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Dual-Polarized mm-Wave Endfire Chain-Slot
Antenna for Mobile Devices

Resti Montoya Moreno~', Joni Kurvinen™', Juha Ala-Laurinaho™,
Alexander Khripkov™, Member, IEEE, Janne Ilvonen™, Jari van Wonterghem,
and Ville Viikkan, Senior Member, IEEE

Abstract—This article describes a dual-polarized endfire
antenna array for millimeter-wave (mm-wave) frequencies. The
antenna consists of a chain-slot-shaped pattern on a mobile
phone metal frame. The antenna is fed using a transmission
line, which would cause only a negligible capacitive loading
of the sub-6 GHz antenna realized on the same metal frame
and, therefore, would not significantly degrade its performance.
This makes colocating the sub-6 GHz and mm-wave antennas in
the same, shared volume possible. Measurements indicate that
a four-element array placed within a mobile phone provides a
realized gain between 8 and 12.6 dBi for both polarizations across
the entire band from 24.5 to 29.5 GHz. The total efficiency of a
single element is better than —2 and —3 dB for the whole band
for horizontal and vertical polarizations, respectively.

Index Terms—5(G, antenna, beamsteering, endfire antenna
array, metallic rim, millimeter-wave (mm-wave) frequencies,
maobile phone.

I. INTRODUCTION

UTURE 5G mobile devices will use millimeter-wave

(mm-wave) bands (such as those at 24-80 GHz) concur-
rently with the currently used sub-6 GHz bands for increased
data rates [1]-{3]. However, many unresolved challenges
remain, especially in mobile mm-wave antennas. First, the vol-
ume reserved for all the antennas in a mobile device is very
limited, and the added mm-wave antennas should be ideally
accommaodated in the same shared volume with the sub-6 GHz
antennas. Additional volume reserved for antennas would
otherwise make the mobile device larger and bulkier and,
thus, less attractive to customers. Currently, known mm-wave
antennas either require additional volume or, if placed in
the same volume, significant changes in the design of the
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sub-6 GHz antennas in order to avoid major performance
degradation.

The mobile device can be in almost any orientation relative
to the access point in its normal use, making electrical beam-
steering necessary. The mm-wave antennas should additionally
be dual-polarized for increased capacity and reliability. Com-
monly used mm-wave antennas realized on a printed circuit
board (PCB) support radiation in the broadside directions of
the mobile device [4]. However, they do not easily radiate
toward the edges of the phone. Dual-polarized operation can
also be relatively easily achieved in broadside direction using,
for instance, dual-polarized patch antennas [5], [6]. On the
other hand, dual-polarized antennas radiating toward the edges
are much more demanding to implement with the commonly
used PCB technology. This is, in particular, because the
thickness of the PCB is small compared with the wavelength.
Therefore, implementing antennas, such as dipoles or other
radiating structures, where the electric field is perpendicular
to the PCB is challenging.

The mm-wave antennas, similar to sub-6 GHz antennas,
should be compliant with the phone design, and they should
not introduce changes that result in significant degradations
of the visual appearance, robustness, or manufacturability of
the device. The majority of mobile devices currently have a
metal frame surrounding the device for robustness and esthetic
reasons. The metal frame makes directing mm-waves to edge
directions very demanding, as any antenna placed inside the
frame is obscured by the metal in the endfire direction.

The mm-wave (endfire) antennas have attracted a lot of
attention recently [7]-[21]. However, the presented antennas
generally have a relatively narrowband, or they operate only
with a single polarization. Furthermore, the volume reserved
for the mm-wave antenna may be relatively large [22], or the
metal frame, which would heavily impact the performance of
the antennas, is not included.

