
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Salaou, Abdoul Djawadou; Damian, Daniela; Lassenius, Casper; Voda, Dragoş; Gançarski,
Pierre
Archetypes of delay

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2020.106435

Published: 01/01/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Salaou, A. D., Damian, D., Lassenius, C., Voda, D., & Gançarski, P. (2021). Archetypes of delay: An analysis of
online developer conversations on delayed work items in IBM Jazz. Information and Software Technology, 129,
Article 106435. https://doi.org/10.1016/j.infsof.2020.106435

https://doi.org/10.1016/j.infsof.2020.106435
https://doi.org/10.1016/j.infsof.2020.106435

Journal Pre-proof

Archetypes of delay: An analysis of online developer conversations on
delayed work items in IBM Jazz

Abdoul-Djawadou Salaou, Daniela Damian, Casper Lassenius,
Dragos Voda, Pierre Gançarski

PII: S0950-5849(20)30190-7
DOI: https://doi.org/10.1016/j.infsof.2020.106435
Reference: INFSOF 106435

To appear in: Information and Software Technology

Received date : 17 February 2020
Revised date : 17 August 2020
Accepted date : 20 September 2020

Please cite this article as: A.-D. Salaou, D. Damian, C. Lassenius et al., Archetypes of delay: An
analysis of online developer conversations on delayed work items in IBM Jazz, Information and
Software Technology (2020), doi: https://doi.org/10.1016/j.infsof.2020.106435.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.infsof.2020.106435
https://doi.org/10.1016/j.infsof.2020.106435

Archetypes of Delay: An Analysis of Online Developer
Conversations on Delayed Work Items in IBM Jazz

Abdoul-Djawadou Salaoua,b, Daniela Damiana, Casper Lasseniusc,d, Dragos
Vodac, Pierre Gançarskib

aUniversity of Victoria, SEGAL Lab
bUniversity of Strasbourg, ICube Lab
cAalto University, Espoo, Finland

dSimula Metropolitan Center for Digital Engineering, Oslo, Norway

Abstract

Context. A widely adopted methodology, agile software development provides
enhanced flexibility to actively adjust a project scope. In agile teams, par-
ticularly in distributed environment, developers interact, manage requirements
knowledge, and coordinate primarily in online collaboration tools. Developer
conversations become invaluable sources to track and understand developers’
interactions around implementation of requirements, as well as the progress of
implementation relative to the project scope and the planned iterations in agile
projects. Although extensive research around iteration planning exists, there
is a lack of research that leverages developer conversation data to understand
delays in implementing planned requirements in agile projects.

Objective. By using developer conversations in a large agile project at IBM,
this work aims to analyze conversation in work items (WIs) that are delayed
and derive patterns that suggest reasons for delay in the project.

Method. We conducted a case study of the IBM Jazz project, and used the-
matic analysis to code the developer conversations as time-series, and cluster
analysis to identify patterns that differentiated the evolution of discussions in
WIs that were late vs. not late in the project.

Results. We identified six main patterns of WI delay. Through semantic anal-
ysis of developer conversations within particular clusters we were able to explain
the reasons for delays in each pattern. In comparison to non-late WIs, we find
that the major reason for delay is a lack of frequent communication associated
with a poor project management of WIs. Similarly, non-late tasks more often

Email addresses: adsalaou@unistra.fr (Abdoul-Djawadou Salaou),
Daniela.damian@uvic.ca (Daniela Damian), casper.lassenius@aalto.fi (Casper
Lassenius), dragos.voda@aalto.fi (Dragos Voda), gancarski@unistra.fr (Pierre
Gançarski)

Preprint submitted to Information Software Technology August 17, 2020

Manuscript Click here to view linked References

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

delegate to children tasks to accelerate the implementation of requirements, in
addition to processing requests quickly to resolve bottlenecks in implementation.

Conclusion. Our study complements existing research in bringing evidence
that developer conversations are a useful resource that can highlight delays in
requirement implementation, as well as recommend patterns in the dynamics of
developers interactions relevant to such delays.

Keywords:
Text analysis, Software engineering, Agile development, Categorical time
series, Clustering, Thematic analysis, Task completion, Iteration completion,
Repository mining, Jazz repository

1. Introduction

Contemporary software development is increasingly conducted by distributed
teams using agile software development methods. These methods rely on a core
set of principles and values, most importantly the capability to efficiently react
to change [5]. This capability is often implemented through the use of short
development iterations and a strictly prioritized list of requirements, which in
turn are broken down into work items small enough to be implemented in a
single iteration [58]. Agile methods have been shown to provide benefits both
for small and large projects with respect, e.g., to on-time delivery and customer
satisfaction .

Despite their success, it is not uncommon for work planned for an iteration
to be deferred to later ones. Indeed it is often even recommended to plan for
more work than can be done in order to avoid downtime within agile teams. The
soundness of this approach has been debated, but regardless, empirical evidence
points to the fact that decisions with respect to delaying work to later iterations
are routinely made even in agile software development [27].

In addition to the question of whether or not to plan for more work than
realistically can be accomplished in an iteration, another important question
emerges: Are there archetypal situations regarding work items that can predict
or explain the need for delaying them to later iterations?

In this paper, we present results from an empirical analysis of work items
that were delayed, i.e., not delivered in the iteration they initially were planned
for. Our research was guided by the research questions:

RQ 1 Can developer discussion threads on late work items be used to under-
stand the reasons for delay?

RQ 2 What can we learn from comparing the discussions as well as other prop-
erties of the late and non-late work items?

While previous studies have leveraged various work item meta-data to pre-
dict a work item implementation timeline (e.g. [15]), in this paper we focus on

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

the developers’ conversations to understand why work items get delayed in soft-
ware projects and miss their planned iterations. Research already demonstrated
that developers communication is useful in identifying patterns that might in-
dicate problematic requirements [35]. We use thematic analysis on developer
conversation data in combination with time-series and cluster analysis to iden-
tify discussion topics in developer conversations and subsequently reasons for
delays in work item implementation. As an analysis method, time series analysis
provides a unique opportunity to study the temporal evolution of discussions
related to a work item in our data set. By coding the sequence of comments
in developers conversations into time series, we studied the temporal distance
and the order of these comments in an effort to characterize the discussions
associated with late work items. Time series analysis has been recognized as
providing a global view of the data by highlighting the temporal relationship
between data points, and thus helping identify cyclic patterns, overall trends,
turning points and outliers [47, 19].

Our findings show that late work-item tasks exhibit different patterns of
delay. We identified six patterns with a consistent semantic meaning. For ex-
ample, we find that communication and management problems are the common
reason for delays in work-items implementation. The paper is structured in
the following way: next, we introduce related work, followed by our research
methodology. Then we present our results, focusing in the identified thematic
clusters. Finally, we discuss the implications and limitations of the study.

2. Related work

Most research that has studied delayed work in software engineering has
been done in the area of release and iteration planning. From a Release Plan-
ning perspective, Zowghi et al. [17] compared several prediction techniques for
classifying the readiness of an ongoing release, while Deghan et al. [15] employed
a process of feature engineering and machine learning to predict the likelihood of
feature implementation within a planned iteration. In the same vein of research
around delivery capabilities and with the goal of assisting project managers,
Choetkiertikul et al. leverage historical data for creating a predictive model
that can forecast the amount of work delivered compared to the initial commit-
ment [10]. In a different study, the same research group present a model that
predicts both the degree of delay and the likelihood of the delay occurrence, for
a software project issue against its due date [9].

While, to our knowledge, no other studies investigated developer communi-
cation to understand and explain delayed work items, communication threads
by developers have been previously studied. For instance, Knauss and colleagues
[35] propose a method that analyzes requirements communication data in or-
der to timely detect and raise awareness of requirement related risks during
implementation. Licorish and MacDonell [38] studied the attitudes of teams
members extracted from discussion threads, and how they relate to task per-
formance, while Kavaler et al. [32] looked at language complexity levels and

3

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

how they affect issue resolution time. Yilmaz [69] tries to capture the soft-
ware teams personality traits impact on software development by conducting
context-specific survey.

In addition to the above, there are several studies that have used Social
Network Analysis to study developer communication, e.g., [67], [7], [44], [14].
However, such analyses ignores the actual message content and dynamics. In this
study we used time series and clustering methods to model and group work item
discussions that present certain similarities that might indicate reasons for delay
in their implementation. In software engineering research, time series analysis
modeling has been used in approaches to study software reliability [2, 1] and
to identify temporal patterns of software evolution defects [52]; while clustering
techniques proven useful in analyzing similarities in software measurement data
to distinguish between fault and non-fault prone software modules [71] or to
identify outliers in such data [70].

3. Research Setting and Methodology

We conducted a case study of developer online conversations during the
planning and implementation of Jazz software components modules using the
Jazz collaboration platform of IBM1. As a product, Jazz has been operational
since 2006 and functions as the base platform for many of IBM’s services such
as Rational Team Concert or Rational Quality Manager. It aims to improve
software practices, collaborative work and management processes by creating
a scalable platform which can coordinate tasks and provide improved visibility
throughout the software development life cycle [53].

Because Jazz is an integrated development environment, it includes support-
ing tools for planning, software builds, code analysis, version control as well as
online communication, allowing developers to use the same tools for develop-
ment and coordination. This approach grants access to a wealth of rich data
concerning software development characteristics as well as communication and
collaboration data, gathered in a timely and non-invasive manner, as compared
to conducting surveys or interviews.

The teams developing Jazz use the Eclipse way methodology [22], similar
to the Open Unified Process and partly conforming to agile principles, that
defines iteration cycles between two to six weeks consisting of three stages,
namely planning, development and stabilization. Longer iterations, varying in
length from one month to a year, exist as release iterations and contain multiple,
shorter, milestone iterations that each end with a new milestone build. The
goals and features for each release are defined by project management prior
to the start of the iteration and captured in work items as task descriptions.
Development is conducted through these work items and are assigned to a release
or a milestone iteration but can be postponed in case of delays.

1https://jazz.net

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

This monitoring of the real work environment aims to capture all the critical
information and discussion generated by the developers and offer an overview
of the project and its evolution, with an ability to go back and analyze certain
events if needed.

