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Distributed Detection of Cycles∗

PIERRE FRAIGNIAUD†, CNRS and University Paris Diderot
DENNIS OLIVETTI‡, Aalto University

Distributed property testing in networks has been introduced by Brakerski and Patt-Shamir (2011), with the
objective of detecting the presence of large dense sub-networks in a distributed manner. Recently, Censor-
Hillel et al. (2016) have revisited this notion, and formalized it in a broader context. In particular, they have
shown how to detect 3-cycles in a constant number of rounds by a distributed algorithm. In a follow up work,
Fraigniaud et al. (2016) have shown how to detect 4-cycles in a constant number of rounds as well. However,
the techniques in these latter works were shown not to generalize to larger cyclesCk with k ≥ 5. In this paper,
we completely settle the problem of cycle detection, by establishing the following result. For every k ≥ 3, there
exists a distributed property testing algorithm for Ck -freeness, performing in a constant number of rounds.
All these results hold in the classical congest model for distributed network computing. Our algorithm is
1-sided error. Its round-complexity is O (1/ϵ ) where ϵ ∈ (0, 1) is the property testing parameter measuring the
gap between legal and illegal instances.

CCS Concepts: • Theory of computation→ Graph algorithms analysis; Distributed algorithms;

Additional Key Words and Phrases: Distributed computing, distributed decision, distributed property testing,
cycle detection, congest model.

1 INTRODUCTION
1.1 Context
The objective of (sequential) property testing [22] is the design of efficient algorithms for detecting
whether data-structures satisfy a given property. In the context of networks, a vast literature has
been dedicated to testing the presence or absence of specific patterns like triangles, cycles, cliques,
etc. (see, e.g., [2, 3, 11, 23]). A property testing algorithm, a.k.a. tester, is a centralized algorithm A
which is given the ability to probe nodes with queries of the form deg(i ) returning the degree of the
ith node, and adj(i, j ) returning the identity of the jth neighbor of the ith node. Beside its running
time, the quality of a tester is typically measured by the number of queries that it must perform
before deciding whether or not the network satisfies the considered property.

Property testing aims at designing algorithms performing a sub-linear number of requests, and
therefore considers promise versions of the problem. Typically, property testing is merely requiring
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the tester to distinguish between instances satisfying the property, and instances that are far from
satisfying that property. In the context of networks, several notions of farness have been considered.
We consider here the so-called sparse model: Given any ϵ ∈ (0, 1), an n-nodem-edge network G is
said to be ϵ-far from satisfying a graph property P if adding and/or removing at most ϵm edges
to/from G cannot result in a network satisfying P.

A tester for a graph property P is a randomized algorithm A that is required to accept or reject
any given network instance, under the following two constraints:
• G satisfies P =⇒ Pr[A accepts G] ≥ 2/3 ;
• G is ϵ-far from satisfying P =⇒ Pr[A rejects G] ≥ 2/3.

The success guarantee 2/3 is arbitrary, as one can boost any success guarantee by repetition. In the
case of instances which are nearly satisfying P but not quite, the algorithm can output either ways.
Hence, a tester for P is an algorithm enabling to detect degraded instances (i.e., instances that are
far from satisfying a desired property P) with arbitrarily large probability, while correct instances
are accepted also with arbitrarily large probability. Also, a tester is 1-sided error if
• G satisfies P =⇒ Pr[A accepts G] = 1.

Distributed property testing has been introduced in [6], and recently revisited and formalized
in [7]. In networks, a distributed tester is a distributed algorithm running at every node in parallel
(every node executes the same code). After having inspected its surrounding, i.e., the nodes in its
vicinity, every node outputs accept or reject. In this distributed setting, we say that a distributed
testerA accepts a networkG if and only if all nodes output accept. That is,A rejects if at least one
of the nodes outputs reject. Therefore a distributed tester for a graph property P is a randomized
algorithm A that is required to accept or reject any given network instance, under the following
two constraints:
• G satisfies P =⇒ Pr[A accepts G at all nodes] ≥ 2/3 ;
• G is ϵ-far from satisfying P =⇒ Pr[A rejects G in at least one node] ≥ 2/3.

The fact that the success guarantee 2/3 is also arbitrary in the distributed setting is not obvious.
In fact, it does not hold in general (see, e.g., [19]) as one cannot systematically boost any success
guarantee by repetition because the rejecting node(s) may differ at each repetition. Nevertheless,
for 1-sided error distributed testers, i.e., testers leading all nodes to accept legal instances with
probability 1, boosting can be applied, and therefore the success guarantee 2/3 becomes indeed
arbitrary. In this paper, all testers are 1-sided.

In this paper, we are focussing on the detection of cycles, one of the most basic and central
structures in graph theory, with impact on Ramsey theory and block design. Let k ≥ 3. A k-node
cycle, or k-cycle for short, is denoted byCk . A networkG isCk -free if and only ifG does not contain
a k-node cycle as a subgraph. A case of particular interest is k = 3, and a C3 is often called triangle.
It has been shown in [7] that, in the classical congest model1 for distributed computing [31],

there exists a distributed property testing algorithm for triangle-freeness performing in O (1/ϵ2)
rounds. This result has been extended in [21] where it is proved that there exists a distributed
property testing algorithm for C4-freeness performing in O (1/ϵ2) rounds as well.
Perhaps surprisingly, the techniques in [7, 21] do not extend to larger cycles. Indeed, using

explicit constructions of so-called Behrend graphs, it was proved in [21] that these techniques fail
for most values of k ≥ 5. That is, these techniques cannot result in a tester performing in a constant
number of rounds in all graphs, even if the constant is allowed to be a function of 1/ϵ . Prior to
1The congestmodel states that all nodes perform synchronously in a sequence of rounds; At each rounds, messages
of O (logn) bits can be exchanged along the edges of the network.
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this work, the existence of distributed property testing algorithms for Ck -freeness performing in a
constant number of rounds was open for k larger than 4.

