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Abstract: Dense time series of stripmap RADARSAT-2 data acquired in the Multilook Fine mode
were used for detecting and mapping the extent of selective logging operations in the tropical forest
area in the northern part of the Republic of the Congo. Due to limited radiometric sensitivity to forest
biomass variation at C-band, basic multitemporal change detection approach was supplemented by
spatial texture analysis to separate disturbed forest from intact. The developed technique primarily
uses multi-temporal aggregation of orthorectified synthetic aperture radar (SAR) imagery that are
acquired before and after the logging operations. The actual change analysis is based on textural
features of the log-ratio image calculated using two SAR temporal composites compiled of SAR
scenes acquired before and after the logging operations. Multitemporal aggregation and filtering of
SAR scenes decreased speckle and made the extracted textural features more prominent. The overall
detection accuracy was around 80%, with some underestimation of the area of forest disturbance
compared to reference based on optical data. The user’s accuracy for disturbed forest varied from
76.7% to 94.9% depending on the accuracy assessment approach. We conclude that change detection
utilizing RADARSAT-2 time series represents a useful instrument to locate areas of selective logging
in tropical forests.

Keywords: synthetic aperture radar; tropical forest; selective logging; C-band; satellite image
time series

1. Introduction

Timely assessment and monitoring of the state of the forests forms basis for defi-
nition and implementation of preventive and corrective measures for sustainable forest
management, preservation of forests and their restoration after disturbances. While more
than fifty definitions of forest degradation have been formulated [1], the majority of them
seem to be either too broadly defined for practical use or concentrate on specific aspects of
reduction in productivity, biomass or biodiversity [2]. Here, we concentrate on a specific
type of artificial, human-induced forest disturbance—selective logging—and potential for
its mapping using satellite remote sensing data.

In the framework of this study, the selective logging was done in concession areas
where sustainable forestry is practiced. Selective logging follows certain recognizable
patterns. Typically, a road network is constructed first. Within a brief period, areas near
the roads are logged. A widespread practice is to cut a limited number of marketable tree
species [3], followed by transporting logs off site. Thus, areas of ground damage typically
exhibit gaps, logging trails and roads. Selective logging does not necessarily cause forest
degradation but it can strongly affect the forest ecosystem [3–5]. Timely monitoring of
logging activities improves potential for measuring forest degradation and contributes to
sustainable forest management practices.
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In contrast to deforestation, readily observed from medium to high resolution optical
and SAR (synthetic aperture radar) satellite data [6–8], selective logging results in a spatially
diffuse thinning of large trees [9], which requires relatively high spatial resolution for
reliable detection. In several previous studies [3,10–14], mostly medium and high resolution
optical satellite data were used, with methodologies ranging from visual interpretation
of satellite imagery to automated tracking of the progress of logging roads. Accurate
delineation of disturbed areas was complicated by atmospheric conditions in the tropical
forest, fast regrowth of vegetation after selective logging, the small-structured logging
patterns, different logging practices, and limited or missing field reference data [15].

When use of optical satellite data is compromised due to near-permanent cloud
coverage, possible solution is to use SAR sensors, relying on longer and denser time series.
Radar based monitoring offers flexibility in forest monitoring applications, when results
are requested in a fixed (e.g., yearly) schedule. In this context, methodologies earlier
developed for SAR based change detection and SAR time series classification in thematic
mapping are relevant [16–21]. However, until today there were only few attempts to use
spaceborne SAR data to detect forest disturbance [22–27], though the need for monitoring
forest degradation and disturbance in addition to forest clearcutting has been widely
recognized [14]. Two major problems that complicate the detection are presence of speckle
and lack of backscatter sensitivity to biomass beyond the saturation level [28]. Presence of
speckle requires multilooking and filtering, while the problem of radar signal saturation
can be partly solved by using SAR with longer wavelength. Also combining different
frequency bands [29], use of auxiliary forest masks and multitemporal SAR analysis [30–32]
were found useful in addressing these problems. However, long and dense series of L-band
SAR data are not available presently. Very high resolution SAR and InSAR data that was
reported successful in this context are not widely available, and need further research before
becoming operational [22,33]. On the other hand, C-band radar data acquired by several
spaceborne sensors, historically Envisat ASAR, presently RADARSAT-2 and Sentinel-1,
represent attractive source of information for timely assessment of forest cover due to global
coverage and frequent revisit. Multitemporal C-band SAR data were extensively used
for evaluating and monitoring growing stock volume of both boreal and tropical forests,
as well as in thematic mapping purposes [25,34]. Due to relatively low contrast between
forested and non-forested areas at C-band—compared with, for example, the L-band—
forest masks and relatively long time-series were typically needed. Present consensus is
that further research is required on methods exploiting dense time series of C-band SAR
measurements, including multitemporal approaches, to achieve performance similar to
L-band SAR data [7]. Here, we address part of this problem by incorporating the spatial
context in the multitemporal change detection procedure utilizing C-band SAR image
time series.