Other prior solutions are incompatible with sub-6 GHz
antennas due to the very close proximity of the antennas to
the metal frame, where the sub-6 GHz antennas are realized.
Due to the close distance, the mm-wave antenna significantly
loads the sub-6 GHz antennas, deteriorating its operation.
Moreover, the mm-wave antenna may be impractical due to
multiple gaps and slots needed in the metal frame, such as
in [23]. The coexistence between long-term evolution (LTE)
and mm-wave antennas in different environments has recently
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Fig. 1.
present in smartphones, such as the Huawel P9,

mm-wave module may be disguised as speaker slots that are already

been studied in some article. Kurvinen ef al. [24] combined
LTE and mm-wave endfire operation, but the proposed antenna
array only operates at a single polarization, and beamsteering
capabilities are only demonstrated in the +25° range. In [25],
excellent efficiency is achieved in the 24.75-27.5 GHz band,
but the metal frame is not included, and the beamsteering
capabilities are not presented. In [26], good performance is
achieved in the 26-28.5 GHz band, including high realized
zain, but the mm-wave antennas present only single polar-
ized broadside operation. In [27], a dual-polarized mm-wave
antenna operating at 30 GHz is presented. In this solution,
the mm-wave antenna is 1 mm offset from the metal frame,
and thus, it is not integrated into it. Moreover, this solution
requires the addition of a fairly large rectangular window in
the metal frame in order to achieve an endfire radiation pattern,
which may not be visually appealing.

In comparison with the previously presented antennas,

the proposed design provides the following benefits.

1} Sub-6 GHz and mm-wave antennas can coexist in a
shared volume without significant performance degrada-
tion in either of the antennas.

2) Shaping of the metal frame may be similar to current
microphone/speakers grill slots, such as those shown
in Fig. 1. This makes the design esthetically atiractive
and acceptable.

3) The antenna is integrated into the metal frame, and there-
fore, this solution is compatible with any metal-frame
phone design.

4) The presented solution supporis independent beamsteer-
ing at two polarizations.

5) This solution provides a large angular coverage range in
the endfire direction, making it easy to achieve full-sphere
coverage with complementing broadside antennas.

6) The presented solution makes possible feeding the
mm-wave antenna elements on the metal frame from
the main body without short-circuiting the metal frame
or significantly loading it capacitively at sub-6 GHz
frequencies.

7) The feeding can be realized on a simple PCB together
with the mm-wave module and the mm-wave excitation
elements coupling to the aperture.

This article presents an endfire mm-wave antenna array imple-
mented in a metal-framed mobile phone structure. The mobile
phone structure resembles the one of the modern smartphones
where a metal frame is generally present, and the clearance

Fig. 2. Chain-slot antenna concept on a metal frame.

Fig. 3. Surface current distnbution at 28 GHz for (a) vertical and (b) hor-
izontal polanzations. Simplified structures with lumped ports are shown to
explain the basic operation.

between the frame and the main body is generally 1 mm.
The mm-wave module is fed using feed lines that do not
short-circuit the sub-6 GHz antennas implemented in the metal
frame [28]. A prototype is manufactured, and the performance
of each antenna is measured and compared with the corre-
sponding simulated results in order to validate the presented
antenna concept.

In Section II, we describe the mm-wave antenna concept
and its corresponding feeding structure alongside with the
main antenna dimensions. Section III presents the main con-
siderations taken into account when manufacturing the pro-
totype. Simulation and measurement results are analyzed and
compared in Section IV. Parametric sweeps and explanations
for the differences between measured and simulated results
are included in Section V. Finally, conclusions are given in
Section VL.

II. mm-WAVE CHAIN-SLOT ANTENNA CONCEPT, FEEDING
STRUCTURE, AND LOW-BAND ANTENNA

A. Chain-5Slot Antenna Concept

The chain-slot antenna array consists of two main parts:
a patterned slot in the metal frame and separate coupling
elements for both polarizations. The pattern in the metal frame
comprises multiple slots interlaced with each other, creating
an aperture structure resembling a silhouette of a chain (see
Fig. 2). Therefore, the antenna is referred to as a chain-slot
antenna. The chain-like slot is patterned so that it supports
structural resonance modes at two different polarizations,
enabling the use of the slot as a dual-polarized antenna with
proper feed structures. The feed elements can be realized on
a PCB and are, therefore, relatively easy and inexpensive to
manufacture. The chain-like patterned slot on the metal frame
can be filled with a dielectric material, such as plastic, for
robustness and sealing purposes.