1.2 Our results
We completely settle the problem of cycle detection, for every possible length k ≥ 3. Specifically,
we prove that, for every k ≥ 3, there exists a 1-sided error distributed property testing algorithm
for Ck -freeness, performing in O (1/ϵ ) rounds in the congest model.
Essentially, we reduce the problem of detecting k-cycles to the problem of detecting whether a

given edge e belongs to some Ck . At first glance, the latter problem may seem to be much more
simple. Indeed, it does not require to deal with the link congestion caused by the simultaneous testing
of several edges. However, the problem remains actually quite challenging as, in the congest model,
even collecting the identities of the nodes at distance 2 from a given node u might be impossible to
achieve in o(n) rounds in n-node network. Indeed,u may have constant degree, with Ω(n) neighbors
at distance 2. To overcome this difficulty, we proceed by pruning the set of information transmitted
between nodes, namely by pruning the set of candidate cycles passing through the given edge e .
This pruning is at the risk of discarding candidate cycles that would have turned out to be actual
cycles. Nevertheless, our pruning mechanism guarantees that at least one actual cycle remains in
the current set of candidate cycles throughout the execution of the algorithm.
Interestingly, the use of randomization is limited to the reduction of the general problem of

testing Ck -freeness to the problem of detecting whether there exists a k-cycle passing through a
given edge e . Indeed, our algorithm solving the latter problem is deterministic. In particular, the
aforementioned pruning mechanism is deterministic. That is, the existence of an actual cycle
passing through e among the restricted set of candidate cycles kept at each round is not a property
that holds under some statistical guarantee, but it holds systematically. Moreover, even if there is
just a single k-cycle passing through e , that cycle will be detected by our algorithm. That is, our
algorithm for detecting whether there exists a k-cycle passing through a given edge e does not rely
on the ϵ-farness assumption.

Remark. After the acceptance of the conference version of this paper, we became aware of the
existence of a combinatorial lemma due to Erdős et al. [14], stating the following. Let V be a set of
size n, and let us fix two integers p and q with p + q ≤ n. Then, for any set F ⊆ P (V ) of subsets of
size at most p of V , there exists a subset F̂ of F of cardinality at most

(
p+q
p

)
such that, for every set

C ⊆ V of size at most q, if there is a set L ∈ F such that L ∩C = ∅, then there also exists L̂ ∈ F̂ such
that L̂ ∩C = ∅. This combinatorial result has been used in different contexts, including the design
of sequential parametrized algorithms for the longest path problem [27]. In this paper, we show
that it can also be used to the benefit of designing efficient distributed algorithms. Specifically, the
lemma is used as follows. As said before, at each round, every node receives a collection of partial
cycles, that is a collection F of ID-sequences of length p < k , and it questions whether there exists
a set C of q = k − p nodes which, concatenated with some partial cycle L ∈ F , would form a cycle
of length k . Roughly, the lemma says there is no need to keep track of the entire collection F , as a
small sub-collection F̂ of

(
k
p

)
partial cycles suffices. Indeed, for every C , if there exists a sequence

L ∈ F of nodes susceptible to form a cycle together with C , then there also exists a sequence L̂ ∈ F̂
of nodes susceptible to form a cycle with C .

1.3 Related Work
1.3.1 Property Testing. The property of H -freeness has been the subject of a lot of investigation

in classical (i.e., sequential) property testing. In the so-called dense model, most solutions exploit
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the graph removal lemma, which essentially states that, for every k-node graph H , and every ϵ > 0,
there exists δ > 0 such that every n-node graph containing at most δnk (induced) copies of H can
be transformed into an (induced) H -free graph by deleting at most ϵn2 edges. This lemma was first
proved for the case k = 3, and later generalized to subgraphs H of arbitrary size [13], and further to
induced subgraphs [1]. It is possible to exploit this lemma for testing the presence of any (induced
or not) subgraph of constant size, in constant time. Notice that δ is a fast growing function of ϵ
and k . The growth of the function was later improved in [3] under some assumptions. For more
details on the graph removal lemma, see [10].
Cycle-detection has also been considered in the so-called sparse model. On bounded degree

graphs, cycle-freeness can be tested with O ( 1
ϵ 3 +

d
ϵ 2 ) queries [23] by a 2-sided error algorithm,

where d is the maximum degree of the graph. However, if we restrict ourselves to 1-sided error
algorithms, then the problem becomes harder. A lower bound of Ω(

√
n) queries was established

in [11]. The same paper presents a tester requiring Õ (poly(1/ϵ )
√
n) queries in arbitrary graphs, and

another tester requiring Õ (poly(dk/ϵ )
√
n) queries in graphs with maximum degree d for detecting

cycles of length at least k . Detecting triangles requires at least Ω(n1/3) queries, and at most O (n6/7)
queries (see [2]). The same lower bound holds for detecting any non bipartite subgraph H , and for
2-sided error algorithms as well. For some specific subgraphs H , the lower bound can even be as
high as Ω(n1/2).

1.3.2 Distributed Property Testing. Distributed property testing has been introduced in [6], and
fully formalized in [7]. The authors of that latter paper show that, in the dense model, any tester for
a non-disjointed property can be emulated in the distributed setting with just a quadratic slowdown,
i.e., if a sequential tester makes q queries, then it can be converted into a distributed tester that
performs inO (q2) rounds. This simulation exploits the fact that any dense tester can be converted to
a tester that first chooses some nodes uniformly at random, gathers their edges, and then performs
centralized analysis of the obtained data (see [24]).

The authors of [7] also provide distributed testers for the sparse model, showing that it is possible
to test triangle-freeness in O (1/ϵ 2) rounds, cycle-freeness in O (1/ϵ logn) rounds, and, in bounded
degree graphs, bipartiteness inO (poly(1/ϵ log(n/ϵ ))) rounds. Their work was inspired by [6], where
a constant-time distributed algorithm for finding a linear-size ϵ-near clique is proposed, under the
assumption that the graph contains a linear-size ϵ3-near clique. (An ϵ-near clique is a set of nodes
where all but an ϵ fraction of pairs of nodes have edges between them).

The result in [7] regarding testing triangle-freeness was extended in [21], where it is shown that,
for every 4-node connected graph H , there exists a distributed tester for H -freeness performing in
O (1/ϵ 2) rounds. Also, [21] provides a proof that the approach in [7, 21] fails to test Ck -freeness in a
constant number of rounds, whenever k ≥ 5.
Very recently, three sets of authors independently generalized the results in this paper, by

showing that not only Ck -freeness can be tested in O (1/ϵ ) rounds, but also H -freeness, for every
graph pattern H composed of a tree (or a forest) F , an edge e , and arbitrary connections between
the extremities of e and the nodes of F (see the joint publication [15]).