3.1. Work Items and Developer Discussions
In our data set, a work item (WI) describes a unit of work representing a

singular assignable task [15]. Table 1 display the major attributes describing a
work item. There are different kinds of work items, and they form a hierarchy
(see Table 2); from Plan Item (top level) to Task (low level) such that a type
can have a sub-type as children [15]. However, in practice, it is possible that
this recommended order is disregarded with children sharing the same type as
their parent or Tasks connected directly to a Plan Item. A Defect can be a child
of any other type.

Table 1: Overview of Work Item descriptive attributes

WI attribute Possible values Detail in

Type Plan Item, Story, Enhancement , Defect, Task Section 3.1
Description Textual description of the WI goals
Creation date WI open date
Panned For Iteration Id
Estimate Implementation duration estimation
Resolution Date WI close date
Status On-Track, Behind, Suspended, Abandoned, Done
Discussion Conversation around WI implementation Section 3.1.1
Severity Unclassified, Minor, Normal , Major, Critical, Blocker Section 3.1.2
Priority Unassigned, Low, Medium, High
Created By @UserX Section 3.1.3
Owned By @UserY - WI responsible / coordinator
Subscribed By Collaborators user list
Resolved By @UserY

Table 2: Overview of Work Item types

Work Item Type Explanation

Plan Item Top level items representing requirements or features to be included
in future releases.

Story High level items dividing the work from Plan Items into subsequent
iterations.

Enhancement Item that adds functionality or extends existing features.
Task Detailed item contained within a single iteration.
Defect Item representing work required for bug fixing.

Each WI contains information related to its parent, children, priority, dead-
line, conversation history, and the person responsible for it. During a develop-
ment phase, a WI cannot be marked as completed until all its children tasks are

5

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

completed. We consider a late WI to be any WI that is still under development
past its currently assigned iteration end date. If a WI is still under development
while its assigned iteration ends, but is postponed, either before or after the
deadline to a future iteration, it is not considered late. An example of possible
WI evolution can be seen in Figure 1.

Iterations:

WI 1
Late

WI 2
Non-Late

I1 start I2 start I3 start

Wi1 start

P lan for I3

Wi1 end

Wi2 start

P lan for I2 Change to I3

Wi2 end

Figure 1: Late and non-late work-item examples

3.1.1. Dataset Description
Our research dataset included work items and their conversations between

2011 and 2016, over a total of 612 iterations. We analyzed the discussions for all
completed work items of all types2 that had at least fifteen comments in their
discussion threads. We chose fifteen comments as it is a reasonable number
to obtain insights on the progression of work on the work items. Since we are
focusing mainly on comments data, discussion with very few comments are not
significant to highlight all the development stages (elicitation, implementation,
clarification,..) in a work item’s lifecycle. We also ruled out WIs with a particu-
lar status - invalid, abandoned, suspended - that indicated the work item did not
follow the normal development process. This filtering resulted in a total of 125
late work items and a total of 2655 associated comments. To analyze the dif-
ferences and similarities between late and non-late work items we also analyzed
the discussions associated with the same number (125) of randomly selected
non-late WIs, a total of 4068 comments. For each of these WIs, we extracted
all associated comments in its related conversation, preserving their order, to
create what we refer to as "WI discussion". Table 3 provides an example of a
work item discussion.

3.1.2. Dataset Overview
The Estimate attribute (Table 1) gives the estimated duration required for

WI implementation. This information is not frequently provided in our dataset.
Only 26% (32) of non-late and 16% (20) of late WIs have this information. Sever-
ity describes the importance of a WI and Priority its implementation emergency
level. Depending on these attributes values, a sensitive WI is likely to get more
attention and resource for its implementation speedup. However, in our dataset,

2With the exception of Tasks, which did not contain any implementation comments

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 3: Example of Work Item discussion

Work ID
Comment
Number Comment Text

115331 1 Extracted from work item 113204.

2 Additionally, we could implement a substitution parameter in the
error string so it could read something like: Your client is not com-
patible with the server...

3 Running foundation.stable.jcb RJF-T20100625-0850 with these
changes and then I will try writing the client half to make use of
this.
re comment 2: Why does the server return the message? The client
just needs to know that it’s a mismatch and what the server ver-
sion is. The client could do the message formatting on it’s own side
which will be in the locale/language of the client

4 The idea is that a server admin can update a setting on the server
and provide a custom message to all backlevel clients, perhaps pro-
viding a link to an internal website with client upgrade instructions.

5 @user I have completed 2 changesets here for this. It sends the server
version and puts up a new dialog with the link.
Please review and deliver this if you like it.

a comparison of these attributes distributions between late and non-late WIs
(Tables 4 and 5) highlights no significant differences, i.e. both sets have more or
less the same distributions. Therefore, they can be discarded as the attributes
that discriminate late WIs from non-late ones.

Table 4: WI severity distribution

Severity #Non-late #Late

Unclassified 33 (26%) 47 (37%)
Minor 3 (2%) 3 (2%)
Normal 56 (45%) 52 (42%)
Major 22 (18%) 17 (14%)
Critical 6 (5%) 4 (3%)
Blocker 5 (4%) 2 (2%)

Table 5: WI priority distribution

Priority #Non-late #Late

Unassigned 31 (25%) 35 (28%)
Low 2 (2%) 0 (0%)
Medium 20 (16%) 32 (26%)
High 72 (57%) 58 (46%)

3.1.3. Work Items Management
The Created By attribute (Table 1) identifies the user who created the WI

and provides information related to its goals, while the Owned By identifies the
user who is going to drive or coordinate the WI implementation to resolution.
The Resolved By identified the user who closed WI as resolved. This attribute
has always the same value as the owner in our dataset, for instance the owner
closes the WI when it is implemented. The Subscribed By attribute holds a list
of collaborating users to implement WI requirements.

Plan Items do not have a creator. They only have owners. Because a plan
item is a high level description of a feature, its implementation involves the
collaboration of teams working on dependent work items such as Stories, En-
hancements, Defects or Tasks. A development "team leader" coordinates work

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

of a team of developers to deliver its assigned requirements. Further, there are
Project Leaders who lead the work at each geographical location.

With respect to the workflow around a WI implementation, typically a WI
is delegated to the appropriate developers, i.e., the creator of WI is different
from the owner (@UserX != @UserY). For example when a @UserX spots a
defect and creates a WI to report it and assigns it to @UserY (more capable to
handle the WI); or when a Plan Item is decomposed into stories and assigned
to the appropriate developers/team. Some WIs in our dataset indicate self-
management, i.e. the owner of the WI is also the creator (@UserX = @UserY),
and it is typical of WIs of the type Enhancements. In our dataset 36% of
non-late and 27% of late WIs are in this situation (Table 6).

Table 6: WI management distribution

WI management type #Non-late WIs #Late WIs

Self (Creator is the Owner of the WI) 45 (36%) 31 (27%)
Delegate (Creator is not the Owner of the WI) 80 (64%) 94 (73%)

3.2. Methodological Steps
To characterize the WI discussions, we sought to analyze clusters of WIs for

which the associated discussions showed similarities in how they evolved over
time (section 3.2.4). To this end, we used cluster analysis techniques [47, 55, 24]
on WI discussions (section 3.2.3) that were analyzed and processed in a way to
allow for such type of analysis.

To develop the elements in our cluster analysis (i.e. clusters of WI discus-
sions and their items) we analyzed and processed the WI discussions as time
series of comments that captured the temporal evolution of the discussions (sec-
tion 3.2.2). The time series were developed by coding the WI discussions and
assigning codes to groups of comments in the discussion; a code represents a
label indicating the topic that best characterized the respective group of com-
ments (section 3.2.1). This analysis was conducted on both the late and non-late
WIs. Throughout this analysis we interacted closely with an IBM development
team leader involved in the Jazz project during the iterations in our dataset
to validate our understanding of the WIs, their context of implementation and
details of the WI discussions.

To answer RQ1, we first analyzed the late WIs clusters and searched for pat-
terns that might explain reasons for delays in the WI implementation. For RQ2,
we then contrasted the properties of the late WI with that of the non-late WI
clusters to further our understanding of reasons for delay in WI implementation.

We illustrate this staged analysis process in Fig. 2 and explain it in detail in
the following subsections.

8

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

250 Work Items

Analysis of 125 late WIs

Comments group to
codes (Section 3.2.1)

WI discussion as time se-
ries of codes (Section 3.2.2)

Clustering of WI time
series (Section 3.2.3)

Clusters analysis and pat-
terns defintion (Section 3.2.4)

Comparative Analysis of late
and non-late WIs (Section 4.2)

Analysis of 125 non-late WIs

Comments group to
codes (Section 3.2.1)

WI discussion as time se-
ries of codes (Section 3.2.2)

Clustering of WI time
series (Section 4.2)

Clusters analysis and pat-
terns definition (Section 4.2)

Figure 2: Research Methodological Steps

3.2.1. Thematic Analysis of Work Item Discussions
To characterize the WI discussion threads in a way that allowed for time

series and cluster analysis, we used thematic analysis and developed codes that
represented the main discussion topics of the discussion threads. Thematic
analysis is commonly used in qualitative research. It is a systematic coding
and categorization approach used for exploring textual data to identify themes,
analyze them, and provide an explanation of the underlying patterns [8, 61].
While thematic analysis are widely used in social science [59] and health [16, 21],
the software engineering literature contains only few uses of this method to
analyze and characterize the software development process [12].

In thematic analysis, the most sensitive stage is the coding of the content
under analysis, during which the data is categorized, manually or automatically,
to facilitate analysis [57, 8]. Hay [26], recommends a two-step process beginning
with basic coding in order to distinguish overall topics, followed by a more
in depth, interpretive code in which more specific trends and patterns can be
interpreted. While qualitative coding often is done manually by the researchers,
contemporary natural language processing tools such as Weka [25] can be used
to automatically categorize pieces of text into predefined categories. Such tools
can help speed up coding processes that use a single pieces of text as an objects

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

for topic identification [40, 51]. This is the case for a priori -based coding where
categories are available or can be easily deducted, as can be the case for, e.g.,
survey or interview transcript data [31].