Here, we capitalize on our earlier work [24,25], with a goal to develop and validate
an automatic method for detecting forest disturbance due to selective logging from time
series of RADARSAT-2 data. Our focus is on spatiotemporal assessment and interpretation,
as opposed to direct interpretation of backscattered signal intensity or its change. We rely
on one of advanced imaging modes of RADARSAT-2 data with improved resolution, Multi-
look Fine (ML3F) mode. To our best knowledge, this is the first consistent study in the
literature reporting automated approach employing RADARSAT-2 time series approach
for detecting selective logging in African tropical forests.

The paper is organized as follows. We describe our study site, acquired RADARSAT-2
dataset and developed methodology in Section 2. Suggested SAR based method is demon-
strated, discussed and validated against change mapping from optical satellite data in
Section 3, while potential challenges and opportunities are concluded in Section 4.
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2. Data and Methods
2.1. Study Site

The study site was in the northern part of the Republic of the Congo with center
coordinates 00.47′ N, 16.03′ E (shown in Figure 1). The 50 km by 50 km study area approx-
imately equaled the size of a RADARSAT-2 scene in the Fine Beam mode. The site was
mostly covered with tropical natural forest which has partly undergone selective logging
management. In the northern part of the scene, the forest was logged earlier. In the center,
active logging was ongoing. The southern part was represented mostly by intact forest,
though road construction had already started there as well. The logging operations were
gradually progressing from north to south along with construction of a road network or
shortly after its construction. The distance between the logging roads was on the order of
2 km. Drainage systems of two rivers were surrounding the core study area. The elevation
varied from 350 m to 400 m.

Figure 1. Study site location in the northern part of the Republic of the Congo. RGB composite
represents three orthorectified RADARSAT-2 scenes acquired 5 October, 18 August, 25 July, 2013.

2.2. SAR Data

In total, 13 RADARSAT-2 scenes were used in the study, covering the observation
period from November 2012 till December 2013. All the data were acquired in the Multi-look
Fine (MF3W) mode, HH-polarization. Single-pol imaging mode was chosen to maximise
the swath coverage and range resolution, as added value of polarimetry at C-band is
limited over tropical forests [7]. The images are described in detail in Table 1.

The Shuttle Radar Topography Mission (SRTM) DEM was used in the orthorectification
process. For the MF3W data, original single-look complex products had a pixel spacing of
2.7 m in slant range and 3.0 m in azimuth. Multilooking with factor of 4 × 3 (rg × az) was
performed before the orthorectification, in the power domain. Radiometric normalization
with respect to the projected area of the scattering element was performed to eliminate
the topography-induced radiometric variation [35]. VTT in-house software was used for
orthorectification and terrain flattening of the SAR images [36]. This way, a time series of
co-registered “gamma-naught” backscatter images were formed, with a pixel size of 12.5 m
by 12.5 m.
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Table 1. The list of RADARSAT-2 scenes acquired over the study area.