Figs. 3 and 4 show the surface current and E-field distri-
bution for the chain-slot concept at 28 GHz in a simplified
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Fig. 4. Electnc field distribution at 28 GHz for (a) vertical and (b} horizontal
polanzations. Simplified stroctures with lomped ports are shown to explain

Fig. 5.

Antenna front view (outside the mobile device).

H-pol coupler  Chain-slot antenna

BEN BN !
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¥~ Flexible

/
Mm-wave feedlines FCB

Fig. 6. Chain-slot antenna back view (seen from inside the phone). The
metallic unibody of the phone is hidden to avoid shadowing of the antenna.

structure. This structure is fed with ideal lumped ports for
simplicity. As seen in the figures, both horizontally and
vertically polarized fields are generated when the structure is
fed. In practice, coupling elements must be included in order
to excite the desired modes. Moreover, the coupling elements
exhibit another resonance, which leads to a double-resonance
operation. The front view of the chain-slot antenna imple-
mented on the metal frame of a mobile phone is shown
in Fig. 5. The coupling elements for exciting the horizontal
and vertical (H-Pol and V-Pol, respectively) polarizations are
shown in Fig. 6. The vertical polarization is excited by
creating a voltage difference across the narrow part of the
chain-slot pattern with an extended signal line of a coplanar
waveguide, whereas the horizontal polarization is excited using
a monopole-shaped planar probe. The pattern repeats period-
ically depending on the number of the elements in the array,
and one coupling element mainly excites one period of the
slot pattern. The combination of the coupling element and the
chain-slot aperture in the metal frame forms a multiresonant

AN NN NNNEy

IIIIIIII.‘I
AEEEEEEERE

L8O
IRIRIRUN N R
VAL LT NI

[ sattery )

Fig. 8. mm-wave antenna connection with the RFIC, including a vertically
onented reflector that has been hidden in Figs. 6 and 7 for visualization

PUrposes.

structure, enabling a wide impedance band. This solution
is based on shaping the metal frame. Modern smartphones
use the metal frame as a part of the sub-6 GHz antennas.
However, the proposed shaping does not introduce gaps for
the currents and has a very small effect on the performance
of the sub-6 GHz antennas.

Fig. 7 shows the chain-slot concept implemented in a
modern smartphone. The coupling elements may be fed from
an RFIC 5G transceiver module placed near it. In addition,
the battery or other element already present in the phone can
be used as a back-reflector behind the slot to direct energy
outwards. If this is not possible due to the phone layout,
an additional reflector (e.g., a thin, vertically oriented metal
sheet) can be used, as shown in Fig. 8. This reflector has been
hidden in the previous figures for visualization purposes.

To simplify the manufacturing process of the antenna pro-
totype, we realize both the unibody and the metal cover of the
phone on the same PCB, supplemented with one additional
3-D-shaped metal part acting as a reflector. As shown in Fig. 9,
both the bent model and the prototyped planar structure follow
the same operational principle. The only difference between
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Fig. 9.
radiation is directed toward the edge of the phone. 2: prototyped structure in

a planar form where radiation is directed toward the back side of the phone.

Chain-slot antenna. 1: conventional mobile phone model where

both models is the direction of the radiation. Section III
explains the prototype structure in more detail. The dimensions

and results shown in Sections III-V of this article correspond
to the planar, prototyped structure.

B. Feeding Structure for mm-Wave Antennas

One common way of realizing sub-6 GHz antennas on
metal-frame phones is using capacitive coupling elements
{CCEs) [29], where a part or section of the metal frame is
used as the antenna element. It is important that the coupling
element is separated from the main conductive body (ground)
of the device with a gap. Generally, the larger the gap between
the metal frame and the main body, the better the sub-6 GHz
antenna performance (especially below 1 GHz [30]). The
main drawback with currently known mm-wave antennas for
metal-frame mobile devices is that they short-circuit the metal
frame or significantly load the CCE capacitively. Capacitive
loading effectively decreases the gap between the CCE antenna
and the main body and, thus, degrades the operation of the
antenna. In other solutions, such as in [31], the metal frame is
galvanically shorted, which deteriorates the performance of the
sub-6 GHz antenna. In [32], an mm-wave antenna integrated
with a microstrip filter is presented. However, the coupled-
line filter shorts the metal frame through the ground plane,
thus altering the low-band antenna performance.