In our analysis, we applied a conventional content analysis technique [28]
to examine, review the conversations, and identify the main discussion topics
as codes. A code in our approach was associated to a group of consecutive
comments that were semantically related. Our approach was to shift the focus
of analysis from the individual phrases and words in comments to the seman-
tics, understood as core messages within groups of comments in the discussion.
For example, we used the code AD (Administrative Discussion) to categorize
sets of consecutive comments around planning of work and status updates re-
garding implementation, testing or delivery. Similarly, discussions related to
needed functionality or its purpose within the project were given the code FD
(Functionality or purpose discussion).

Two of the authors iteratively conducted the content analysis to increase the
confidence in the identified codes. We achieved an inter-rater agreement of 83%
using Cohen’s kappa [36]. We validated our codes and their mapping to WI
discussion comments groups in a series of meetings with a development team
leader from IBM. We include the codes and their description in Table 7.

3.2.2. Time Series Analysis of Work Item Discussions
Once discussion codes were identified, we treated each WI discussion as a

time series of the codes appearing in it, for an example see Figure 3. A time
series represents a sequence of values obtained from sequential measurements
over time. For instance, in our analysis WI 129055 is a sequence of four codes
(AD → FD → AD → FD) where comments one to six (c1-c6) are identified as an
AD code (Administrative Discussion).

WI 129055:
A

AD(c1-c6)

B

FD(c9-c14)

C

AD(c15-c17)

D

FD(c18-c21)

E

WI 320596:
A

AD(c1-c9)

B

BI(c10-c11)

C

WI 373048:
A

AD(c1-c2)

B

NM(c3)

C

TD(c4)

D

AD(c5)

E

WI 59698:
A

TD(c1-c5)

B

FD(c6-c10)

C

OP(c11)

D

WI 176734:
A

AD(c1-c4)

B

FD(c5-c8)

C

TD(c12-c14)

D

BI(c18)

E

AD(c19-c21)

F

RD(c22-c23)

G

Figure 3: WI time series examples; the codes (e.g. AD, FD) characterize groups of consecutive
comments (e.g. c1-c9)

Time series analysis comprises methods for analyzing time series data in

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 7: Code definition and examples of groups of comments they characterize

Code Definition Example group of comments

AD:
Administrative
discussion

Discussion centered around
planning of work as well as
status updates regarding
implementation, testing or
delivery.

– Finished implementing [...] plu-
gin to use Composite Context UI
(173302) to develop test UI for
testing access groups, access group
picker and composite contexts.
– I updated the description of the
parent plan item yesterday with my
current understanding of what we
should go after in 2012: [...].

FD:
Functionality
or purpose
discussion

Discussion related to what
functionality needs to be
implemented or its purpose
within the project.

– I don’t feel strongly about
this, but I’m wondering if the
confirmation dialog should have
OK/Cancel buttons rather than
’Update Stream’/Cancel buttons.
– I’m a bit confused about what you
are asking for.. Can you tell me
how this would be different from
the LDAP step in the setup wizard
(/setup)?

TD:
Technical
difficulties or
discussion

Discussions of technical nature
focused on solving the problems
encountered during functionality
implementation.

– This new method caused RQM de-
fect [...]. However, we can’t imple-
ment this new method on the public
[...] interface since the return type
[...] is internal and it’s package is
not exported in the plug-in’s mani-
fest.
– [Logs, Error messages, Code snip-
pets, Component names]

RD:
Requests near
deadline

One or more comments that
prompt extra work near the WI
deadline.

– RRC will need to both migrate an
existing project operation to a team
operation. We also want to add new
team operations to the default role.
– Could you pls provide the proper
steps to do that and how to validate
the result so we can include this in
our internal testing?

NM:
Needs
modification

Single or multiple comments
signaling required modifications
before the implementation can
be accepted.

– Please make the following edits to
[...] : [List of edits]
– Some further comments: Change
[...] to [...] and remove [...]

BI:
Blocking item

Discussions related to identified
dependencies with other items,
that are either in progress or not
yet assigned, without which
progress cannot continue.

– Putting [current item] into backlog
until a decision is made at the CLM
PMC.
– Deb is currently working the de-
pendency relationship with the WAS
team before we can submit

OP:
Other priority

Explicit statement that other
WI demand more attention at
the present time.

– The open migration issues need to
take priority over this. While this
is a a bvt_blocker its not a critical
path and the BVT team has worked
around this.
– Right now, this work item is num-
ber 6 down the priority list.

11

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

order to extract meaningful statistics and other characteristics of the data [11].
Major time series related tasks include pattern recognition [29], clustering [55],
classification [37], segmentation [33], query by content [20], anomaly detection
[66], and prediction [63]. Categorical time series is a time series with nominal
values. They have received increasing interest during the last years, and are used
to mine qualitative sequential data in diverse fields of practice such as speech
recognition [45], part-of-speech tagging [62, 34], biological sequence analysis
[4, 18, 54], network monitoring [65] for intrusion detection [68], and many more.
In this paper, we consider a WI conversation thread as a categorical time series
with respect to the topics that appear along the thread. We provide all time
series that we identified on a GitHub3 repository and discuss their grouping in
clusters in the following subsections.

We remark that in our analysis these are categorical time series. Unlike
typical time series where the codes are numerical [19], the categorical time se-
ries represent a sequence of categories related temporally to one another [43, 54].

3.2.3. Time Series Clustering
To identify work items that had similar discussions, we used cluster analysis

to group the work item time series. Clustering is the task of grouping a set of
objects in such a way that objects in the same group are more similar to each
other than to those in other groups [56, 39]. The groups are called clusters
and are formed by all time series that have structural similarity. The object
at the center of cluster, the centroid, minimizes the sum of squared Euclidean
distances between itself and each object in the cluster. The centroid can be
thought of as the average or the representative object of the cluster [39]. With
clustering, we can identify and summarize interesting patterns and correlations
in the underlying data [24].

Our approach was to analyze the clusters of late work items and the codes
within their associated time series. Our expectation was that within clusters of
similar evolving work item discussions, certain conversation structures could be
identified and abstracted as the defining property of the cluster. This property
could then be later analyzed and associated with the cause of the delay in the
work item.

For the process of clustering the WI time series, we used the k-means al-
gorithm [3] which requires a metric to asses the similarity of two time series.
To this end, we used Dynamic Time Warping (DTW) [49], which measures the
similarity between two time series even if they do not have the same time span,
meaning the time series do not have the same length [6]. Furthermore, because
we are working with categorical data, a similarity matrix expressing the degree
to which time series component items are similar or dissimilar to each other was
needed to properly carry out the comparison. However, when combined with
k-means clustering, DTW presents a unique challenge due to the averaging used

3https://github.com/salaouab/archtype-of-delay

12

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

in the calculation of cluster centers [30, 46]. To prevent the issue, we used the
averaging method developed by Petitjean et al.(2011) that resolves the time
series averaging problem [49].

3.2.4. Semantic Analysis of Work Item Clusters
The clustering approach provided a grouping of the WI discussions based

on structural characteristics of the derived time series. To characterize the
meaning of WI discussions within each cluster, we conducted a semantic analysis
of comments within each time series. We sought to identify patterns in how the
discussion progressed across the WIs in a particular cluster; our purpose was to
check if members of a cluster share the same properties, and infer reasons for
which WI implementation was delayed or not.

Two of the co-authors read all WI discussions in our data set and consid-
ered, for each WI, the following: 1) creation and resolution dates, 2) number
and timestamp of comments in the discussion, 3) number of children WIs cre-
ated during the discussion and which would indicate that implementation work
started as the result of discussions, and 4) progression of codes in the WI time
series. The codes, indicative of topics of discussion, and their sequence was
particularly important for this analysis. The order of codes as well as the tem-
poral distance between them gave an indication of how the topics evolved in
the WI discussion. For example, a pattern of comments about planning the WI
implementation (coded AD) that dominate the entire discussion until the very
last comments that might be coded as TD (technical solution discussion) and
no children WI are created, indicate a problematic WI that likely resulted in
delay of its implementation due to lack of implementation activity early enough
in the iteration. Table 8 outlines the clusters we identified and which we will
discuss in section 4.1. These semantics and patterns we validated with the IBM
development team leader over four one-hour long meetings during which we en-
sured that our understanding of the meaning in the WI discussions was correct
and consistent with the development context in this IBM project.

4. Results

This section reports the semantic analysis of clusters as well as a comparative
view of late and non-late WI.

4.1. Analysis of late work items
The codes we identified in our content analysis of WI discussions, together

with their definitions and examples are listed in Table 7.
These codes allowed us to treat each WI discussion as a time series, and

Figure 3 shows examples of such time series. The clusters we identified as
groupings of similar time series are shown in Table 8, which also lists example
WIs within their respective cluster. The first item shown in each cluster is the
cluster centroid. The WIs were chosen so as to show that certain sequences

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Cluster WI# #Com. Time series

Cluster 1 395124 16 AD
10 time series 169941 20 AD

170833 15 AD

Cluster 2 220330 18 AD FD
18 time series 350131 16 AD FD AD FD

129055 22 AD FD AD FD
356527 28 AD FD TD
72491 15 AD FD BI

313289 63 AD FD AD AF TD

Cluster 3 360792 15 AD TD
20 time series 187151 10 AD TD

267693 15 AD AD TD
397883 15 AD TD RD

Cluster 4 106935 20 FD
14 time series 174513 23 FD FD

361236 74 FD NM FD FD
52997 15 NM FD

Cluster 5 193729 17 FD AD
34 time series 356023 54 FD FD AD

93154 27 FD AD FD AD
73341 30 FD FD AD BI FD

132199 39 FD TD FD AD TD

Cluster 6 235967 30 TD AD
30 time series 95301 22 TD AD TD

108122 24 TD AD NM
90783 18 TD TD

161884 15 TD TD
322783 34 TD RD
254398 15 TD RD
162657 16 TD NM
341921 48 TD NM

Table 8: Clusters of Late work items, and example cluster members (chosen randomly); also
included for each WI discussion: respective number of comments and time series. The bold
cluster member is the cluster centroid.