ID Acq. Date Image Mode Polariz. Incidence
Angle ( ◦)

Precip.
(mm) Conditions

R1 27 Nov 2012 Multilook Fine HH 40.85 0.0 Thunderstorm, 2 days since rain
R2 21 Dec 2012 Multilook Fine HH 40.85 0.0 Clear, 2(3) days since hail (rain)
R3 14 Jan 2013 Multilook Fine HH 40.85 0.0 Clear, 8 days since rain
R4 7 Feb 2013 Multilook Fine HH 40.85 0.0 Clear, 1 days since rain
R5 20 Apr 2013 Multilook Fine HH 40.85 0.0 Fog, 1 day since rain
R6 14 May 2013 Multilook Fine HH 40.85 0.8 Rain, thunderstorm
R7 25 Jul 2013 Multilook Fine HH 40.85 0.0 Clear, 2 days since rain
R8 18 Aug 2013 Multilook Fine HH 40.85 0.0 Clear, 4 days since rain
R9 11 Sep 2013 Multilook Fine HH 40.85 4.1 Rain, thunderstorm
R10 5 Oct 2013 Multilook Fine HH 40.85 0.0 Thunderstorm, 1 day since rain
R11 29 Oct 2013 Multilook Fine HH 40.85 52.0 Rain, thunderstorm
R12 22 Nov 2013 Multilook Fine HH 40.85 0.0 Thunderstorm, 4 days since rain
R13 16 Dec 2013 Multilook Fine HH 40.85 0.0 Clear, 2 days since rain

2.3. Reference Data and Accuracy Assessment Approach

In order to ascertain objective and conservative evaluation of detected forest distur-
bances, the accuracy assessment was done in two different ways.

Reference data were obtained by combining automated and visual interpretation
of Landsat 7 and Landsat 8 optical satellite imagery in the study area. This is similar to
validation approach in [15] by comparing the extent of selective logging delineated using
visual interpretation of optical image against SAR based map in a wall-to-wall manner.

Accuracy assessment uses a confusion matrix calculated using sampled pixels or
plots, as described further. We report the following measures of accuracy: precision, also
known as producer’s accuracy (PA), recall, also known as user’s accuracy (UA), and overall
accuracy. The formulas are as follows.

For each forest class (intact or disturbed) c, we calculate producer’s accuracy (precision):

Pc =
Tpc

Tpc + Fpc
,

and user’s accuracy (recall):

Rc =
Tpc

Tpc + Fnc
,

where Tpc represents true positive, Fpc false positive, and Fnc false negative pixels for the
class c.

Also, we calculate overall pixel accuracy:

AccOP =
ΣL

i=1Cii

ΣL
i=1Gi

,

where Cij is the number of pixels having a ground truth label i and being classified/predicted
as j, Gi is the total number of pixels labelled with i, and L is the number of classes. All
these metrics can take values from 0 to 1 or expressed in percentages.

2.3.1. Accuracy Assessment Using Autochange Reference Map

A reference disturbance map was produced based on the change analysis between
two reference optical images acquired in spring and autumn of 2013. The first image was
acquired with the Enhanced Thematic Mapper+ instrument of Landsat 7 on 17 May 2013.
It corresponded to the time shortly before primary logging operations were performed in
the study area. The second image was taken with the Operational Land Imager instrument
on 1 November 2013. The Scan Line Corrector anomally did practically not affect the study
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area. The second image corresponded to the time when major operations were progressed
and concluded in the northern part of the study site. Also, new roads for future logging
operations were constructed.

The change detection was done independently from the SAR image interpretation
using VTT in-house software Autochange followed by visual interpretation of the Au-
tochange results. The algorithm is based on two stage clustering of input images and is
robust against interimage variation not related to real changes [37]. The input images do
not have to represent the same wavelength bands or have to be from the same imaging
instrument. Autochange provides land cover information from the earlier image, four
change types and the change magnitude, allowing definition of a set of thresholds to detect
and describe types of changes based on user requirements.

For the May image, the red, near infrared, SWIR (1.5 µm) and panchromatic bands
were used and for the November image the selected bands were the green, red, near infrared
and panchromatic bands, respectively. The resolution in the multi-spectral bands was 30 m
whereas the panchromatic band resolution was 15 m. The radiometric quality of the May
image was poorer than with the November image due to the haze and weaker radiometric
resolution of the sensor. Therefore, longer wavelength bands were favored and only one
visible band was selected to the change analysis. Clouds, haze and some apparent surface
moisture changes caused that the Autochange output was not directly applicable for
the change mapping but an additional visual interpretation was required to provide the
reference map. The southernmost tip of the new logging road was detected as a strong
change by Autochange but considered as non-forest in the May image due to its high
intensity. It was consequently not included as a change due to forest removal in the
Autochange result that combined the output layers of the program.