An mm-wave ftransmission line that introduces low
common-mode capacitance not degrading sub-6 GHz antenna
operation is presented in [28]. This transmission line does
not significantly load the sub-6 GHz antennas and is, thus,
called electrically invisible. The invisibility is achieved by
minimizing the common-mode capacitance of the line, i.e., the
capacitive loading between the metal frame and the main
conductive body. In practice, the capacitance is minimized
by introducing series capacitances or gaps in the transmission
line, both in the signal and ground conductors in the case of
an unbalanced line and on both conductors in the case of a

X
o
3
-

P Pvi Pz Pvz Pis Pvs P Pua
Fig. 10.  Chain-slot antcnna and invisible feed. PHi and PVi refer to
horzontal and vertical polanzations, where § 15 the element number.

Reflector with the main dimensions in mm.

Fig. 11.

balanced line. The larger the gaps, the smaller the common
mode capacitance, and the less the line loads the sub-6 GHz
antennas. The series capacitance at mm-wave frequencies is
compensated with series or parallel inductances or both so
that the mm-wave signal can propagate along the line without
significant attenuation. The appropriate series inductances can
be realized with short transmission line sections of approxi-
mately a quarter of the wavelength. Conventionally designed
high-pass or bandpass filters are not suitable to deliver the
mm-wave signal to the antenna element. This is because the
filter theory considers the same wave mode for the pass and
stop bands. In this case, a high-pass filter causes a high
reflection of the differential mode propagating in the line.
However, the differential mode is not as important as the sub-
6 GHz antenna only experiences the common-mode loading
due to the mm-wave feed line.

In the proposed design, we use the electrically invisible
feed line that is presented, in detail, in [28]. Fig. 10 shows
both the feeding structure and the mm-wave antenna array.
The reflector that is hidden for visualization purposes in the
previous figure is shown in Fig. 11.

II1. PROTOTYPE CONSIDERATIONS

A prototype is manufactured to verify the concepts pre-
sented in Section II. For the sake of simplicity, the prototype
is manufactured on a PCB of size 156 x 75 x 0.96 mm®. The
required PCB consists of six metal layers and five substrate
layers with different thicknesses and relative permittivities
ranging between 3.12 and 3.35, as shown in Fig. 12. The core
material has tan § = 0.003, whereas the remaining dielectrics
have tan § = 0.002. The main chain-slot dimensions in Table I
are for the dimensions in Fig. 10. The prototype consists of
the connectors, the feeding lines (GCPW), the invisible feed
lines, and the chain-slot antenna, as shown in Fig. 13. Due
to the size of the connectors, they are placed in two rows
on the PCB such that the H-pol connectors are placed closer



MONTOYA MORENOD et al: DUAL-POLARIZED mm-WAVE ENDFIRE CHAIN-SLOT ANTENNA ¥

TABLE 1
Main DIMENSIONS OF THE CHAIN-SLOT ANTENNA

Dimension Description Value (mm)

Ly Metal-frame to ground-plane clearance 1

La Slot height 5

Ly Slat width 2

Ly Horizontal polarization coupler length 212

Ls Horizontal polarization coupler width 0.2-0.6

Lg Vertical polarization zlot length 1.5

Ly Vertical polarization coupler length 1.75

Ly Wertical polarization coupler width 04

Lg Inter-element spacing ]

Lip Invisible feedline module length 5

L1 mm-wave antenna array length 26

L1z Metal frame height i

Lia mm-wave cuf-out £l
:: _;;:E Laser via & 100 pm

Laser via @ 125 pm
N: -Jﬂ".l.lﬂ
Via @ 200 um

Ny= 30 pm
Lager wvin @ 125 pm
Ny - 20 pm

L i 1
We-35pm Lamer vin @ 100 pm

Fig. 12. PCE stack-up of the manofactured prototype.

Fig. 13. Prototyped PCE.

to the antenna. As shown in Fig. 13, an aluminum reflector
is screwed to the metal frame at a distance of 1.2 mm from
the antenna. Fig. 14 shows a close-up of the top part of the
prototype, where the invisible feed lines and the H-pol and
V-pol couplers are implemented.