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 9: Late WI Clusters Overview

Cluster
Structural
pattern Semantic Pattern Reason for delay

Cluster 1
10 time series AD Endless work coordination

and delivery planning
Coordination and planning
take too long to come to an
agreement

Cluster 2
18 time series AD → FD Ongoing planning and

re-scoping of customer request
functionality

Prolonged discussion until an
agreement on how to proceed
is reached leading to the
implementation process
passing the planned iteration

Cluster 3
20 time series AD → TD Crisis management Inadequately elicited

requirement

Cluster 4
14 time series

FD Endless feature clarification Extended functional
clarifications without timely
decisions

NM → FD Feature rescoping resulting in
work beyond current iteration

Major modification
requirement

Cluster 5
34 time series FD → AD Feature design followed by

implementation planning
Implementation requires
additional work in children
WIs that are being planned
for future iterations

Cluster 6
30 time series

TD Implementation hesitation Extended technical
clarifications

TD → AD Technical clarification and
coordination

Additional planning and
coordination required

TD → RD Additional effort before
integration delivery

No time left for implementation
review and modificationsTD → NM

although apparently different, fall under the same pattern according to our
analysis.

Table 9 outlines the six clusters we identified and the patterns inside each
one; these patterns represent unique characteristics of groupings of WI discus-
sions inside the cluster. Note that clusters can have more than one semantic
pattern (e.g. Clusters 4 and 6). We describe each pattern and the reasons for
delay of the WI implementation in the following subsections.

4.1.1. Cluster 1: Endless work coordination and delivery planning
Main Pattern: AD
Reason for delay: Coordination and planning take too long to come to an
agreement.

The discussions in this cluster focus on work item delivery planning or brief
work status updates, as shown in the two examples below.

I propose we target 7.0.32 at a minimum for 4.0.2. Also, we need to make this
happen early in M2.
I have implemented all of the changes [...]. I am working on a patch based on [...],
and will test it on [...]. The implementation does not work.

15

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Often a single person keeps the team up to date: I’ve finished an implemen-
tation and sent off a patch zip to others for independent testing.

The comments do not indicate discussion around the actual WI implementa-
tion and the majority of WIs in this cluster have no associated child WIs, that
might have otherwise indicated that work is being delivered in relation to these
WIs.

Examining the timestamps of the comments, it appears that comments indi-
cating any agreement on the WI are made only towards the end of the iteration
and not sufficient time remains to finalize the WI implementation. Table 10
shows a typical discussion of this type.

Table 10: Example WI discussion (WI 244762) for pattern AD, Cluster 1

User
Day
Gap Comment Theme

user1 0 @user2 - tomcat 7.0.32 was made available on 12/4 and contains
additional fixes. I propose we target 7.0.32 at a minimum for 4.0.2.
Also, we need to make this happen early in M2. Can we get this
assigned an owner and target?

AD

user1 0 correction, to comment 1, 7.0.32 was available 10/9 but the latest
security info was made available 12/4.

user2 2 "Changing the title to reflect 7.0.32. I don’t see that version ap-
proved yet thru OSSC so need @user3 and Bill Spurlin’s help on
this. I will be the plan item owner but Christopher Maguire will be
the driver from Releng. Plan is to get this early in M2
https://w3.tap.ibm.com/w3ki07/display/OSSCProcess/All+ Pack-
ages+ List"

user3 2 The WAS team is telling us that we should be using WAS Liberty
Profile instead.

user2 3 OSSC approval received for Tomcat 7.0.32

user4 3 @user7 FYI

user4 0 @user6 and @user5 what is the plan to update Tomcat in 4.0.0.2
and 4.0.1.1 to 7.0.32?

user5 0 "@user4 There is no such plan that I know of. Since the 4.0.0.2 is in
RC 2 next week. Updating Tomcat this late in the game for 4.0.0.2
does not seem a good idea."

user4 0 @user5 I understand. I didn’t get keyed into this problem until
this week. Should it be planned for early 4.0.0.3 if that release is
planned?

user2 1 We should probably consider having separate tasks linked to this
plan item for each release where we are going to be bundling Tomcat
7.0.32. It needs to go into 4.0.2 and 4.0.1.1.

4.1.2. Cluster 2: Ongoing planning and re-scoping of customer requested func-
tionality

Main Pattern: AD → FD
Reason for delay: Prolonged discussion until an agreement on how to proceed
is reached leading to the implementation process passing the planned iteration.

Most of the work items in this cluster are related to customer feature requests

16

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

for software customization. An example discussion for a WI in this cluster is
shown in full in Table 11.

For these WIs, the planning is, for the most part, about assigning an itera-
tion in which the solution needs to be delivered in order to meet the customer
expectations. The first few comments are typically setting a deadline (iteration
or due date) for the feature implementation, as the following three examples
illustrate:

Please also how much time you will need for each segment? I am looking to host
this enablement the third week in June please be on the look out for the dates.
[...] @userX, maybe you could comment on whether or not this can be done for
iFix.1. Thanks!
@userX can we do it for 3.0.0.1.

The discussion for planning usually takes less than five comments to come to
an agreement which is then followed by a discussion on feature characteristics.

Functionality discussion occupy most of the WI discussion in this cluster and
it is mainly about scrutinizing the demand of the customer in the context of the
development environment by evaluating the solution in terms of implementa-
tion speed and efficient integration, without any breaks and retro-compatibility
issues:

[...] Bumping this up to Major severity (my customer actually has it classified as
Critical in their ranking).

Comments indicating an agreement on how to proceed are often among the
last and towards the end of the current iteration, and any agreed implemen-
tation is often carried out outside the current iteration (Table 11). Another
distinguishing property of this pattern is that there are no children tasks created
to parallelize and speedup the WI implementation.

Table 11: Example WI discussion (WI 220330) for pattern AD → FD, Cluster 2

User
Day
Gap Comment Theme

user1 0 @jburns It’s intentionally in 4.02 and not schedule for a milestone.
I’d like to potentially take another crack at it again in 4.02 at the
end in the RC if resources are available or if we institute the run
team concept.

AD

user2 268 @user3: is there any idea yet of when this may be implemented?
user3 0 Probably in the June 2014 release.
user3 0 FYI to @pwvogel @user4 and @jpwhit that we are getting more

inquiries as to when we make this shift. We should look at a explo-
ration in 4.0.6 and look to make the switch in the June 2014 release.
At that time we will be looking to bundle WAS Liberty and later
versions of IES on the client and server.

user4 1 Agreed. That’s what I’ve been telling folks (I get inquiries too) -
June 2014

user1 13 @user3 @user4 The System Requirements link
https://jazz.net/SystemRequirements says WAS 8.5.5 will be
supported as of 4.0.5 which runs on Java 7 , is this information
correct? FD

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 11 – Continued from previous page

user5 13 "@user4 and @duongn,
For RTC Install, we would like to start packaging the Java 7 JDK
with the RTC Eclipse 4.2.x client. The main reason for doing this
is to unblock the creation of a Mac-based IM install for the RTC
client (there is no Java 6 IBM JDK for Mac, but there is a Java 7
for Mac). More details are in these items:
- Provide IM based Mac support for RTC client (250364) - see also
item 232063, comment 13.
This will not affect the server or other clients (like the Eclipse 3.6
client). It also means that RTC would be shipping both Java 6
and Java 7 and the RTC client license would need to reflect that.
We would target the same Java 7 build that RAD and RSA 9.x are
currently using."

user1 1 @user5 in comment 6 it reads like this is with respect to packaging
for 4.0.5. Is that true? It is a late for adding such a change I would
think.

user5 0 "@jdgraham, I don’t think we have any commitments to add Mac
support for IM in 4.0.5, but we do have interest in it. I’m mainly
trying to make forward progress on this so that if we miss 4.0.5, we
will be in position to finish it in 4.0.6.
From chatting with @duongn yesterday, he indicated the changes to
the RTC legal text could probably be ready for 4.0.5 RC1 (but not
for 4.0.5 Sprint 2). However there could be other aspects of this
(like Java cert?) that can’t be contained to 4.0.5 at this point."

user4 1 @jdgraham this is NOT for CLM 4.0.5 Note Planned for above
(backlog) It would be way too late for 4.0.5 at this point (agreed). I
believe the current plan is for Q2 2014. @sandyg - in Clearinghouse
it indicates that WAS 8.5.5 supports Java 6 and above. Does NOT
require Java 7.

user6 0 @user4 , thanks for clearing that up.... appreciate it.

4.1.3. Cluster 3: Crisis management due to poor understanding of requirements
Main pattern: AD → TD
Reason for delay: Inadequately elicited requirements.

Work items in this cluster are characterized by discussions that indicate
mitigation strategies to avoid implementation delays, followed by hasty imple-
mentation. The work items are of high priority and need to be addressed in
order to unblock a dependent WI or to meet a release candidate. For example,
in WI 182270 :
@userX Based on feedback from the JAF PMC, this item will take precedence for us
in M6, pushing incomplete arch debt work out to M7. This is a very high priority
item on the JAF 2012 plan and it is now ready for adoption by the components,
so we need to take care of it as soon as possible[...].

Consequently, a lot of children tasks are created to speed up the implementation
of the features.

However, due to poor understanding of the requested functionality, the team
is left with little choice and realizes the scope of work is too broad and the
development of the specifications takes too much time:
@userX - the work on this one is actually in-progress and hopefully will be delivered
soon (see the linked child story). We don’t really have a choice here since the IBM
JRE team is no longer accepting dependencies on Java 6 due to it being EOL by
Oracle. I’ve updated this plan item to indicate the dev commitment level.
This is going over the estimate because the migration piece is more complicated
than I was hoping it would be.

18

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

The result is providing the minimum necessary implementation to pass the
release and push the remaining work into a newly created WI, for a future
iteration. The pattern also indicates that there is poor elicitation for these WI
in terms of the required features and its importance within the planned release.
An example discussion for a WI in this cluster is shown in Table 12.

Table 12: Example WI discussion (WI 187151) for pattern AD → TD, Cluster 3

User
Day
Gap Comment Theme

user1 0 @user2 I put this in M7. It’s probably a stretch for us to get this
completely implemented in M7 but hopefully we can do enough that
it helps us eliminate any grayness with it even if we hold the delivery
back.