Both original images and the resulting change layer are shown in Figure 2.

Figure 2. Pan-sharpened color infrared composites of reference Landsat images acquired on
17 May 2013 (before the logging) and 1 November 2013 (after the logging). Green band is shown in
Blue, red band in Green, and NIR band in Red color. The panchromatic band is the intensity channel.
Detected change using visual interpretation of the Autochange-output is shown using hatch pattern.
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2.3.2. Accuracy Assessment Using Visually Interpreted Plots

This approach used circular sample plots that were visually interpreted from the
Landsat data. A simple random sample of 100 plots was selected for two test areas each
(predominantly disturbed and non-disturbed) shown in Figure 3. The overall number of
plots for interpretation was 200. The radius of an evaluation plot was 30 m. Pan-sharpened
versions with 15 m pixel size of natural color, color infrared and short wave infrared
composites were used in the evaluation. The proportion of intact forest, cut forest, shrub
and grass, and bare soil (dirt roads) was visually evaluated within each plot by an expert
who was not familiar with the SAR image analysis result.

Figure 3. Core of the study site on natural color composite of a Landsat-8 image of 1 November 2013.
(right) Areas for the accuracy assessment are shown with red and green lines. Area size 45 km by
56 km. (left) Plots on the natural color composite of the logged test site (zoomed area highlighted in
white). Active plot for evaluation is shown in cyan.

Cut forest and bare soil were considered as logged and all other classes unlogged.
This is similar to the definition applied in [15] where forest degradation was defined as
an area affected by forest canopy disturbance in terms of gaps, logging roads and logging
trails, and where no distinction was made between man-made and natural gaps.

In the computation of the results of the visual evaluation a plot was assigned disturbed
if any proportion of the plot was considered cut. The reason for this decision was that the
selective logging partly showed a clear opening at Landsat resolution but it was assumed
that in many cases the crown cover was only slightly affected due to logging and in reality
logging intensity was higher than what was visible on the Landsat image. In the intact
area, all plots were assigned to uncut class in the visual interpretation.

This approach in the accuracy assessment with plots can be considered more con-
servative than cross-validation with Autochange (Section 2.3.1) or than the approaches
applied in several earlier studies on tropical forest selective logging and change detection,
for instance [15,26,27,38].

2.4. Method Development

The sensitivity of C-band SAR to variation of above ground biomass is relatively weak
and a typical saturation limit of 50–100 t/ha is reached very quickly in tropical forests.
Considering this, other factors rather than just the level of backscatter or its change should
be used, taking into consideration possible changes in scattering mechanisms. Selective
logging inherently assumes presence of forested regions with partly removed trees near
roads (see simplified representation in Figure 2). However, the separate investigation of
original SAR scenes did not reveal a clear dependence between backscatter levels and



Remote Sens. 2021, 13, 740 7 of 16

logging. One original orthorectified SAR scene acquired on 18 August 2013, is shown in
Figure 4 as a typical example.

A possible approach towards detecting selective logging activities could be based on
change detection between the current SAR scene and some reference SAR scene. Such a ref-
erence SAR scene can be chosen either at the start of the monitoring period, or bi-temporal
image ratios between consecutive acquisitions can be analyzed. However, attempts to
apply this kind of traditional approach did not reveal dependence on selective logging
activities, but rather general land cover dependence or seasonal and weather artifacts.
Different combinations of scenes were tested, with a temporal baseline ranging from 4 to
12 months. An example of log-ratio image between scenes acquired on 27 November 2012
and 22 November 2013 is shown in Figure 4. Further attempts to capture meaningful varia-
tions of radar backscatter using change detection techniques (primarily visual and textural
analysis of different bi-temporal intensity ratio and log-ratio images) were not successful
either. Observed backscatter change signatures could be mostly attributed to changes in
moisture with respect to different land cover classes and seasonal and weather phenomena.

Figure 4. Screening selective logging with original SAR scenes: (a) orthorectified scene acquired
on 18 August 2013; (b) its enlarged fragment. Screening selective logging with bi-temporal log-
ratio images: (c) log-ratio image between orthorectified scenes acquired on 27 November 2012 and
22 November 2013; (d) its enlarged fragment. RADARSAT-2 Data and Products © MacDONALD,
DETTWILER AND ASSOCIATES LTD., (2013)—All Rights Reserved. RADARSAT is an official mark
of the Canadian Space Agency.