1.3.3 Distributed Decision. Distributed property testing fits into the larger framework of dis-
tributed decision. The seminal paper [29] was perhaps the first to identify the connection between
the ability to locally check the correctness of a solution in a distributed manner, and the ability to
design an efficient deterministic distributed algorithm for constructing a correct solution. Since
then, there have been a huge amount of contributions aiming at studying variants of distributed
decision, in the deterministic setting (see, e.g., [20]), the anonymous setting (see, e.g., [12]), the
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probabilistic setting (see, e.g., [16, 19]), the non-deterministic setting (see, e.g., [25, 26]), and even
beyond (see, e.g., [4, 18]). We refer to [17] for a survey on distributed decision.

1.3.4 Distributed Cycle Detection. Cycle detection has been investigated in various parallel and
distributed computing frameworks, in particular for its connection to deadlock detection in routing
or databases. The algorithm in [32] detects cycles in directed graphs, under the bulk-synchronous
model. It proceeds in phases. Every node sends its identifier (ID) to all its out-neighbors at the
first phase. Then, at each phase, every node (1) receives a collection of ID-sequences from each of
its in-neighbors, (2) appends its own ID to each such ID-sequence, and (3) sends the new set of
ID-sequences to each of its out-neighbors. Moreover, in order to consume less bandwidth, some
ID-sequences are discarded, if either the first identifier of a sequence is the same as the one of the
node (a cycle has then been detected, and the node can just stop), or the identifier of the node
is contained in a sequence (the node can discard the sequence since it contains a cycle already
detected by some other node). This algorithm can be adapted to detect cycles of a given length k ,
and can be adapted to undirected graphs. Our algorithm uses a similar “append-and-forward”
technique. However, even for detecting cycles of given length k passing through a given edge e , the
algorithm in [32] may consume a bandwidth Ω(n) in n-node graphs. This is because the number of
ID-sequences that a node sends depends on its in-degree, which can be Ω(n). Instead, our algorithm
discards much more ID-sequences, and the number of sequences sent by a node at each round
depends solely on k , and not on n. It follows that, for constant k , our algorithm is using messages
of logarithmic length, and runs in constant time in the congest model.

The algorithm in [30], also designed for the bulk-synchronous model, uses an approach different
from the “append-and-forward” technique. This approach uses the fact that, in directed graphs, a
cycle cannot pass through nodes of in-degree or out-degree 0. Hence, one can remove all nodes
with in-degree or out-degree 0 from the digraph, iteratively, until the digraph becomes empty, or
no more nodes can be removed. It is proved in [30] that the digraph becomes empty if and only if
it does not contain a cycle. This approach is bandwidth efficient. However, it appears difficult to
adapt this idea for detecting cycles of some given length k in constant time, in particular because of
the chains of dependences between nodes (a node might be removable only after having removed a
far away node), or for detecting cycles in undirected graphs.
Finally, the algorithm in [5], as well as the algorithms in [8, 9], designed for message passing

models or for self-stabilization frameworks, are detecting cycles of arbitrary length in general
graphs. However, these algorithms are designed for optimizing their message-complexity, and, as
such, they do not aim at limiting their number of rounds in a model where the number of bits
traversing each and every edge at each round is limited. It follows that these algorithms appear
inadequate for efficiently detecting cycles of a specific length in the congest model.

2 MODEL AND DEFINITIONS
2.1 The CONGEST Model
We consider the classical congest model for distributed network computing [31]. The network
is modeled as a connected simple graph (no self-loops, and no parallel edges). The nodes of the
graph are computing entities exchanging messages along the edges of the graph. Nodes are given
arbitrary distinct identities (IDs) in a range polynomial in n, in n-node networks. Hence, every ID
can be stored on O (logn) bits.

In the congest model, all nodes start simultaneously, and execute the same algorithm in parallel.
Computation proceeds synchronously, in a sequence of rounds. At each round, every node
• performs some individual computation,
• sends messages to neighbors in the network, and
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• receives messages sent by neighbors.
The main constraint imposed by the congest model is a restriction of the amount of data that can
be transferred between neighboring nodes during a round: messages are bounded to be of O (logn)
bits.
The O (logn)-bit bound on the message size enables the transmission of a constant number of

IDs between nodes at each round. The congest model is well suited for analyzing the impact of
limiting the throughput of a network on its capacity to solve tasks efficiently. The complexity of a
distributed algorithm in the congest model is expressed in number of rounds.
In this paper, we are mostly interested in solving tasks locally. Hence, we are mainly focussing

on the design of algorithms performing in a constant number of rounds in the congest model.

2.2 Distributed Property Testing
Let P be a graph property like, e.g., planarity, cycle-freeness, bipartiteness, Ck -freeness, etc. Let
ϵ ∈ (0, 1). Recall that a graphG is said to be ϵ-far from satisfying P if removing and/or adding at
most ϵm edges to/from G cannot result in a graph satisfying P.
A distributed property testing algorithm for P is a randomized algorithm which performs as

follows. Initially, every node is only given its ID as input. After a certain number of rounds, every
node must output a value in {accept, reject}. The algorithm is correct if and only if the following
two conditions are satisfied.

• if G satisfies P, then Pr[every node outputs accept] ≥ 2/3;
• if G is ϵ-far from satisfying P, then Pr[at least one node outputs reject] ≥ 2/3.

The algorithm is 1-sided error if, whenever G satisfies P, the probability that every node outputs
accept equals 1, i.e., if G satisfies P, then
• if G satisfies P, then Pr[every node outputs accept] = 1.

Let k ≥ 3. A k-node cycle, or simply k-cycle for short, consists of k nodes xi , and k edges
{xi ,xi+1 mod k }, i = 0, . . . ,k − 1.

Such a graph is denoted by Ck . Given a graph G, its set of nodes (resp., edges) is denoted by V (G )
(resp., E (G )). Throughout the paper, n = |V (G ) |, andm = |E (G ) |.

Recall that a graph H is a subgraph of a graph G if and only if
V (H ) ⊆ V (G ) and E (H ) ⊆ E (G ).

Definition 2.1. A networkG isCk -free if and only ifG does not contain a k-node cycle as a subgraph.

Our objective is the design of efficient distributed property testing algorithms for Ck -freeness,
for all k ≥ 3.