AD

user2 35 This is going over the estimate because the migration piece is more
complicated than I was hoping it would be.

user3 14 "This caused 3 new warnings in our tests: DescriptionRe-
sourcePathLocationType The method enableTeamAreaReadAccess-
Context from the type IProcessServerService is deprecatedPro-
cessServiceTests.java. The method isTeamAreaReadAccessContex-
tEnabled from the type IProcessServerService is deprecatedPro-
cessServiceTests.java The method isTeamAreaReadAccessContex-
tEnabled(ITeamAreaHandle, String) from the type IProcessSer-
verService is deprecatedProcessServiceTests.java
If the methods are deprecated, seems like the tests should not use
them"

TD

user3 0 Also, the @deprecated tag should include information on how to
move off of the methods, so our clients can adopt easily.

user2 3 In addition to these comments, I discovered a more major problem
with my changes. I did not update the remove method to account
for the new context type and the fact that a group might contain
the same item twice with different context types. I will deliver this
for M8 if I can implement it tonight.

user2 0 Actually we do not support the addition of a process area to the
same access group twice, which should be fine going forward, so I
don’t need to worry about the remove case. But I still needed to
update the remove method to account for the new context type.
And I discovered a junit gap, which I filled in. In the process I
saw that we needed to be passing another service (the item service)
into ProcessAreaContextUpdater when we instantiate it in Access-
GroupService#getContextMembersToAdd.

4.1.4. Cluster 4: Functionality clarification and rescoping that does no longer
fit in current iteration

Pattern 1: Feature clarification (FD)
Reason for delay: Extended functional clarifications without timely decisions.

Table 13 shows an example discussion of this pattern. WI discussions pre-
senting this pattern are representative of solution proposals, clarifications and
considerations of tradeoffs in possible design solutions. They usually exhibit
some uncertainty regarding the general direction of the work items and corre-
sponding work; the discussions are not about the technical issues, but clarifica-
tions on the desired functionality. Agreements on necessary work are reflected
in assignments to new children WI and not discussed in these work items.

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Draft understanding question of this work item: [...]
What should we do about this? Do we want to [...]? If so there are a couple of
issues.
The simplest way to do this is via [...]. I’ve submitted this as work item 124549.

Table 13: Example WI discussion (WI 166350) for patter FD, Cluster 4

textbfUser
Day
Gap Comment Theme

user1 0 @user2 @user5 @user3 @user4 Any other ideas?

FD

user2 0 Is it possible to ship preloaded process descriptions/ prac-
tices(exported from RMC) together with PLM and tell the user
that they can benefit from PLM?

user3 0 I think we could provide an article in Jazz.net that describing
some best practices how to use process authoring. For the
existing templates, their web sites are generated by RMC from
libraries, we might provide some exported process description
zips for each templates that let user import it directly.

user4 0 My suggestion is provide an extra link in start page to
create a sample process description, just like process tem-
plate(predefined template) and CLM(financial banking appli-
cation) did. Now we have 3 links Create/Import/Associate ,
we can add another link named Create a sample process de-
scription .

user4 0 Continued to comment 4, we can do that in PLM as well. We
can ship process authoring with some predefined process de-
scriptions (exported from RMC) and import these predefined
process descriptions to create samples.

user2 0 deploy a process description to deploy preload process descrip-
tion? but I don’t think we can do that for this release.

user5 30 If someone already started working on any topic, please com-
ment in this work item so we will not step on each other.

user4 0 @user5 @user2 @user3 I created a wiki page
https://jazz.net/*/ProcessAuthoringUserGuide. I think
we can use this wiki page to write the user guides for how to
use process authoring in CLM 2011. I have already taken over
permission part, viewlet part and started working on these
two parts.

user2 3 I created a wiki page for RMC integration
user1 5 @user5 Phong, assigning to you to track this. Currently, we

have three articles that are written or in progress (the three
child tasks of this story). Other ideas for us to consider are
blog posting(s), sample process descriptions for customers to
import, and maybe a video introduction.

user5 0 We can make the Eclipse Way process description available for
customers to import.

Pattern 2: Feature rescoping (NM → FD)
Reason for delay: Major modification requirement.

Table 14 shows a typical discussion of this pattern. When this pattern occurs,
it represents a required modification to the base functionality of item, not just
a technical issue:
More changes required: remove the old unused action label string, add the accel-
erator for the new menu label [...].

This could be due to a miss understanding of specifications, either by the de-
veloper or reviewer:

20

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Maybe I misunderstood; I thought this was for [...].

Table 14: Example WI discussion (WI 52997) for pattern NM → FD

User
Day
Gap Comment Theme

user1 0 @user2 Please review for delivery.

NM

user2 0 With the move to the New menu, the action string will need to be
changed from Create Process Template... to Process Template... to
fit with the New menu conventions.

user3 1 @user2 Implemented the review comments. Ready for review again.
user2 0 "More changes required: remove the old unused action label string

add the accelerator for the new menu label
We always strive to have unique accelerators for a menu entry. We
also work to keep only the strings that are currently in use as each
string needs to be paid to be translated.
Added a changeset with these additional changes."

user2 0 Approved with additional changeset. Please release my changeset
as well Shivank. Thanks.

user3 0 Resolved.

user4 12 "The new location and label of this action loses any of the conno-
tation that this action will create a process template *from* the
project area. Now it just looks somehow misplaced. Normal New
actions create a basic item, possibly with some values filled in from
the context (e.g. new team area shows the selected project area as
the parent area). But this action doesn’t create a new process tem-
plate that has some field initialized to the selected project area: it’s
almost a kind of export.
I don’t think the previous wording was great by any means and I’d
be happy to see it improved. But this change is a move in the wrong
direction."

FD

user3 2 "@user4, @user1: I agree with the comments above. We are not
creating a ’new’ process template from scratch but duplicating /
extracting process configurations of selected project area and wrap-
ping it into a new process template. New action does not give this
picture.
We should move it back to main context menu and assign it a better
caption. I was thinking on the lines of Duplicate Process... Extract
Process... Extract Process Configurations... I avoided using keyword
’Process Template’ above because it might give a picture that we
are trying to duplicate the original process template which was used
while creating the selected project area.
suggestions? :-)
ps: I hope, I am getting it right now after learning about the process
world a little better :-)"

user4 0 I like Extract Process Template... actually.

4.1.5. Cluster 5: Feature design followed by implementation that extends beyond
current iteration

Main Pattern: FD → AD
Reason for delay: Implementation requires additional work in children WIs
that are being planned for future iterations.

Work-items in this pattern are typically high level descriptions of function-
ality, i.e. plan items or stories:
@userX,@UserY, @userZ, the issue of whether or not we want to do a bulk role
editor came up [...] I think that there are some limitations to doing a bulk editor

21

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

in an iframe that may make us want to reconsider our solution. Implementing a
bulk editor natively in LPA might be a better option. What are your thoughts? .

Table 15 illustrates a typical WI in this pattern. Discussion starts on possible
ways to implement the feature in terms of feasibility and time constraints. The
creation and planning of children tasks is discussed to tackle the agreed part of
the feature.

There is however a long gap between this planning discussion and follow up
discussions (during this time children WIs are being completed). Yet the plan-
ning of the next steps indicates that work will go beyond the current iteration.

Table 15: Example WI discussion (WI 193729) for pattern FD → AD, Cluster 5

User
Day
Gap Comment Theme

user1 0 "@user2 Is it safe to assume that hasLocalRepository implies local
friends storage ?In other words: Applications that are built on the
JAF SDK and run in delegated authentication mode must store
friend relationships in their local repository" FD

user2 0 There was a recent email thread on that topic, and I don’t think
that it was definitely agreed that fronting app friend storage should
be local. It pretty much has to be in 4.0, since lots of JAF services
expect to fetch friends from the local repository, and there’s no time
to change that now. So I think the answer should be yes (at least
for 4.0). But I’d like to check that @user3 and @user5 agree.

user3 0 @user2 sorry, the mail thread got buried. Reviewing it now in the
context of prepping for DM migration call.

user3 0 @user6 I agree with comment 2, esp. the at least for 4.0 part, and
migration of existing apps that currently have a private JTS. I’m
not yet convinced it’s what we would want in the future or for new
build apps. I doubt we could avoid it for a 4.0-based new build app
though without a lot of new API.

user2 2 In the last DM migration meeting (on 2/1), there seemed to be
no objections to the strategy of storing fronting app friends in the
fronting app’s own repository, so @user1 I believe we can say the
answer to your question in comment 1 is yes .

user4 0 "@user1 - is this task anything more than modifying DelegatedAu-
thProvider to provide an access to the local friends list, and fixing
the jtsConsumer references? I’m noticing the 2w estimate. I’d like
to do at least part of this so that I can continue with OAuth 1.0a
testing."

user1 3 @user4 The first change would probably be in Authenticating-
ClientService, line 96:
if (!EnvironmentUtil.isDelegatingAuthentication()) {...}
This would change back to:
if (EnvironmentUtil.hasLocalRepository()) {...}

user2 22 @user1 are you planning on implementing this for 4.0? I believe it
will be required for DM. AD

user5 7 Can someone manually add friends in JTS to workaround this ? Not
pretty, but not a blocker then.

user1 2 We don’t really know what is not working at this point. The proxy
works in this environment, but there are still other things that are
sensitive like theming, dashboards, viewlets, open social support,
etc.

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

4.1.6. Cluster 6: Technical clarification and coordination leaving no time for
finishing the work item

Pattern 1: TD → AD
Reason for delay: Additional planning and coordination required beyond the
current iteration. An example discussion is available in Table 16.

Discussions following this pattern show a technical clarification step, followed
by coordination between team members for implementation. In some cases, the
solution is decided upon or even done but cooperation is required to decide the
following steps, like integration or testing.
We talked about how to do this today, do you want to push this bug down to repo,
or should I open our own to implement it?
Had a conversation with @UserX, he will get back to us on this after testing in
his dev environment.

Table 16: Example WI discussion (WI 67521) for pattern TD → AD, Cluster 6

User
Day
Gap Comment Theme

user1 0 Can you elaborate on why this is different from any of the other
caches?