Finally, an approach to perform multitemporal filtering to decrease speckle and to
aggregate SAR images acquired before and after the logging event was formulated and
tested. The aggregation of SAR images was followed by calculation of log-ratio image
and analyzing its spatial textural characteristics. To detect the specific time when selective
logging was performed, temporal evolution of constructed roads was investigated based
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on both original data-takes and bi-temporal log-ratio images where newly constructed
roads are well visible.

In more detail, the logic of the proposed mapping approach follows next simple steps:

1. Find newly constructed roads to help choose SAR images covering areas of logging
operations;

2. Aggregate SAR scenes before and after the logging event;
3. Calculate the log-ratio image between aggregated composites;
4. Perform detection of selectively logged areas by linear contrast stretching followed by

texture extraction and segmentation;
5. Conduct morphological post-processing of detected areas

The flowchart of the mapping algorithm is shown in Figure 5.
The first step of the algorithm can be skipped if there is prior knowledge about the

region of interest (forest concession area in this study) and the timing of logging operations.
Otherwise, it is useful to automatically locate such places of potential disturbance, as newly
constructed roads are often visible from ortho-rectified SAR imagery without additional
processing. Also, as selective logging can be performed only in forested areas, an additional
forest mask could be useful in order to limit areas where processing is done. An alternative
is independent segmentation of separate SAR scenes where land cover dependence was
well visible. However, in this study it did not appear necessary, as practically no relevant
changes were observed in non-forested areas.

Figure 5. General flowchart of the proposed approach for mapping extent of forest disturbance due
to selective logging.

The approach suggested here was motivated by visual investigation of log-ratio
products after multitemporal aggregation. The physical background of the method can be
explained by considering the backscatter components shown (schematically) in Figure 6.
In case of intact forest, most of the C-band backscatter comes as direct backscatter from
the small branches of trees. When selective logging removes some of the trees, direct
backscatter from the ground, and to some extent the double-bounce scattering mechanism
become significant in some pixels. This somewhat changes the backscatter magnitude of
those pixels, often increasing it. On the other hand, some pixels become radar shadows
with strong decrease of the backscatter intensity of those pixels. As a result, the average
backscatter if computed over several pixels may stay approximately at the same level as
in the intact forest. When pixels are averaged in the multitemporal stack in time domain
(and not spatially), the speckle level is reduced without decreasing spatial resolution,
and spatially-neighbouring “enhanced” and “reduced” pixels create texture in the image.
This texture is detected by a spatial texture operator when applied to the log-ratio image of
the after and before logging averaged SAR composites.
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This kind of texture detection approach can be expected to work when the resolution of
the SAR sensor—after a suitable level of speckle reduction—corresponds to the dimension
of a typical group of trees or the gap made during the selective logging. Even if the
resolution cell is slightly bigger than the tree or gap, the effect can be expected to be visible
to some extent.

Figure 6. The change in scattering mechanisms in connection with selective logging: (left) Intact
forest; (right) Forest after selective logging. Second and higher order scattering interactions are
ignored in this representation.

Multitemporal aggregation of SAR scenes was implemented using multitemporal SAR
filtering approach [30]. As the filtering is performed both in spatial and time domains this
approach bears close analogies with work described in [31]. The filter takes a simple form

Jk(x, y) =
〈Ik〉
M

M

∑
i=1

Ii(x, y)
〈Ii〉

, (1)

where (x, y) are image pixel coordinates, 〈.〉 denotes spatial averaging of k-th input image
Ik, whereas M is the number of images and Jk is the output image. Hence, in addition to
the pixel-to-pixel summation in Equation (1), the calculation can involve spatial averaging
and/or filtering. In our case, spatial domain filtering includes multilooking performed
during ortho-rectification followed by, e.g., additional boxcar filtering before calculating a
temporal log-ratio image.

Log-ratio transform of SAR image intensities (or differencing of corresponding log-
images) is the basic approach to change detection [38–40], whereas expressing the difference
between backscatter levels in dBs seems natural. This is the reason it was used in this study.
This however does not disqualify other possible ratio-operators that can be used for change
detection [41,42].