3 DETECTING CYCLES
In this section, we establish our main result.

Theorem 3.1. For every k ≥ 3, there exists a 1-sided error distributed property testing algorithm
for Ck -freeness performing in O ( 1ϵ ) rounds in the congest model.

The rest of the section is dedicated to the proof of the theorem. Let us fix k ≥ 3. We need to
show that there exists a distributed tester for Ck -freeness performing in O ( 1ϵ ) rounds, satisfying
Pr[every node outputs accept] = 1 if G is Ck -free, and Pr[at least one node outputs reject] ≥ 2/3
otherwise.
Our tester algorithm for detecting Ck proceeds in two phases:
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(1) determining a candidate edge e susceptible to belong to some cycle Ck , if any;
(2) checking the existence of a cycle Ck passing through e .

Only the first phase is randomized, the second phase is fully deterministic.

3.1 Description of Phase 1
We assign weights to edges such that, with sufficient high probability, there is a unique edge e with
minimum weight. For this purpose, we exploit the isolation lemma in [28]. We start by assigning
to each node u a weight w (u) ∈ [1, 2n]. Then we assign to each edge e = {u,v} the weight
r (e ) = w (u) +w (v ), called the rank of e . Note that one round suffices for assigning a rank to every
edge. The isolation lemma guarantees that, with probability at least 1/2, there is a unique edge with
minimum rank.
Ideally, we would like to let all nodes of the graph know the edge of minimum rank, and start

performing the second phase of the algorithm for that edge. This is hard to achieve in a constant
number of rounds, since identifying the edge with minimum rank (e.g., by leader election) requires
a number of rounds equal to the diameter. So, we shall perform Phase 2 of our algorithm for all
edges in parallel. However, for avoiding consuming too much bandwidth, the process carries on
by stopping the search related to edges with high ranks. More specifically, we proceed as follows.
Every node u selects the edge eu of lowest rank among all its incident edges, where ties are broken
arbitrarily (e.g., based on the ID of extremities), and starts performing the second phase, which
consists in checking whether there exists a cycle Ck passing through eu .

To avoid congestion, every node performs only instructions of Phase 2 related to the edge with
smallest rank it ever become aware of during the execution of the algorithm (again, ties are broken
arbitrarily), in a way similar to the prioritized search in [7]. Specifically, if a node u currently
involved in checking the existence of a cycle Ck passing through e receives a message related to
checking the existence of a cycle Ck passing through e ′ , e , then u discards this message if

r (e ′) > r (e ),

and otherwise switches to checking the existence of cycles passing through e ′. This guarantees
that no two messages corresponding to checking the existence of a cycle Ck passing through two
different edges ever traverse an edge in the same direction at the same round. Moreover, if there
is a unique edge e with minimum rank, then no nodes discard messages related to checking the
existence of a cycleCk passing through e , and thus the checking phase for e will not be interrupted.

Note that it might be the case that a node becomes inactive at a given round. This is for instance
the case if it performed the instructions of Phase 2 for detecting a cycle passing through an edge e
at some round, and subsequently received messages related to edges e ′ of higher ranks, which leads
that node to discard all received messages. As a result, a node may receive no messages at some
rounds, in case all its neighbors discarded all their messages at these rounds. Yet, no nodes stop
performing Phase 2, as it may happen that, later, messages related to an edge e ′ of rank smaller
than the one of e will be received. Observe that no nodes need to know the edge of minimum
rank for performing Phase 2. In fact, some nodes won’t even eventually identify the edge with
minimum rank. Indeed, consider for instance the two edges e and e ′ with smallest ranks, and
assume r (e ′) > r (e ). If e and e ′ are at distance > 2k , then the two parallel search for a cycle of
length k passing through e , and for a cycle of length k passing through e ′ do not interfere, and so
the search will complete for the edge e ′, even though e ′ is not the edge with minimum rank.
Before analyzing Phase 1, we now describe Phase 2, which is the core of the property testing

algorithm for Ck -freeness. For simplifying the presentation, let us fix some edge

e = {u,v},
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and let us describe Phase 2 for edge e only, assuming that no other checks for other edges are
running concurrently. Likewise, the reader can assume that e is the unique edge with minimum rank
in G, which guarantees that the Phase 2 for e will not be slowed down by messages corresponding
to Phase 2 applied to other edges.

3.2 Description of Phase 2
We describe the algorithm used to check whether there exists a cycle Ck passing through a given
edge e . The algorithm proceeds in ⌊ k2 ⌋ rounds. At each round t = 1, . . . , ⌊ k2 ⌋ of the algorithm,
sequences of t IDs are exchanged between nodes participating to the search for Ck . Every node
which receives some sequences at round t concatenates its own ID to each received sequence, and
sends the resulting collection of sequences to all its neighbors.
Before describing our general algorithm, let us first show how to detect a C5 passing through

e = {u,v}, as a warm up (Recall that even testing C5-freeness was open prior to this work). As it
will be shown, the trivial “append-and-forward” technique is enough to perform C5-detection in
⌊ k2 ⌋ = 2 rounds, but it cannot be used to detect C7 in ⌊ k2 ⌋ = 3 rounds, because it requires too much
bandwidth for large k .

3.2.1 Detecting C5.

The distributed algorithm is described in Algorithm 1. In this algorithm, Round 1 consists in
nodes u and v sending their IDs to their neighbors (all other nodes are doing essentially nothing,
just sending empty messages). A node may thus receive zero, one, or two IDs depending on whether
it is adjacent to none, one of, or both nodes u and v . Each node x which received at least one of
these IDs forms a set R of 1-element sequences of the form (ID(w )), where w ∈ {u,v}. Such a
node appends its own ID to each sequence, and sends the resulting set S of sequences to all its
neighbors at Round 2. (If R = ∅ then S = ∅ as well). A node z that, at Round 2, receives a sequence
(ID(u), ID(x )), and a sequence (ID(v ), ID(y)) from distinct neighbors x and y, respectively, both
distinct from u and v , has detected the presence of the cycle (u,x , z,y,v ).