TDuser2 0 "Its not different, it just requires some different update paths in
order to maintain transaction safety. You cannot use volatile fields
for concurrency reasons if updating the value of the field needs to
know the previous value of the field. To update a list (add/remove),
you need to know the previous value of the list."

user3 0 "You can use volatile fields, that isn’t the problem. The problem is
you want to update a collection in a transaction safe way. The way
it currently is with transactional cachei f you start with t1 adds
a meanwhile t2 adds b. t1 commits so now the collection has a if
somebody fetches the collection at this point it will be marked as
the current value. If t2 now commits, it will commit b, and now the
cache is wrong."

user1 0 How would that work with items? It would throw a stale data ex-
ception when t2 attempts to commit. Why should this be different?

user3 0 "Because you want concurrent access to the collection. It should be
fine for 2 transactions to add values to it simultaneously."

user1 0 Ok, I just took a look with Balaji, because he has similar require-
ments with the cache to be used by the context manager service
(user->list of context ids). We should collaborate on the solution so
we don’t overlap. If you guys propose something before we do, just
let us know.

AD

user4 29 We talked about how to do this today, do you want to push this bug
down to repo, or should I open our own to implement it?

Pattern 2: Implementation hesitation(TD)
Reason for delay: Extended technical clarifications.

An example discussion for this pattern is shown in Table 17. Items falling
under this pattern show a lack of confidence in how to approach the implemen-
tation of the solution. Usually the discussions are centered around different
proposals towards the same goal, weighing the implications of each, or specula-
tion regarding the ambiguous requirement or specification.
The one question I have is whether we want to include the new zOS steps there.

23

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

I am thinking something in between Option 3 or 4 could be envisaged. If so, then
Option 4 could consist in [...]. This might however not perform well. Option 3 is
more work in [...], but we should explore that path.

Table 17: Example WI discussion (WI 90783) for pattern TD, Cluster 6

User
Day
Gap Comment Theme

user1 0 This would come from your working directory argument in your
server launch config.

TDuser2 2 @user3, JFS needs to create these directories for query and search.
There are config props for this - but the default value will be the
under the working directory.

user3 0 "We do not access JFS at all in our tests, I am not sure why this
is being eagerly activated. It gets tiring updating all the launch
configs every time something like this pops up. (I have over 100, for
different databases, test suites, configurations). Why can’t you use
/tmp in the test context?"

user3 0 Or alternatively, we add things to jazzignore for all plugins which
contain launches.

user2 2 re: using /tmp in the test context - how do we detect that? Yet
another property?

user3 0 If the property is unspecified, you could put it in a subdirectory of
/tmp and print a warning as we do for the versioned content service.

Pattern 3: Additional effort before integration/delivery (TD → RD and TD
→ NM)
Reason for delay: No time left for implementation review and modifications.

Conversations following these two patterns are relatively similar in that they
require work just before the assigned deadline. The solution itself is imple-
mented, on time, but it either needs to be approved through a code review or
it requires modifications following a code review for the delivery to take place:
Could you review the changes I made for [...] ?
@User, for the text of the link to configure for time periods, we decided to go with
the general: [Item1], [Item2].

Table 18 shows a typical discussion of this pattern.

Table 18: Example WI discussion (WI 169891) for pattern TD → RD, Cluster 6

User
Day
Gap Comment Theme

user1 0 "JFS provides such a command, and a mean to repair the orphan
data. Why is this needed for 3.0.1.1 ?" TD

user2 0 @user1, what command are you talking about? The only related
commands I see in my workspace are ListStorageAreaKeysCommand
and SetStorageAreaKeysCommand, which deal with oAuth keys and
not application keys. Right now we need to get this into 3.0.1.1
because it is possible that any customer using a 3.0 or 3.0.1 server
can lose their data as discussed in the parent defect 168625 comment
16 & 18.

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 18 – Continued from previous page

user2 12 "We’ll need 5 strings translated for the new repotools command.
Two of these strings already exist (the log and teamserver.properties
parameter descriptions), but it seems the standard is to create a
new property in the plugin.properties file for the specific command.
Command Strings: Command description Parameter description -
log file path (5 words) Parameter description - teamserver.properties
(5 words)
Output Strings: Invalid Application Ids: Associated Project Areas:
[x] more..."

user2 1 @user3, I’ve attached a completed changeset with the necessary
strings for the command, because strings needing translation are
due by tomorrow night’s 3.0.1.1 build. Could you take a look and
make sure the Messages files are structured properly, and that the
messages themselves make sense?

RD

user2 25 @user4 The command implementation is basically the same as when
we went over it last week; The only change I put in was to add a
new error message and log statement to the query service catch
statement in queryForInvalidIds.

4.2. Comparative Analysis of Late and Non-late Work Items
Table 19 outlines the results of the cluster analysis of the time-series of the

non-late work items. We conducted a similar analysis of the 1) semantics in the
WI discussions within each cluster to discover patterns across the respective WI
time series, 2) time stamps of comments and 3) number of child tasks created
during the WI iteration as we did for the late work items.

Across all non-late WI we identified one predominant pattern in the evolution
of their discussion over time, and one that is much different than those in the
late WIs. We describe the pattern below, though there are certain interesting
differences between the late and non-late WI discussions along the other two
dimensions that merit highlighting first:

1. The non-late WIs have many more comments and much higher frequency
of communication. The 125 non-late WI have a total of 4068 comments vs 2655
in the late WIs. Figure 4 and Figure 5 show the WI distribution based on
the average number of days between their comments, and number of comments
respectively for these 125 late and 125 non-late work items sets. The average
number of days between comments, for a WI, is obtained by dividing the number
of elapsed days from the first to last comment by the number of comments.
The histogram indicates that the late WIs discussions are more spread in time
whereas the non-late WIs discussions are more dense in shorter intervals.

2. Discussions on non-late work items result in much more work delegated
to children tasks for implementation. The 125 late WIs have associated with
them a total of 253 child tasks, whereas the non-late ones have a total of 437. A
paired-samples t-test of significance in the number of children for late WIs (M =
2.02;SD = 3.68) vs. non-late WIs (M = 3.50;S = 3.94) yields a significant
difference at p = 0.005, suggesting that the number of children does have an
effect on WI timely completion.

Finally, our analysis of the sequence of codes and the semantics of the WI
discussions in these clusters yielded a single predominant pattern across clus-

25

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

ters, one that was much different than those in the late WIs. Across all these
non-late WIs there is a cyclical sequence of codes aligned with agile development
and indicating alternating discussion topics of feature clarification, feature de-
sign, technical discussions and clarifications and so on.

The characteristics of these discussions include:
1. A request is typically answered quickly, with several comments in the span

of a few hours indicating an active conversation followed by an implementation
period with reduced comment activity.

2. Misunderstandings, ambiguous requirements or development inactivity
are typically resolved by the intervention of a senior developer or manager,
offering the needed guidance. This intervention does not necessarily provide
a clear solution, but is often a guided discussion towards a resolution or a
consultation with individuals outside of the platform, e.g.:
@User Can you review this and get it into process component once we have a
successful build/tests.
I brought this WI up at today’s PLE Design UI review. The consensus was: [...]

3. The implementation scope is assessed early and narrowed down if neces-
sary, as it can be seen by the multiple occurrence of TDs (Technical discussion)
and FDs (Functionality discussion) sequence of codes in table 19.

4. Reports of decisions made external to the communication platform are
included to avoid delays in the WI implementation, e.g.:

Talked to @User in person, so removing his approval (approved verbally).

Figure 4: Work items distribution based on the average number of days between comments.
Average number of days between comments, for a work item, is obtained by dividing the
number of elapsed days between first and last comment by the number of comments

26

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Table 19: Clusters of non-late work items. Example members choose randomly and their
respective number of comments and time series. The bold item is the cluster centroid.

Cluster WI# #Com. Time series

Cluster 1 395581 25 AD FD TD TD
35 time series 302249 15 AD FD TD AD TD

393762 19 FD AD FD TD AD
391076 40 FD AD TD TD FD NM
392077 27 AD TD AD FD AD NM FD TD
831210 44 AD NM FD TD AD FD AD NM FD TD AD

Cluster 2 200493 42 AD FD AD FD AD
27 time series 303580 26 AD FD AD FD AD FD

377366 31 AD FD FD AD NM NM AD TD FD
243986 23 FD AD FD AD TD FD AD TD AD
388777 33 AD FD AD FD AD FD AD TD AD FD
337404 37 AD FD AD TD AD TD AD TD AD FD AD FD

Cluster 3 244242 39 FD TD FD TD FD AD
30 time series 310689 23 FD FD TD FD AD FD AD AD

244209 58 TD FD TD AD FD TD FD TD AD
169933 43 AD FD TD FD OP TD FD NM TD AD
245250 60 FD TD NM FD TD AD FD TD FD TD AD
342815 52 FD TD AD TD FD TD AD FD TD FD TD AD

Cluster 4 310617 47 FD AD TD AD FD
21 time series 342604 38 FD TD AD FD AD TD

169933 43 FD AD TD AD FD TD AD
356801 35 FD AD TD AD FD AD NM TD
266362 69 TD AD OP TD AD FD AD FD TD
341514 52 AD FD AD NM TD AD FD AD FD TD

Cluster 5 399037 19 TD AD TD
12 time series 380891 15 TD AD TD

320721 16 FD OP AD TD
395618 17 TD AD TD AD
305281 25 TD AD TD AD TD
289587 39 TD AD TD AD FD OP AD TD

27

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 5: Late and non-late Work items distribution based on their number of comments

5. Discussion

5.1. Results
Our analysis of online developer discussions and clusters of similar WI dis-

cussions revealed six patterns of WI delay. The must surprising finding was the
strong consistency between the structural (WI time series representation) and
the semantic (WI discussion content) patterns in the late WI clusters. WI dis-
cussions with high structural similarity (WI in the same cluster) shared the same
reason for delay. Although having an homogeneity in a cluster is the goal of
clustering, high semantic consistency within WI clusters was unexpected. This
behavior suggest consistent interaction dynamics among the developers. The
major contrasting points in our analysis between the late and non-late work
items are the communication and the tasks dispatch management.

5.1.1. Communication is Key!
Communication in a project is important and even more when a group has to

evolve towards a common objective. Our analysis reveals that the coordination
and planning around WI that are late take too long to result in agreement. Dis-
cussions are slower and the responses to requests are not handled fast enough,
leading to finishing the implementation beyond the planned iteration. Another
communication issue noticed is the endless planning and rescoping discussions
around the late WIs. Cluster1 in the late WIs is a typical example. Some
patterns in these late WI discussions indicate that they appear to suffer from
decision paralysis. Often stakeholders continue to clarify the requirement be-
cause it is ambiguous, incomplete, or has frequent changes. As a result, its
implementation can be delayed or sometimes never get started. Bikeshedding,
also known as the Parkinson’s law of triviality [48, 42] is another common situa-
tion in which developers give disproportionate weight and time to solving trivial
issues and delay development.