For texture extraction and segmentation of the log-ratio image, we applied a varia-
tion coefficient filter (standard deviation divided by the mean) followed by thresholding
binarization to achieve a computationally effective solution. The filter was implemented
as a sliding window of predefined size (neighborhood) to calculate the local standard
deviation of an image. Visual analysis of road-network expansion and prior knowledge
about the area where logging operations were performed allowed to skip Step 1 of the
proposed forest disturbance mapping approach. However, line detection is trivial as roads
are readily visible in SAR log-ratio images or even original SAR scenes, and, for example,
Hough-transform can be used to extract linear segments as in our earlier studies [23,24].

An important aspect of this approach is selecting an optimal window size to extract
a relevant textural feature from log-ratio image. Here we are interested in capturing the
spatial radiometric signature of selectively logged forest, which implies that the window
size should be relatively big to include both separate trees and gaps within the forest.
On the other hand, precise delineation of affected area is desired, which requires relatively
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small windows to accurately locate the boundaries between different textured regions. This
issue is further investigated in Section 3.

3. Experimental Results and Discussion

Methodology described in Section 2 was tested with the two aggregated data sets that
represented situations before and after the construction of the road networks. The MF3W
mode time series includes 8 scenes that were acquired before the selective logging opera-
tions and 5 scenes after the operations.

3.1. General Performance Evaluation

Figure 7 illustrates the search of optimal size of window for performing textural feature
extraction. Increasing the size of the processing window to more than 375 m seemed not
to provide additional gain in suppressing false alarms in the service area, but resulted
in decreased spatial resolution and loss of segmentation border sensitivity. However,
windows of smaller size demonstrated unacceptably high levels of false alarms when using
the chosen texture extraction method (coefficient of variation). An alternative solution,
in order to increase the sensitivity of the analysis and still preserve higher spatial resolution,
may be potentially found in using alternative segmentation methods. The agreement with
the reference data was high, and the overall accuracy of the detection layer shown as the
rightmost in Figure 7 achieved 83.2% with the Autochange based map used as a reference.
Figure 8 illustrates the performance of developed methodology, visually confirming a good
agreement with information provided by inspection of Landsat 8 imagery.

Figure 7. Selection of feature window size for textural feature extraction: (a) 62.5 m; (b) 112.5 m;
(c) 187.5 m; (d) 262.5 m. The processed area size corresponds to Figure 1.

Figure 8. Landsat 8 image (natural color composite) with the border mask of logged forest detected
using SAR time series approach and Autochange reference area. Central part of the study site is
marked where logging intensified prior to the optical “before-logging” datatake.
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An apparent disagreement in the central area can be partly explained by presence of
cloud in the optical image acquired in May. Disagreement in the central area is explained
by intensification of logging visible already in May optical image (and likely occurred
shortly before this). Thus Autochange based result doesn’t show this region as change-area.
Radar-based approach shows this disagreement area as change-area, due to accumulated
time series including several scenes acquired also before May. This seems to be an apparent
disadvantage of accumulation approach, as change-phenomenon gets smoothed in longer
image time series.

When comparing the RADARSAT-2 based map of selectively logged forest with
the Autochange reference map, the overall accuracy was around 80%. Confusion matrix
calculated using stratified random sample of 1000 pixels is shown in Table 2. Excluding
the central area from the calculation of the confusion matrix increases the overall logging-
detection accuracy to as high as 83.2%, with particularly high user’s accuracy of 98% for
disturbed forest. This means all disturbance areas detected by suggested radar change
detection approach were accurate, even though some underestimation of disturbed area
was observed.

Further inspection of the RADARSAT-2 data with the produced maps revealed sensi-
tivity to the look direction when detecting linear objects like buildings or roads, which is
common with SAR data in general. This phenomenon can be well followed in Figure 8,
where roads in or close to the orbit direction of the SAR sensor are detected but roads in the
orthogonal direction have partly remained undetected. This may not be a major limitation
to the suggested approach because in larger logging operations roads are constructed in
several directions. The mapping results obtained suggest that this kind of C-band SAR
change detection approach is capable of detecting newly constructed roads in at least one
of these directions. Moreover, the roads are also well visible from the original SAR intensity
images, and are well visible also using medium resolution optical images.