Algorithm 1 C5 detection for edge e = {u,v} executed by node with IDmyid .
1: function detect_C5(u,v)
2: if myid = u ormyid = v then
3: S ← {(myid )}
4: else
5: S ← ∅

6: end if
7: send S to all neighbors
8: receive messages from all neighbors
9: R ← received sequences
10: S ← appendmyid at the tail of each L ∈ R
11: send S to all neighbors
12: receive messages from all neighbors
13: if received two disjoint sequences then
14: output reject
15: else
16: output accept
17: end if
18: end function
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Figure 1 shows an example of C5-detection. At Round 1, x3 receives messages from both u and
v , and thus sends the sequences {(ID(u), ID(x3)), (ID(v ), ID(x3))} to its neighbors at Round 2. At
Round 1, x6 receives a message fromv , and thus sends {(ID(v ), ID(x6))} to its neighbors at Round 2.
At Round 2, x10 has received the sequences in {(ID(u), ID(x3)), (ID(v ), ID(x3)), (ID(v ), ID(x6))},
and thus detects the cycle (u,x3,x10,x6,v ).

x1 x2 x3 x4 x5 x6 x7 x8

{(u)} {(v)}

u v

{(u, x1)}
{(u, x3),
(v, x3)} {(v, x6)}

{(v, x8)}

{(u, x3), (v, x3), (v, x6)}

x9

x10

x11
x12

Fig. 1. Detecting C5 passing through {u,v}

This trivial “append-and-forward” technique can obviously be extended to detecting Ck , for
arbitrary k ≥ 5. However, a node of high degree may have to forward very many sequences during
a round (this is typically the case of a node connected to u and/or v via many vertex-disjoint
paths of same length), violating the bandwidth restriction of the congest model. In fact, even for
detectingC7 this basic technique fails, because a node at distance 2 from u (resp., from v) may have
to forward a number of sequences that is linear in the degree of u (resp., v), which could depend
on n.
The main concern of our algorithm is therefore to limit the maximum number of different

sequences of IDs to be sent by each node during the execution. Yet, it is crucial that nodes forward
sufficiently many sequences of IDs to guarantee detection. (For instance, in the graph depicted on
Fig. 1, node x3 receives both ID(u) and ID(v ) at the first round. If x3 would forward only the sequence
(ID(v ), ID(x3)) to its neighbors, the 5-cycle will not be detected by x10). In other words, discarding
too many sequences may prevent the algorithm from detecting the cycle, while forwarding too
many sequences overloads the communication links. We show that sending a constant number of
sequences is sufficient to guarantee cycle detection whenever these sequences are carefully chosen.
We first show how to circumvent the bandwidth limitation while testing C7-freeness, and we then
show how to generalize the procedure for any Ck , k ≥ 3.

3.2.2 Detecting C7.

Algorithm 2 shows how to test C7 freeness in three rounds. The procedure is very similar to
Algorithm 1, only Lines 12-18 have been added. This algorithm essentially uses the append-and-
forward technique, but limiting to six the number of sequences of length 3 that can be sent, three
sequences for each initial node u or v . Notice that a node may receive Ω(n) sequences of length 2.
In Algorithm 2, just three (per initial node) out of this up to Ω(n) sequences are forwarded at the
3rd round.
To see why there is no need to send more than three sequences of length 3 at Round 3, let us

consider a node z that received three triples of the form
(ID(u), ID(x1), ID(a)), (ID(u), ID(x2), ID(a)), and (ID(u), ID(x3), ID(a))
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Algorithm 2 C7 detection for edge e = {u,v} executed by node with IDmyid .
1: function detect_C7(u,v)
2: if myid = u ormyid = v then
3: S ← {(myid )}
4: else
5: S ← ∅

6: end if
7: send S to all neighbors
8: receive messages from all neighbors
9: R ← received sequences
10: S ← appendmyid at the tail of each L ∈ R
11: send S to all neighbors
12: receive messages from all neighbors
13: R ← received sequences
14: c1 ← number of sequences in R starting with u
15: c2 ← number of sequences in R starting with v
16: S1 ←min{c1, 3} sequences starting with u in R, chosen arbitrarily
17: S2 ←min{c2, 3} sequences starting with v in R, chosen arbitrarily
18: S ← S1 ∪ S2
19: S ← appendmyid at the tail of each L ∈ S
20: send S to all neighbors
21: receive messages from all neighbors
22: if received two disjoint sequences then
23: output reject
24: else
25: output accept
26: end if
27: end function

from some node a, and three triples
(ID(v ), ID(y1), ID(b)), (ID(v ), ID(y2), ID(b)), and (ID(v ), ID(y3), ID(b))

from some node b. Then, one can easily check that there must exists xi andyj , 1 ≤ i, j ≤ 3, satisfying




xi , yj
xi , b
yj , a

which is a witness of the 7-cycle
(u,xi ,a, z,b,yj ,v ).

Letting a and b sending more triples would have been of no help, as three are sufficient. Note that,
assuming the existence of the 7-cycle (u,xi ,a, z,b,yj ,v ), it may have been the case that a received
less than three pairs at the second round, leading that node to send less than three triples at the
third round. In this case, even if b received more than three pairs at the second round, a similar
reasoning as above shows that having b sending more than three triples at the third round would
be useless.

Note that, with the technique of Algorithm 2, not less than three triples containing u, and three
containing v may be sent at the third round. Indeed, let us consider the example depicted on Figure
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2. In this example, if Node a sends {(u,x1,a), (u,b,a), (v,x1,a), (v,b,a)} to z at the third round,
while Node b sends {(u,x1,b), (u,a,b), (v,x1,b), (v,a,b)} to z at the same round, then z cannot
detect the 7-cycle.

z

x1

x2

u

v b

a

Fig. 2. Detecting C7 passing through {u,v}

We now move on to the general case, where we show that, for every k ≥ 3, we do not need to
send more than a constant number of sequences at each round.

3.2.3 General case: detecting Ck for every k ≥ 3.

The pseudocode of our algorithm for detecting a Ck including a given edge {u,v} is depicted as
Algorithm 3. Algorithm 3 is essentially of the form “append-and-forward” (cf. Instruction 25), but
selects only a few lists to be sent at each round. The “seed” lists are just formed by ID(u) and ID(v )
(cf. Instruction 3). The algorithm proceeds in ⌊ k2 ⌋ rounds (cf. the for-loop of Instruction 9). At each
round, every node that received non-empty messages collects all IDs that were contained in these
messages, distinct from its own ID, in a set I (cf. Instructions 12-14). Then, at round t , a set of k − t
“fake” IDs are added in I (cf. Instruction 15). Intuitively, these fake IDs represent the yet unknown
IDs of nodes which could potentially form a Ck together with the nodes of some list received by
the current node at this round. They are used for the purpose of selecting the sequences that will
be forwarded at the next round. Specifically, in order to form the collection S of lists that will be
sent to neighbors at the next round t (cf. Instruction 29), the collection X of all possible sets X of
k − t IDs are constructed, including fake IDs (cf. Instruction 16).