28

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

In contrast, our analysis of comment time-stamps shows that the non-late
WI are characterized by communication that is quite frequent and with requests
being processed quickly and effectively. This suggests that the fast responses
and feedback present in conversations are a possible reason for the timely res-
olution of these WI. Discussions are fluid and requests are addressed promptly
to avoid blocking the progression of the WI implementation. As a result, de-
velopers and team leads are able to adjust the WI scope, and easily divide the
task to the children without coordination overhead. This result suggests that
the design of future collaboration tools can include digital nudges to help de-
velopers become aware when to increase the frequency of communication about
particular WIs and therefore possibly reducing the delay of feedback in the
project. Digital nudging describes “the use of user-interface design elements to
guide people’s behavior in digital choice environments” [64]. As such, we be-
lieve, labeling/nudging (automatically or manually) messages about the severity
(blocker or not) and the priority (emergency or not) of WIs will increase the
possibility of handling blocking WIs and thus reducing the overall delay of the
project.

5.1.2. Task Management Matters!
Our analysis suggests that the way and frequency with which WI tasks

were managed was different in the late vs. not late WIs. In non-late WIs the
elicitation of requirements appears to have been more thorough, resulting in
an easier process of dividing tasks to children. Moreover, given the frequency
of responses in the WI discussions, actively rescoping the functionality and
eventually delegating some to the children tasks in order to meet the objectives
was possible. In contrast, the discussions in the late WIs suggest the intention
to fulfill all the requirements at once in the implementation of one single WI
without much delegation to children tasks. This behavior is likely the result of
too much time spent in clarifying and eliciting further information on the WI,
without much time left for its implementation review or modifications.

5.1.3. What About Technical Debt?
Introduced by Cunningham [13], technical debt explains the need for refac-

toring, and the impact of design choices on a software product. Research on
technical debt has since explored and studied the metaphor to explain [60],
assess [23] , manage [41], or understand the impact [50] of technical debt on
the organization productivity. Technical debt relates to the additional cost and
rework over the software life cycle when a short-term, easy solution is chosen
instead of a better solution. As such, it conceptualizes the trade off between the
short-term benefit of rapid delivery and long-term value. Understanding and
managing technical debt is an important goal for many organizations. Not all
debt is bad, and if incurring some technical debt helps your company achieve a
big goal, then it could be worth the “interest payment” of a more difficult task
of future software updates or adding new features. But problems do arise, and
what may seem like minor annoyances now often become major issues if left
alone for too long.

29

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

In the IBM project we studied, we notably identified two kinds of technical
debt:

• Planned technical debt, when the team is challenged by the iteration dead-
line and forced to choose to implement high priority features and to push
the remaining features into the next iterations by creating new work items
to track the debt. For instance, Cluster 3 for Crisis management is a per-
fect illustration. This kind of technical debt, despite the additional work
carried over to the upcoming iterations, has the advantage of not being
"forgotten" to be paid, i.e., the features are saved for future implementa-
tion.

• Unplanned technical debt, when a workaround (quick and easy solution) is
provided in order to deliver a blocking or high priority feature. Unlike the
previous one, this kind of debt is not easy to track, as there is no creation
of WI to "remember" the debt and the team moves quickly/forward to
the implementation of new features. The major consequence is that the
debt is forgotten and grows up to becoming a liability for the system
maintainability and scalability.

Our analysis shows that both of these two types of debt are found in both
late and non-late WIs, even though they are more recurrent in late ones. A
worthwhile future research direction is to investigate whether late WIs are in
fact consequences-of/related-to techical debt in non-late WIs (i.e. the cause
of/correlated to), and whether they would be planned or unplanned technical
debt.

5.2. Implications
5.2.1. For Research

To the best of our knowledge, our work is one of the first to use time-
series and clustering techniques on results of thematic analysis on developer
conversations. We believe there are a number of new areas worthy of further
exploration, guided by questions that include:

• Is it possible and how to automatically segment conversation threads with
respect of the theme discussed? Themes identification in thematic analysis
is very time consuming. Currently it needs to be carried out manually
since it can cover multiple comments and there is more than one theme in
one conversation.

• Could sentiment analysis technique be employed to enhance the analysis
outcomes?

• What features could complement text data to not only characterize the
development but also predict the impact on the iteration and its deadline?

All those questions highlight natural language processing and machine learning
challenges for design and evaluation of automated means to identify the patterns.

30

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

5.2.2. For Practitioners
Our work has implications for tools that automatically support iteration

planning and monitor development progress for project managers. Such tools
can actively analyze the conversations developers carry on particular WIs and
provide profiles of WIs and their progress. The profile can suggest whether the
WI implementation process has issues through the identification of codes (AD,
FD,) and their sequences, and recommend the potential impact on meeting
the planned implementation deadline. It will help managers to be proactive by
quickly reacting on blocking items and constantly tracking the milestones and
adjusting accordingly to the deadline. Since the automated analysis involves
textual data, the more data is formatted (e.g. tags, sentences without slang)
the better the automation process can be set up.

5.3. Threats to validity
5.3.1. Misuse of tracking platform

One controversial point of using repository data is the extent to which the
platform is correctly used or, misused. It is easy to imagine submitting statistics
or tracking information in such a way as to artificially improve certain perfor-
mance indicators or obscure latent problems. This type of practice represents a
difficult to overcome hurdle as we have no other way of analyzing a past situa-
tion but through data that is, potentially, misrepresenting the actual reality of
the situation and its context.

5.3.2. Communication outside the platform
As the tracking platform is only one of the tools used for communication

within the project team, some information is impossible to capture. Teams
share information in an informal, face-to-face manner or by means of calls or
emails that are not present in our data-set. We have encountered comments
such as ’After the discussion with [...]’ clearly indicating that decisions were
outside of the platform. Even though the result is sometimes communicated
and logged, we cannot ensure how many other undisclosed conversations have
an impact on the project, an impact that is hard to track and analyze.

5.3.3. Too high abstraction level
The first step in our process consisted of labeling each comment in WI discus-

sions with a theme best describing its content. When a comment was related to
more than one theme, we assigned it, for the sake of consistency in our method-
ology, to the predominant theme. This level of abstraction may have removed
critical information necessary for accurate analysis and interpretation. More-
over during the semantic analysis, it was observed that structural sequences
that are very similar can have opposing semantic interpretation, for example a
work status report possibly relating to success or a failure in one’s endeavor.

31

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

6. Conclusion

Our analysis has showed that text data generated along side software de-
velopment process is a mine of useful information about the progression in a
requirement implementation and the dynamics of developers interaction to ad-
dress work items efficiently. We used time series to model the chronological
evolution of work items’ comments chain and with the help of clustering algo-
rithm to group them by structural similarity. The semantic analysis of clusters
give an insightful explanation of the delay reasons. We found that late WI ex-
hibit different archetypes of delay and each is associated with a specific reason
why the delivery of the requirement is getting late. The common reason for the
delay is a lack of fluent communication associated with a poor project manage-
ment. Conversely non-late WI delegate more to children tasks and are proactive
on handling requests.

These finding has a potential to be used to monitor workflow, resolve the
knot points quickly, and for more active team management. The comment chains
annotations step was done manually. We think there are machine learning and
natural language processing challenges here to tackle in our future projects.
We also believe that providing communications happening outside the tracking
platform (calls, meeting transcripts) can increase the accuracy of the data view.

References

[1] Sousuke Amasaki, Takashi Yoshitomi, Osamu Mizuno, Yasunari Takagi,
and Tohru Kikuno. A new challenge for applying time series metrics data
to software quality estimation. Software Quality Journal, 13(2):177–193,
2005.

[2] Ayman Amin, Lars Grunske, and Alan Colman. An approach to software
reliability prediction based on time series modeling. Journal of Systems
and Software, 86(7):1923–1932, 2013.

[3] Preeti Arora, Shipra Varshney, et al. Analysis of k-means and k-medoids
algorithm for big data. Procedia Computer Science, 78:507–512, 2016.

[4] Ziv Bar-Joseph. Analyzing time series gene expression data. Bioinformat-
ics, 20(16):2493–2503, 2004.

[5] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. The agile manifesto, 2001.

[6] Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD workshop, volume 10, pages 359–370.
Seattle, WA, 1994.

32

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[7] Serdar Biçer, Ayşe Başar Bener, and Bora Çağlayan. Defect prediction
using social network analysis on issue repositories. In Proceedings of the
2011 International Conference on Software and Systems Process, pages 63–
71. ACM, 2011.

[8] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2):77–101, 2006.

[9] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose.
Predicting the delay of issues with due dates in software projects. Empirical
Software Engineering, 22(3):1223–1263, 2017.

[10] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose,
and John Grundy. Predicting delivery capability in iterative software de-
velopment. IEEE Transactions on Software Engineering, 2017.

[11] Tak chung Fu. A review on time series data mining. Engineering Applica-
tions of Artificial Intelligence, 24(1):164 – 181, 2011.

[12] D. S. Cruzes and T. Dybâ. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement(ESEM), volume 00, pages 275–
284, 09 2011.

[13] Ward Cunningham. The wycash portfolio management system. ACM SIG-
PLAN OOPS Messenger, 4(2):29–30, 1992.

[14] Subhajit Datta, Renuka Sindhgatta, and Bikram Sengupta. Talk versus
work: characteristics of developer collaboration on the jazz platform. In
ACM SIGPLAN Notices, volume 47, pages 655–668. ACM, 2012.

[15] Ali Dehghan, Adam Neal, Kelly Blincoe, Johan Linaker, and Daniela
Damian. Predicting likelihood of requirement implementation within the
planned iteration: an empirical study at ibm. In Mining Software Repos-
itories (MSR), 2017 IEEE/ACM 14th International Conference on, pages
124–134. IEEE, 2017.