Table 2. Confusion matrices in cross-validation of forest disturbance map produced from RADARSAT-2 time series against
Autochange reference map.

Whole Study Area Reference Autochange Map

RADARSAT-2

Intact Forest Disturbed Forest Total User’s accuracy

Intact forest 483 181 664 72.7%
Disturbed forest 17 319 336 94.9%
Total 500 500 1000
Producer’s accuracy 96.6% 63.8% 80.2%

Central Part Removed Reference Autochange Map

RADARSAT-2

Intact forest Disturbed forest Total User’s accuracy

Intact forest 493 161 654 75.4%
Disturbed forest 7 339 346 98.0%
Total 500 500 1000
Producer’s accuracy 98.6% 67.8% 83.2%

Results of accuracy assessment using visually interpreted plots are gathered in Table 3.
In the intact area, all plots were assigned to uncut class in the visual interpretation whereas
four of them were detected as disturbed in the SAR based prediction. The confusion
was caused exclusively by these four plots located in the vicinity of newly constructed
road (at the distance of less than half of the SAR texture estimation window). In the
predominantly disturbed area, the overall agreement between the RADARSAT-2 based map
and plot evaluation was 64%. Combined data yields 80% overall accuracy, with particularly
low producer’s accuracy for disturbed-forest plots. The result suggests a bias towards
underestimation of disturbance with the radar approach.
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Table 3. Confusion matrices for two regions in validation of forest disturbance map produced from RADARSAT-2 time
series against visually interpreted plots.

1st Region (predominantly
disturbed forest area) Reference Landsat 8 Scene

RADARSAT-2

Intact Forest Disturbed Forest Total User’s accuracy

Intact forest 31 26 57 54.4%
Disturbed forest 10 33 43 76.7%
Total 41 59 100
Producer’s accuracy 75.6% 55.9% 64%

2nd Region (predominantly
intact forest area) Reference Landsat 8 scene

RADARSAT-2

Intact forest Disturbed forest Total User’s accuracy

Intact forest 96 0 96 100%
Disturbed forest 4 0 4 0%
Total 100 0 100
Producer’s accuracy 96.0% NA 96%

Both Regions Reference Landsat 8 scene

RADARSAT-2

Intact forest Disturbed forest Total User’s accuracy

Intact forest 127 26 153 83%
Disturbed forest 14 33 47 70%
Total 141 59 200
Producer’s accuracy 90.1% 55.9% 80%

However, the visual interpretation of plots did not take into account the size of
SAR texture estimation window (much larger than the plot radius). Further evaluation
reveals that several plots interpreted as intact forest from optical data can be reassessed
as disturbed if the larger neighbourhood were used, improving disturbed forest user’s
accuracy for the radar based approach. Part of disturbance underestimation by radar
can be explained by sensitivity to look direction, as discussed above. Similar observation
was done in recent study [27]. A possible solution would be to combine ascending and
descending image acquisition geometries to reduce this sensitivity and make sure less
disturbance remains undetected. Also, if a gap within the forest canopy existed before the
logging operations, the plot could still be interpreted as disturbed in the visual assessment
based on a single image, even though no additional change/disturbance happened at the
plot area. In this respect, automated change detection with Autochange approach followed
by visual interpretation of changed areas, can be considered useful.

Results of assessment with visually interpreted plots can be considered more con-
servative than cross-validation with Autochange or earlier reported studies on forest
disturbance [15,26,27,38]. Those studies considered much larger neighborhoods applying
more liberal approach in assigning the reference data as changed and assessment of the
performance was done at area-based level rather than on plot level. In some cases, only
general level of agreement or proportions of forest classes in radar derived and reference
optical image were reported.

In this study, we did not screen out any SAR scenes. Generally, with this kind of
approach, it seems appropriate to collect as many SAR images both before and after the
logging operations as possible. Possible limiting factors for such image accumulation
are actual changes of scattering mechanisms (e.g., forest regrowth), strong seasonal or
meteorological changes (rainy and dry images) and, naturally, availability of frequent
observations of monitored areas. Aggregating more images can also create uncertainty
regarding the timing of logging over larger areas, as the logging operations progress
continuously over large areas. This was particularly the case with the central area of our
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study site, where logging operations started before mid-May, and the reference Autochange-
result showed May-to-November change, while radar-based approach included scenes
where the area in question was not yet logged. Thus, the change detection should be
localized both spatially and in temporal domain for the purposes of near-real-time forest
disturbance monitoring.