Since the primary goal of the prototype is to verify that the
proposed concept performs as expected, a planar structure is
used, which greatly simplifies the manufacturing process. Asa
result, the radiated energy is directed toward the broadside of
the PCB. The mm-wave feed lines and significant fields are
between the thin copper layers N1-N3, and by using a flexible
PCB, these feed lines could be bent, making the antenna
radiate toward endfire direction.

The metal-frame shaping is done in layers N3-N6 of the
PCB, and the different layers are interconnected using multiple
vias, making its electrical behavior similar to that of a solid
metal structure.

Fig. 15. Prototyped test board used to measure the introduced insertion loss
of the transmission lines to cach port.

IV. mm-WAVE MEASUREMENT RESULTS

In order to evaluate the antenna and the invisible feed line
performance, the losses in the connectors and transmission
lines must be compensated. Therefore, the additional test board
shown in Fig. 15 is manufactured. The test board allows us to
determine the insertion loss at each port with great precision
via transmission measurements.

Due to the available measurement setup, each antenna
port is measured individually. The four-element array resulis
have been obtained by combining the individually measured,
pori-specific radiation patterns computationally in MATLAB.
The beamsteered array patterns have been calculated by adding
a phase shift between the individually measured antenna
patterns. All the results presented in this article have been
loss-compensated with the reference plane located at the
beginning of the invisible feed line. This way, the invisible
feed lines are part of the studied antenna structure.

The 2.4 mm female compression mount connectors are
used to feed each of the eight antennas. When measuring the
performance of a single antenna element, the remaining ports
are terminated in 50 2 loads.

The measured and simulated reflection coefficients for
horizontally and vertically polarized antennas are shown
in Figs. 16 and 17, respectively. Matching levels are mostly
below —10 dB for the simulated S-parameters in the
24.5-29.5 GHz range. However, the measured S-parameters
present a frequency shift, and the matching levels achieved
for the vertically polarized antennas are generally higher than
those predicted by simulations. The possible reasons for these
differences are explained in Section V. Both horizontally and
vertically polarized arrays display dual-polarized operation
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Fig. 16. Reflection cocfficient of the chain-slot antenna for the horzontally

pul.mmd antennas. Solid lines: simulated valoes. Dashed lines: measured

Mlagnitude (dB)

3 4 25 24 7 28 29 i0 3l 32 13
Frequency (GHz)

. Reflection cocficient of the chain-slot antenna for the vertically
polanzed antennas. Solid lines: simulated values. Dashed lines: measured

ta

Total efficiency (dB)
B !

5 L . . . . 1 1 1
3 24 15 L 7 2 % 30 31 i

Frequency (GHz)

Fig. 18. Measored and simulated total efficiency for H-pol antennas. Solid
lines: simulated valves. Dashed lines: measured ones.

corresponding to the chain-slot and feeding-element modes.
The coupling between differently polarized ports is —15 dB
at worst and, generally, well below —20 dB.

Figs. 18 and 19 compare the simulated and measured
total efficiencies for horizontal and wvertical polarizations,
respectively. The simulated efficiency is generally below the
measured level. A possible reason for this would be an over
compensation of the used surface roughness in the simulations
(0.6 pm).

Fig. 20 shows the measured and simulated peak realized
zain for the four-element arrays. Measured realized gain is
above 8 dBi for both polarizations, and the peaks are at

ra

e

'Y

Total efficiency (dB)

i
Lh

-

15 sl 17 18 19
Frequency (GHz)

Fig. 19. Measured and simulated total efficiency for V-pol antennas. Solid
lines: simulated valvues. Dashed lines: measured ones.

14 T

26 7 28 29 30 31 32 33
Frequency (GHz)

Fig. 20. Measored and simulated peak realized gain for the four-element
arrays. Solid lines: simulated values. Dashed lines: measured ones.

Fig. 21. Measured and combined 3-I) radiation pattern of the four-element
array at 28 GHz for H-pol and V-pol, respectively. Values are in dBi.