The core of the algorithm is the construction of S by the Instructions from 17 to 25. Before
describing this crucial part of Algorithm 3 in detail, let us complete the description of the final part
of the algorithm.
At Round ⌊ k2 ⌋, all lists of IDs sent and received at this round, or received during the previous

round, are considered, and stored in a set of lists R (cf. Instructions 33-38). If a nodew has two lists
L1 and L2 in R such that

|L1 ∪ L2 ∪ {ID(w )}| = k,

then Nodew outputs reject, as a cycle Ck has been discovered.
Before showing that a cycle Ck formed by all nodes with IDs in L1 ∪ L2 ∪ {ID(w )} exists if and

only if |L1 ∪ L2 ∪ {ID(w )}| = k , we first return to the core of Algorithm 3, that is the set up of the
set of lists R.

Construction of the set of lists to be sent at each round. For comfort and ease of reading, we repeat
below the instructions performed by Algorithm 3 for computing the set S of ordered sequences to
be sent to all neighboring nodes.
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Algorithm 3 Ck detection for edge e = {u,v} executed by node with IDmyid .
1: function detectCk(u,v)
2: if myid = u ormyid = v then ▷ initial computation at round 1
3: S ← {(myid )} ▷ S is a set of sequences of IDs
4: else
5: S ← ∅

6: end if
7: send S to all neighbors ▷ send operation at round 1
8: receive messages from all neighbors ▷ receive operation at round 1
9: for t = 2 to ⌊ k2 ⌋ do ▷ rounds 2 to ⌊ k2 ⌋
10: if non-empty messages have been received at round t − 1 then
11: R ← set of all ordered sequences of IDs received at round t − 1
12: ▷ R contains sequences of t − 1 IDs
13: remove from R all sequences containingmyid
14: I ← set of IDs included in at least one sequence in R
15: I ← I ∪ {−1, . . . ,−k + t } ▷ add k − t distinct “fake” IDs to I
16: X ← collection of all sets X of k − t IDs in I
17: S ← ∅ ▷ initializes the set of sequences to be sent
18: for all L ∈ R do
19: C ← {X ∈ X : X ∩ L = ∅} ▷ C is a sub-collection of sets X of k − t IDs
20: if C , ∅ then
21: S ← S ∪ {L} ▷ S contains ordered sequences of existing IDs
22: X ← X \ C

23: end if
24: end for
25: appendmyid at the tail of each L ∈ S ▷ S contains sequences of t IDs
26: else
27: S ← ∅

28: end if
29: send S to all neighbors ▷ send operation at round t
30: receive messages from all neighbors ▷ receive operation at round t
31: end for

32: if non-empty messages have been received at any round 1, . . . , ⌊ k2 ⌋ then
33: if k is odd then
34: R ← {sequences received at round ⌊ k2 ⌋} ▷ R contains sequences of equal length
35: else
36: R ← S ∪ {sequences received at round ⌊ k2 ⌋ − 1}
37: ▷ R contains sequences of lengths differing by at most 1
38: end if
39: if ∃L1,L2 ∈ R : |L1 ∪ L2 ∪ {myid }| = k then
40: output reject ▷ a Ck has been detected
41: else output accept
42: end if
43: else output accept
44: end if
45: end function
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S ← ∅

for all L ∈ R do
C ← {X ∈ X : X ∩ L = ∅}
if C , ∅ then
S ← S ∪ {L}
X ← X \ C

end if
end for
appendmyid at the tail of each L ∈ S

Recall that R denotes the set of all ordered sequences L of IDs received at this round, and X
denotes the collection of all sets of k − t elements in I, where I is the set of all collected IDs at
this round, including the fake IDs in {−1,−2, . . . ,−k + t }.

For each sequence L ∈ R the algorithm takes the decision whether to include L in S or not. For
this purpose, the algorithm checks whether there is a set X ⊆ I with k − t elements which does
not intersect L. If this is the case, such a list L is added to S. The intuition is that L (of length t − 1
at round t ) may potentially be extended by adding the current node, plus k − t other nodes, so that
to form a cycle Ck . These nodes can be nodes whose IDs were collected before (but not in L), or
nodes whose existence is only postulated (hence the use of fake IDs).

For instance, Fig. 3 displays the case where
L = (y1,y2, . . . ,yt−1)

and
X = {x1,x2, . . . ,xk−t }

are considered by some node z, depicted as a star ⋆ on the figure. The nodes in L are depicted in
light grey, while the nodes in X are depicted in black. Note that X is a set, and the ordering of the
xi ’s on the figure is arbitrary. The list L is placed in S because there are k − t nodes, i.e., those in X ,
which can potentially form a k-cycle with z and all the nodes in L.

yt-1

y2
y1

x1
x2

x
k-t

z

Fig. 3. Construction of R

Importantly, all sets X in C = {X ∈ X : X ∩ L = ∅} are then removed from X, so that not to be
considered again for another list L′. The intuition is that if there is a k-cycle formed by the nodes
in L′ ∪ {z} ∪ X for some list L′ ∈ R where z is the actual node, then the nodes in L ∪ {z} ∪ X also
form a k-cycle, and therefore there is no need to keep track of both L and L′. Therefore, as soon as
L has been identified, all “witness sets” X ∈ C that qualify L for being forwarded at the next round
can safely be removed from X.
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For instance, considering again the example of Fig. 3, as long as L has been placed in S, the set
X can be removed from X since it could only be used to identify another sequence

L′ = (y ′1,y
′
2, . . . ,y

′
t−1)

potentially forming a k-cycle with X , while we are not interested in enumerating all cycles Ck but
just in determining whether there is one.