3.2. Comparison with Other Studies And Outlook

Observed experimental results are encouraging further investigations and are gener-
ally in line with other reported studies in different forest biomes. Heathcoat et al. recently
compared approaches for detecting selectively logged forest and well summarised that only
time series approaches are suitable to reliably detect forest removal and degradation [26].
Suitable approaches can be based either on using thematic (supervised or unsupervised) ap-
proaches to image time series analysis, or alternatively, change detection. Two studies that
are somewhat similar to our approach here can be found in the literature, aside from our
own work on the subject [24,25]. In the first study, a potential to monitor small sub-hectare
changes in Brazilian Amazon was reported, using ratio of stacked scenes acquired before
and after selective logging [43]. Averaging over a small kernel followed by user-defined
threshold was applied to extract change, in contrast to variational filter suggested in our
methodology. This approach, highlighting the temporal change, was used for mapping
forest removal activities also in boreal forest [44]. Some overestimation of the logging
extent of the radar-based approach [43] compared to visual interpretation of RADARSAT-2
scenes and reference data was noted also stressing the need to develop semi-automated
approaches and improve the detection performance particularly in connection with the
overestimation of disturbed areas. Further, recent study by Hoekman et al. [27] used
textural features for detecting disturbance in Borneo using Sentinel-1 imagery. There,
so-called averaged contrast is computed over a certain fixed area (e.g., 10 × 10 pixels
corresponding to 100 m × 100 m area). This contrast parameter is defined as a sum of the
absolute backscatter change. This in fact translates to averaging the modulus of change
within a predefined neighbourhood, while in this and earlier studies [24,25] we rely on the
local standard deviation of backscatter change. Regarding forest selective logging, a high
spatiotemporal consistency was noted, however more validation is apparently needed.

Here, unlike Sentinel-1 studies where VV- and VH- polarisations are used, we analyze
the RADARSAT-2 data acquired using HH-polarisation with somewhat higher spatial
resolution. The difference is also in scattering mechanisms reflected in polarisations of
C-band sensors, with HH-pol including also double bounce mechanism that can help in
identifying logged areas more effectively. Volume scattering is expected to contribute less
in detecting subtle changes in forest volume (related to selective logging), and surface
scattering would require logged trails to be relatively large and incidence angle more
steep. Also, spatial resolution is expected to play an important role. This calls for further
investigation if similar type of approach as used in this study (applying variational filter to
capture texture in log-ratio image) is effectively applicable for monitoring selective logging
of tropical forests with Sentinel-1 time series. One important question is whether more
frequent revisits (12 days repeat pass of Sentinel-1 versus 24 days for RADARSAT-2) could
compensate for difference in resolution. The difference in scattering mechanisms would
still remain. This would ideally require a benchmarking study with both types of data to
enable meaningful comparison and trade-off analysis. Also, potential of C-band InSAR
for detecting relevant changes should be investigated, particularly with Sentinel-1 [45],
keeping in mind somewhat higher penetration capability of InSAR coherence compared to
SAR backscatter [46,47] .

4. Conclusions

Time series of C-band SAR data are to our understanding feasible in detecting the
areas that are affected by selective logging. The change detection approach using C-band
satellite SAR data can be used to define a stratified sample for the accurate evaluation
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of disturbed area and removed forest biomass. Also, the potential of developed and
demonstrated SAR time series based methodology to directly and semi-automatically
evaluate the disturbed forest areas looks promising. Further research with more accurate
reference data and different image segmentation strategies might be needed in order to
fully support this claim.

The developed methodology for mapping selectively logged areas was demonstrated
with Multi-look Fine data of RADARSAT-2. It should be applicable with other C-band
sensors of comparable resolution, provided a high number of scenes is collected both
before and after the logging event. Ascending and descending acquisition geometries are
recommended to be used to circumvent omission error in disturbed forest detection due to
sensitivity to look direction.
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