[16] Lydia DeSantis and Doris Noel Ugarriza. The concept of theme as used
in qualitative nursing research. Western Journal of Nursing Research,
22(3):351–372, 2000. PMID: 10804897.

[17] SM Didar Al Alam, Muhammad Rezaul Karim, Dietmar Pfahl, and Gün-
ther Ruhe. Comparative analysis of predictive techniques for release readi-
ness classification. In Proceedings of the 5th International Workshop on
Realizing Artificial Intelligence Synergies in Software Engineering, pages
15–21. ACM, 2016.

[18] Jason Ernst, Gerard J Nau, and Ziv Bar-Joseph. Clustering short time
series gene expression data. Bioinformatics, 21(suppl_1):i159–i168, 2005.

33

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[19] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput-
ing Surveys (CSUR), 45:12, 2012.

[20] Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos.
Fast subsequence matching in time-series databases, volume 23. ACM, 1994.

[21] Jennifer Fereday and Eimear Muir-Cochrane. Demonstrating rigor using
thematic analysis: A hybrid approach of inductive and deductive coding
and theme development. International Journal of Qualitative Methods,
5(1):80–92, 2006.

[22] R. Frost. Jazz and the eclipse way of collaboration. IEEE Software, 24(6),
Nov 2007.

[23] I Gat. Technical debt assessment: A case of simultaneous improvement
at three levels. Agile Product & Project Management Advisory Service
Executive Update, 11, 2010.

[24] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clustering
validation techniques. Journal of intelligent information systems, 17:107–
145, 2001.

[25] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[26] Iain Hay. Qualitative research methods in human geography. Oxford Uni-
versity Press, 2000.

[27] V. T. Heikkilä, D. Damian, C. Lassenius, and M. Paasivaara. A mapping
study on requirements engineering in agile software development. In 2015
41st Euromicro Conference on Software Engineering and Advanced Appli-
cations, pages 199–207, Aug 2015.

[28] Hsiu-Fang Hsieh and Sarah E Shannon. Three approaches to qualitative
content analysis. Qualitative health research, 15(9):1277–1288, 2005.

[29] Yan-Ping Huang, Chung-Chian Hsu, and Sheng-Hsuan Wang. Pattern
recognition in time series database: A case study on financial database.
Expert Systems with Applications, 33(1):199–205, 2007.

[30] Hesam Izakian, Witold Pedrycz, and Iqbal Jamal. Fuzzy clustering of time
series data using dynamic time warping distance. Engineering Applications
of Artificial Intelligence, 39:235–244, 2015.

[31] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja.
Systematic literature review on the impacts of agile release engineering
practices. Information and Software Technology, 86:87 – 100, 2017.

34

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[32] David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich, and
Vladimir Filkov. Perceived language complexity in github issue discussions
and their effect on issue resolution. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pages 72–83.
IEEE Press, 2017.

[33] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting
time series: A survey and novel approach. In Data mining in time series
databases, pages 1–21. World Scientific, 2004.

[34] Hyun Duk Kim, Malu Castellanos, Meichun Hsu, ChengXiang Zhai,
Thomas Rietz, and Daniel Diermeier. Mining causal topics in text data:
Iterative topic modeling with time series feedback. In Proceedings of the
22Nd ACM International Conference on Information & Knowledge Man-
agement, CIKM ’13, pages 885–890, New York, NY, USA, 2013. ACM.

[35] Eric Knauss, Daniela Damian, Jane Cleland-Huang, and Remko Helms.
Patterns of continuous requirements clarification. Requirements Engineer-
ing, 20(4):383–403, 2015.

[36] Helena C Kraemer. Kappa coefficient. Wiley StatsRef: Statistics Reference
Online, pages 1–4, 2014.

[37] Dan Li, Kerry D Wong, Yu-Hen Hu, and Akbar M Sayeed. Detection, clas-
sification, and tracking of targets. IEEE SIGNAL PROCESSING MAGA-
ZINE, 2002.

[38] Sherlock A Licorish and Stephen G MacDonell. Exploring the links be-
tween software development task type, team attitudes and task completion
performance: Insights from the jazz repository. Information and Software
Technology, 2017.

[39] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means
clustering algorithm. Pattern recognition, 36(2):451–461, 2003.

[40] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task
learning for text classification. arXiv preprint arXiv:1704.05742, 2017.

[41] Steve McConnell. Managing technical debt. Construx Software Builders,
Inc, pages 1–14, 2008.

[42] Paul Mcfedries. Agile words [technically speaking]. IEEE Spectrum,
54(6):21–21, 2017.

[43] Monnie McGee and Ian Harris. Coping with nonstationarity in categorical
time series. Journal of Probability and Statistics, 2012, 2012.

[44] Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. Pre-
dicting failures with developer networks and social network analysis. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of software engineering, pages 13–23. ACM, 2008.

35

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[45] Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. Voice recog-
nition algorithms using mel frequency cepstral coefficient (mfcc) and dy-
namic time warping (dtw) techniques. arXiv preprint arXiv:1003.4083,
2010.

[46] Vit Niennattrakul and Chotirat Ann Ratanamahatana. On clustering mul-
timedia time series data using k-means and dynamic time warping. In Mul-
timedia and Ubiquitous Engineering, 2007. MUE’07. International Confer-
ence on, pages 733–738. IEEE, 2007.

[47] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate cluster-
ing of time series. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1855–1870. ACM, 2015.

[48] Cyril Northcote Parkinson and Osbert Lancaster. Parkinson’s Law or the
Pursuit of Progress. Murray London, 1958.

[49] François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global aver-
aging method for dynamic time warping, with applications to clustering.
Pattern Recognition, 44(3):678–693, 2011.

[50] Ken Power. Understanding the impact of technical debt on the capacity
and velocity of teams and organizations: Viewing team and organization
capacity as a portfolio of real options. In 2013 4th International Workshop
on Managing Technical Debt (MTD), pages 28–31. IEEE, 2013.

[51] Tomas Pranckevičius and Virginijus Marcinkevičius. Comparison of naive
bayes, random forest, decision tree, support vector machines, and logis-
tic regression classifiers for text reviews classification. Baltic Journal of
Modern Computing, 5(2):221, 2017.

[52] Uzma Raja, Joanne Elaine Hale, and David Peter Hale. Temporal patterns
of software evolution defects: A comparative analysis of open source and
closed source projects. Journal of Software Engineering and Applications,
4(08):497, 2011.

[53] Scott Rich. Ibm’s jazz integration architecture: building a tools integration
architecture and community inspired by the web. In Proceedings of the 19th
International Conference on World wide web, pages 1379–1382. ACM, 2010.

[54] Christian Richter, Martin Luboschik, Martin Röhlig, and Heidrun Schu-
mann. Sequencing of categorical time series. In 2015 IEEE Conference on
Visual Analytics Science and Technology (VAST), pages 213–214. IEEE,
2015.

[55] Pedro Pereira Rodrigues, João Gama, and Joao Pedroso. Hierarchical clus-
tering of time-series data streams. IEEE transactions on knowledge and
data engineering, 20(5):615–627, 2008.

36

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[56] H.C. Romesburg. Cluster analysis for researchers. Lifetime Learning Pub-
lications, 2004.

[57] Johnny Saldaña. The coding manual for qualitative researchers. Sage, 2015.

[58] Ken Schwaber and Jeff Sutherland. The scrum guide - the definitive guide
to scrum: The rules of the game, November 2017.

[59] Jonathan A Smith. Qualitative psychology: A practical guide to research
methods. Sage, 2015.

[60] C Sterling. Chapter 2: Technical debt. Managing Software Debt: Building
for Inevitable Change, 2011.

[61] Mojtaba Vaismoradi, Hannele Turunen, and Terese Bondas. Content anal-
ysis and thematic analysis: Implications for conducting a qualitative de-
scriptive study. Nursing & Health Sciences, 15(3):398–405, 2013.

[62] Jun Wang, Arvind Balasubramanian, Luis Mojica de la Vega, Jordan R
Green, Ashok Samal, and Balakrishnan Prabhakaran. Word recognition
from continuous articulatory movement time-series data using symbolic
representations. SLPAT 2013, 2013.

[63] Andreas S Weigend. Time series prediction: forecasting the future and
understanding the past. Routledge, 2018.

[64] Markus Weinmann, Christoph Schneider, and Jan vom Brocke. Digital
nudging. business & information systems engineering 58, 6 (dec. 2016),
433–436, 2016.

[65] Christian H Weiß. Continuously monitoring categorical processes. Quality
Technology & Quantitative Management, 9(2):171–188, 2012.

[66] Gary M Weiss. Mining with rarity: a unifying framework. ACM Sigkdd
Explorations Newsletter, 6:7–19, 2004.

[67] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Pre-
dicting build failures using social network analysis on developer commu-
nication. In Proceedings of the 31st International Conference on Software
Engineering, pages 1–11. IEEE Computer Society, 2009.

[68] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilbert. Multivariate
statistical analysis of audit trails for host-based intrusion detection. IEEE
Transactions on computers, 51(7):810–820, 2002.

[69] Murat Yilmaz, Rory V. O’Connor, Ricardo Colomo-Palacios, and Paul
Clarke. An examination of personality traits and how they impact on
software development teams. Information and Software Technology, 86:101
– 122, 2017.

37

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[70] Kyung-A Yoon, Oh-Sung Kwon, and Doo-Hwan Bae. An approach to out-
lier detection of software measurement data using the k-means clustering
method. In First International Symposium on Empirical Software Engi-
neering and Measurement (ESEM 2007), pages 443–445. IEEE, 2007.

[71] Shi Zhong, Taghi M Khoshgoftaar, and Naeem Seliya. Analyzing software
measurement data with clustering techniques. IEEE Intelligent Systems,
19(2):20–27, 2004.

38

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Credit author statement

Abdoul-Djawadou Salaou :Methodology, Software , Data Curation,
Investigation,Visualization,Validation, Writing - Review & Editing
Dragos Voda :Methodology,Validation, Investigation, Writing- Original draft preparation
Daniela Damian : Formal analysis, Supervision, Writing - Review & Editing
Casper Lassenius : Writing - Review & Editing
Pierre Gançarski : Formal analysis

Credit Author Statement

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Declaration of interests : none

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Declaration of Interest Statement

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