12.6 and 12.3 dBi for the vertical and horizontal polarizations,
respectively. Fig. 21 shows the measured and combined 3-D
boresight radiation patterns for the four-element arrays for
the horizontal and vertical polarizations. Since 3-D coverage
is a key feature in mm-wave antenna arrays, beamsteering
capabilities are of crucial importance. Figs. 22 and 23 show
the beamsteering capabilities of the four-element array at
28 GHz. Beamsteering up to +5(F is possible with a scan
loss below 3 dB for horizontal polarization and +40° for
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Realized Gain (dBi)
=

Fig. 22. Realized gain-radiation pattemn of the chain-slot antenna array at
28 GHz for honzontal polanzation. Solid lines: simulated values. Dashed
lines: measured ones.

15— T T T T T T T T

Realized Gain (dBi)

80 60 40 20 0 20 40 &0 8D
Direction (%)

Fig. 23. Realized gain-radiation patten of the chain-slot antenna array at
28 GHz for vertical polarization. Solid lines: simulated values. Dashed lines:
measured ones.

vertical polarization. For the horizontal polarization, there
is an almost perfect agreement between the simulated and
measured beamsteering performance. The difference between
the measured and simulated patterns when steering up to +50°
is due to the measurement setup, where part of the radiation
was blocked when approaching the +75° limit. Differences
between the simulated and measured patterns for the vertical
polarization are slightly more noticeable. The authors believe
that this could be caused by the manual placement of the
vias, which is explained in detail in Section V. The measured
beamsteering capability at the edges of the operation band,
ie, at 245 and 29.5 GHz, is comparable to that shown at
28 GHz. However, the results are not shown for conciseness.

V. ANALYSIS OF RESULTS AND TOLERANCE STUDY

This section strives to explain the differences between the
simulated and measured results, as well as provides indicators
on how to recover from these differences in order to achieve
the desired performance.

A. Horizontally Polarized Array

The simulated and measured resulis are generally in good
agreement for the horizontally polarized antennas. Efficiency,
realized gain, and beamsteering capabilities do not dif-
fer by more than 1 dB. However, there is a systematic
700 MHz frequency shift between the measured and simulated
S-parameters. The frequency shift can be explained by a small

23 24 15 26 27 28 9 30 3l iz 33
Frequency (GHz)

Fig. 24. Reflection cocfficient of the chain-slot antenna for the horizontally
polarized antennas. Solid lines: simuolation results with modified permattivity
and surface roughness values. Dashed lines: measured ones.

Fig. 25. Shunt via for vertically polarized antennas.

change in the relative permittivities of the dielectrics used in
the PCB. Moreover, Fig. 16 shows that the simulated efficiency
is slightly lower than the measured one. This may indicate
that the surface roughness used in simulations was slightly too
high. Furthermore, decreasing the roughness contributes to the
increase in the resonant frequency of the array. Fig. 24 shows
the measured and simulated S-parameters for the horizontally
polarized array when the permittivity of the dielectric is modi-
fied from the original 3.35 to 3.1 and the roughness from 0.6 to
0.1 gm. An almost perfect agreement between the resonant
frequencies of the simulated and measured values is observed
in this figure. Simulations show that the primary dimensions
affecting the two resonances are the probe length (L4 in Fig. 9)
and the aperture dimensions (L, and L3 in Fig. 9). Both the
feeding elements and the chain-slot structures are strongly
coupled, and therefore, modifying one of the two will affect
both resonances.

B. Vertically Polarized Array

Evaluating the differences between the measured and simu-
lated S-parameters for the vertically polarized antennas clearly
indicates that there are more differences than just a simple
frequency shift. While the frequency shift is still apparent here,
the bandwidth and resonances achieved are different.

During the last part of the simulation phase, a via critical
to the performance of the vertically polarized antennas was
found (see Fig. 25). The diameter of this via had to be at
least 0.5 mm. However, manufacturing reasons restricted the
maximum diameter to 0.2 mm. This problem was solved by
replacing the 0.2 mm via with a 0.5 mm through via by drilling
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Fig. 26. ({a) Prototyped chain-slot antenna (b) Modified version with shunt
via added manually.