Note here the role of the fake IDs that were added to I:
• First, observe that the first sequence L ∈ R that is considered in the for-loop is necessarily
placed in S (the order in which these sequences are enumerated is arbitrary). Indeed,

X = {−1,−2, . . . ,−k + t }

is originally in X, and for sure does not intersect L.
• Second, notice that the fact that all setsX ∈ C can be safely removed fromX is not necessarily
obvious if X contains fake IDs, as such an X does not fully specify the cycle. Nevertheless, we
shall show that those sets can still be removed, without preventing the algorithm to detect a
cycle, if there is one.

To give a more precise intuition of the use of fake IDs in our algorithm, let us consider a cycle
of length 9, where node IDs are from 1 to 9, consecutively around the cycle (hence, the edges are
{1, 2}, . . . , {8, 9} and {1, 9}. Let us assume that one wants to detect C9, starting from the edge {1,9}.
Then, in particular, when node 3 receives the sequence (1, 2) from node 2, we want that node
to send the sequence (1, 2, 3) to node 4. This is the role of Lines 17-25 in Algorithm 3, where R
contains just the sequence (1, 2). In Algorithm 3, if one would not add fake IDs to I, then I = 1, 2,
andX would become empty as one cannot construct sequences of length k − t = 9−3 = 6 using IDs
from I. As a consequence, C would also be empty as it results from an intersection with the empty
set, and we would not add (1, 2) to S. It would follow that node 3 does not send any sequence.
Instead, if we add the fake IDs −1,fi,−6 to I, then the sequence (−1, . . . ,−6) is in X, and since
(1, 2) is disjoint with {−1, . . . ,−6}, the sequence (1, 2) is added to S, and the sequence (1, 2, 3) will
be sent, as desired. The same reasoning applies all around the cycle.

3.3 Analysis of our Algorithm
We start by proving the correctness of the algorithm, before analyzing its performances.

Lemma 3.2. For every t = 1, . . . , ⌊ k2 ⌋, every sequence L contained in a non-empty set S sent at
round t is composed of t distinct IDs, and forms a simple path in the graph with one extremity equal to
the sender, and the other equal to u or v .

Proof. By induction on t . The lemma trivially holds for t = 1 (cf. Instruction 3). All messages
set to be sent at round t + 1 are constructed by appending the ID of the current node to sequences L
received at round t (cf. Instruction 25), and these sequences L do not contain the ID of the current
node (cf. Instruction 13). Therefore, every sequence sent at round t +1 are composed of t +1 distinct
IDs. Moreover, by induction, a sequence L received at round t by a node x from a neighboring
node y forms a simple path in the graph with one extremity equal to y. Therefore, as long as
ID(x ) < L (which is guarantied by Instruction 13), the sequence L ∪ {ID(x )} forms a simple path in
the graph with one extremity equal to x . The other extremity remains unchanged, and thus equal
to u or v . □

Lemma 3.3. For any graph G, and every edge e = {u,v} of G, Algorithm 3 running on G satisfies
that all nodes output accept if and only if there are no Ck passing through the edge e .
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Proof. Let us assume that some nodew outputs reject, and let us show that there is indeed a
k-cycle passing through e . From Instruction 39, this nodew satisfies that there exist two sequences
L1,L2 ∈ R such that

|L1 ∪ L2 ∪ {ID(w )}| = k .

By Lemma 3.2, both sequences are simple paths of length at most ⌊ k2 ⌋ from u or v to a neighbor
ofw . Let

L1 = (x1,x2, . . . ,xℓ ),

and
L2 = (y1,y2, . . . ,ym ),

where ℓ ≤ ⌊k/2⌋ andm ≤ ⌊k/2⌋.
• If k is odd, then |L1 ∪ L2 ∪ {ID(w )}| = k implies that ℓ =m = ⌊k/2⌋,w is distinct from every
xi and every yj , and every xi is distinct from every yj , i = 1, . . . , ℓ, j = 1, . . . ,m. In particular,
since x1 , y1, we have {x1,y1} = {u,v}. It follows that

(x1,x2, . . . ,xℓ,w,ym ,ym−1, . . . ,y1)

is a k-cycle passing through e .
• If k is even, then we claim that

(L1 ∈ S and L2 < S) or (L1 < S and L2 ∈ S).

Indeed,w tries to construct a cycle from sequences constructed in Line 36 of the algorithm.
Such sequences can contain either sequences in S of length k/2 constructed byw itself (such
sequences contain ID(w )), or sequences of length k/2− 1 received byw from other nodes. Let
us consider two distinct sequences L and L′ in S. Since they are both of length k/2, and since
they both contain ID(w ), we have |L ∪ L′ ∪ {ID(w )}| ≤ k − 1. Thus, at least one sequence
L1 or L2 must not be contained in S. Moreover, the sequences received at round k/2 − 1 are
of length k/2 − 1, and thus |L1 ∪ L2 ∪ {ID(w )}| = k implies that at least one of these two
sequences is necessarily in S. Hence the claim holds. So, let us now assume, w.l.o.g., that
L1 ∈ S and L2 < S. It follows that L1 is of length k/2 and contains ID(w ), and that L2 is of
length k/2 without containing ID(w ). The equality |L1 ∪ L2 ∪ {ID(w )}| = k then implies that
w is distinct from every xi and every yj , and every xi is distinct from every yj , i = 1, . . . , ℓ,
j = 1, . . . ,m. In particular, since x1 , y1, we have {x1,y1} = {u,v}. It follows that

(x1,x2, . . . ,xℓ,w,ym ,ym−1, . . . ,y1)

is a k-cycle passing through e .
Therefore, for both cases, k even or odd, the existence of a node which outputs reject implies the

existence of a cycle passing through e .

