 0.002 0.81 (0.68e0.92) 0.85 (0.73e0.93) 0.77 0.74 0.76

Test D 1.33 0.28 0.06 0.68 (0.51e0.83) 0.82 (0.70, 0.92) 0.86 0.66 0.75
C 0.73 0.59 <0.0001 0.77 (0.62e0.89) 0.80 (0.67e0.90) 0.62 0.62 0.62

S ¼ Surface zone, D ¼ Deep zone, C ¼ Calcified zone, SC ¼ Spearman's correlation, Prec. ¼ Precision, CI ¼ Confidence interval.

Table II
Performance of trained linear (ridge) and logistic regression models. Confidence intervals for 95% are
given in parentheses. Statistical variables for linear regression are on the left side of the table and
variables for logistic regression are on the right side
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understood and allow assess performance well on evenly distrib-
uted datasets. However, the PRCs are more descriptive on imbal-
anced datasets and provide information on the positive predictive
value of the models48,49. The use of the ROC curve analysis can even
lead to false conclusions on classifier reliability when using
imbalanced data due to wrong interpretations of the true positive
rate48. We consider the use of a different metric for classification
models to be one of the core strengths of this study.

Our group has previously utilized a novel method for quanti-
tative surface morphology assessment. Similarly to the handcrafted
surface features presented by Ylitalo et al.23, our ML approach here

showed the highest sensitivity for SZ for detecting intact samples.
This highlights the importance of surface features, although the
presented ML method can provide a comprehensive description of
pathological changes of other cartilage zones as well. These studies
are not otherwise directly comparable either since a different split
(grades 0e1 against 2e3, instead of 0 against � 1) was used here to
better balance the grade distributions of the different groups (class
distribution in Ylitalo et al.23 was seven against 29 for the surface).
Further, in the current study, we conducted a more thorough vali-
dationwith nested LOO, PRC and interpretability analysis, as well as
independent testing.

Fig. 5
Receiver operating characteristic (ROC) and precisionerecall curves (PRC) for each dataset. Values for
bootstrapped AUCs and APs with 95% confidence intervals are shown. From both curves, it can be clearly
seen that especially the surface models are performing well compared to the baseline.
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Fig. 6

Predictions obtained from the Ridge regression models on the cross-validation (left column) and test sets
(right column). Predictions in most models are very close to grade 1, showing that ridge regression has little
power to distinguish individual grades in this case. On the cross-validation set, predictions for SZ and CZ as
well as for test set SZ, low and high grades can be visually separated from each other.
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This study has several important limitations. First and foremost,
a very reliable and accurate model might require hundreds or
thousands of samples from different subjects, and the current
model was created based only on 34 samples from 19 TKA patients.
Secondly, we had to include one freezeethaw cycle for the samples
due to practical reasons. Thirdly, datasets used in the study were
very heterogeneous due to different core diameters, causing
decreased image quality in the test set. Fourthly, the distribution of
mCT grades was also different in the test set, which could be due to
lower patient count or the lack of multiple graders. Fifthly, DZ
model performance might increase if a smaller depth of cartilage
was used (e.g., 30e40% instead of 60% of cartilage depth50), better
avoiding inclusion of the transitional zone. Finally, wewould like to
point out, that the chosen methods assume sample independency.
While our samples are not independent, we note that their visual
appearance may vary drastically even when the osteochondral
plugs are extracted from similar anatomical locations. Therefore,
we believe that the impact of not strictly fulfilling the assumption
of independent and identically distributed data is very minor, and
does not affect our results.

As a conclusion, this study shows that automatic 3D histo-
pathological grading of osteochondral samples is feasible from
CEmCT with minimal user input. Our model could potentially be
used to provide a second opinion for OA researchers requiring a
reliable assessment of OA ex-vivo severity, mainly at SZ and CZ.
However, the method and the software are not fully ready for
practical use and further development, including the acquisition of
a bigger training dataset and external validation, is highly recom-
mended. This would likely increase the reliability of the analysis
also for zones other than the cartilage surface. To the best of our
knowledge, this is the first report presenting an ML-based 3D his-
topathologic OA grading model, which also adequately generalizes
to unseen data. All codes used, and the software prototype devel-
oped during this study are available on the project's GitHub page
(https://github.com/MIPT-Oulu/3DHistoGrading).
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