Vin dinmeter = 0.5 mm |
Wia diameter = 0.2 mm |

0 L L
23 24 15 26 7 28 20 30 3l 32 33
Frequency (GHz)

Fig. 27. Reflection coefficient of the chain-slot antenna for port P2 of the
vertically polarized antennas for two via diameters.

3o0M 2 MO M M W 3 32 1
Frequency {GHz)

Fig. 28. Reflection coefficient of the chain-slot antenna for port P2 of the
vertically polarized antennas.

a 0.5 mm hole and then filling it with a silver-based PDS
material. This process was done manually for each of the four
vias, which results in increased uncertainty in the performance.
Fig. 26 shows the initially prototyped PCB on the left and the
later modified PCB with the added via on the right. Fig. 27
shows different performances achieved for two via diameters.

Fig. 28 shows a parametric sweep of the via location in the
vertical direction. This sweep shows that the via location has
a significant effect on the reflection coefficient level. Although
the sweep shows the difference in performance when the via
is misplaced in the vertical axis, a horizontal misalignment
is also possible in reality. From the measurement results,
we believe that the via corresponding to port P1 was the
one done with the highest precision, followed by the ones

g
2
:
=
.30 L . . . . T i
23 M 25 2% 2 M M 30 3l 2 3
Frequency (GHz)

Fig. 29.  Reflection coefficient of the chain-slot antenna for the vertically

polarized antennas. Solid lines: simuolation results with modified permattivity
and surface roughness values. Dashed lines: measured ones.
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Fig. 30. Reflection coefficient of the chain-slot antenna for port P2 of the
hornzontally polarized antennas for different L7 and L3 dimensions.

in ports 2, 4, and, finally, 3. On the other hand, determining
precisely how accurately the manually made vias were located
is very difficult. However, the authors believe that this will not
be a problem in a real product since the metal frame is made
out of solid metal instead of vias.

Fig. 29 shows the 5S-parameters for the vertically polarized
antennas when the permittivity and surface roughness values
are adjusted to 3.1 and 0.1 pm, respectively. A rather good
agreement is achieved for ports P1 and P2. For these results,
the via size and location have not been modified with respect to
the reference model. For these antennas, the main dimensions
determining the resonances are the distance between the two
poles of the chain slot (Lg in Fig. 9), the aperture dimensions
(Ly and L3 in Fig. 9), and the V-pol probe dimensions (L7
and Lz in Fig. 9). Sometimes, the two resonances are so close
to each other that they add up, showing as a single resonance.

C. Tolerance Analysis

In this section, we sweep the dimensions L; and L3 (dimen-
sions of one subslot) since they are the most relevant for both
polarizations. Figs. 30 and 31 present the reflection coefficient
for the middle port P2 for horizontal and vertical polarizations,
respectively, and show how it varies with different dimensions.
For the horizontal polarization, small changes in L result
in a frequency offset in the resonant frequency, while more
drastic changes also result in a detuned structure, deteriorating
the reflection coefficient. Ls is also very critical for the
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Fig. 31. Reflection coefficient of the chain-slot antenna for port P2 of the
vertically polarized antennas for different Ly and Lz dimensions.

performance of this polarization, affecting the bandwidth and
resonance level achieved. For the vertical polarization, L
seems to have an effect on the resonance frequency, while L
affects its strength (matching level). The dimensions ; and
L3 need to be chosen to provide the best tradeoff between the
operations at both polarizations.

VI. CONCLUSION

This article presents a 5G mm-wave phased-array
mobile-phone antenna that is implemented in the metal frame.
The dual-polarized operation with an efficiency higher than
—3 dB in the 24.5-29.5 GHz range is demonstrated. The
realized gain of the mm-wave array is above 8 dBi over the
entire frequency band. The beamsteering range of at least
+4(F is possible with a scan loss below 3 dB. The mm-wave
design shows not only excellent dual-polarized performance
but also an appealing appearance to the users since the neces-
sary modifications to current smartphones may be tolerable.

The presented antenna type, if placed on all the edges of
the phone, could alone provide the necessary angular and
polarization coverage in the 28 GHz band while being able
to coexist with the LTE antennas. This makes the solution a
very promising candidate for future mobile devices using the
mm-wave bands.
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