Conversely, let us assume that there is a k-cycle passing through e , and let us show that at least
one node detects that cycle (i.e., outputs reject). Observe that a modified version of the algorithm
where the construction of S in the for-loop of Instruction 18 is replaced by

S ← R

clearly detects the cycle. Indeed, at each round t , all the possible paths of length t from the edge to
the actual node are transmitted. However, there can be too many such paths, and transmitting all
of them would not fit with the constraints of the congest model. Hence, some paths are discarded
by Algorithm 3. Yet, we show that Algorithm 3 keeps sufficiently many options for detecting the
cycle. Let us fix some round t ∈ {2, . . . , ⌊ k2 ⌋}, and a nodew . Let us consider a discarded sequence

L = (x1,x2, . . . ,xt−1)
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atw , and let us assume that the existing k-cycle precisely includes that sequence of nodes, that is,
the k-cycle is of the form

x1,x2, . . . ,xt−1,w,y1, . . . ,yk−t

where {x1,yk−t } = {u,v}. Since the sequence L has been discarded, we have

{X ∈ X : X ∩ L = ∅} = ∅

where X is the collection of all remaining sets X at the time where the sequence L is considered in
the for-loop of Line 18. (Recall that, initially, every X ∈ X is composed of k − t IDs in I, where I
is the set of known IDs, including the “fake” IDs −1, . . . ,−k + t ). This implies that all sets X ∈ X
that do not intersect L have been removed from X when considering other sequences in previous
executions of the for-loop. Let J be the set of indices j such that yj is known byw , i.e., such that
ID(yj ) ∈ I. Among others, all sets

X = {yj , j ∈ J } ∪ F

where F ⊆ {−1, . . . ,−k + t } and |F | = k − t − |J | have been removed when considering some other
sequence

L′ = (z1, z2, . . . , zt−1)

during a previous execution of the for-loop. In particular, L′ ∩ {yj , j ∈ J } = ∅. By the definition of J ,
it follows that

{z1, z2, . . . , zt−1} ∪ {y1, . . . ,yk−t } = ∅

since ID(zi ) ∈ I for every i = 1, . . . , t − 1. Therefore, there exists another cycle,

z1, z2, . . . , zt−1,w,y1, . . . ,yk−t

where {z1,yk−t } = {u,v}. Therefore, Algorithm 3 satisfies that, at every round t ∈ {2, . . . , ⌊ k2 ⌋}, if
w belongs to a cycle

x1,x2, . . . ,xt−1,w,y1, . . . ,yk−t

passing through e = {x1,yk−t }, andw receives the sequence x1,x2, . . . ,xt−1, then it is guaranteed
that ifw does not send the sequence (x1,x2, . . . ,xt−1,w ) to y1, thenw necessarily sends another
sequence (z1, z2, . . . , zt−1,w ) to y1 where

z1, z2, . . . , zt−1,w,y1, . . . ,yk−t

is a cycle passing through e = {z1,yk−t }. Therefore, the nodes antipodal to e (that is, the nodes at
distance ⌈k2 ⌉ − 1 from e in the cycle) will detect a cycle at round ⌊ k2 ⌋, and will output reject, as
desired. □

In the next lemma, we show that, for a fixed k , the messages exchanged during the execution of
Algorithm 3 are of constant size.

Lemma 3.4. For every t = 1, . . . , ⌊ k2 ⌋, every message sent by nodes at round t is composed of at
most (k − t + 1)t−1 ordered sequences of t IDs.

Proof. For the ease of notation, we rephrase the statement of the lemma as: For every t =
0, . . . , ⌊ k2 ⌋ − 1, every message sent by nodes at round t + 1 is composed of at most (k − t )t ordered
sequences of t + 1 IDs. Let us fix t ∈ {0, . . . , ⌊ k2 ⌋ − 1}, and a nodew , and let us focus on round t + 1.
For i = 0, . . . , t , let us then define Property Pi as:

for every set of t − i IDs,w sends at most (k − t )i sequences that contain that set.
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Note that Property Pt establishes the lemma.
Property P0 stating that, for every set of t IDs,w sends at most one sequence that contains that

set, follows from the fact that, in the construction of S in the for-loop of Instruction 18, this set
will be sent only once, in one of all its possible orderings.

Let us assume that Pi−1 holds, and let us establish Pi . Consider the case where, during the
execution of the for-loop of Instruction 18, we already added (k − t )i sequences to S containing
the same t − i elements x1,x2, . . . ,xt−i . That is, S contains

{x1,x2, . . . ,xt−i ,y1,1,y1,2, . . . ,y1,i }

{x1,x2, . . . ,xt−i ,y2,1,y2,2, . . . ,y2,i }

...

{x1,x2, . . . ,xt−i ,y(k−t )i ,1,y(k−t )i ,2, . . . ,y(k−t )i ,i }

After these sequences have been added to S, the remaining sequences in X must contain at least
one element of each such sequences. That is, for every X ∈ X, we have

(x1 ∈ X ) ∨ (x2 ∈ X ) ∨ . . . ∨ (xt−i ∈ X )

or
(k−t )i∧
j=1

(
(yj,1 ∈ X ) ∨ (yj,2 ∈ X ) ∨ . . . ∨ (yj,i ∈ X )

)
. (1)

Indeed, if a sequence does not contain x1,x2, . . . ,xt−i , then it should contain an element ya,b for
each sequence. We can now apply the induction hypothesis to show that the same element ya,b
cannot appear more than (k − t )i−1 times. Indeed, the sequence x1,x2, . . . ,xt−i ,ya,b is of length
t − (i − 1), and therefore, by induction, it cannot appear more than (k − t )i−1 times.

Therefore, since there are (k − t )i = (k − t )i−1 · (k − t ) sequences in S containing the same
t − i elements x1,x2, . . . ,xt−i , Eq. (1) implies that a sequence X ∈ X must contain k − t different
elements. However, sequences in X are of size k − t − 1. Therefore, the formula in Eq. (1) cannot be
satisfied. It follows that, for every X ∈ X, we have

(x1 ∈ X ) ∨ (x2 ∈ X ) ∨ . . . ∨ (xt−i ∈ X ).

Let us now consider another sequence
L = (x1,x2, . . . ,xt−i , z1, . . . , zi )

taken from R. This sequence will not be added to S because every sequence X ∈ X contains at
least one element from {x1,x2, . . . ,xt−i }, which implies that L ∩ X , ∅. □

Remark. By Lemma 3.4, we get that, for detecting k-cycles, the number of IDs sent by a node at
each round is at most ( k2 )

k/2+O (1) . Computing these IDs is therefore time-consuming, but observe
that, since computing the length of the longest cycle in a graph is hard, it is unlikely (unless
P = NP) that one can detect k-cycles in time poly(k ). Moreover, the sequential algorithm in [27]
for detecting Ck , based on a “method of representative” similar to the one used in Algorithm 3,
also uses roughly k! “representatives”, i.e., in our setting, at least roughly k! sequences of O (k ) IDs.
In fact, we do not know whether it could be possible to send significantly less sequences at each
round. Note that there is a general exponential lower bound on the size of the sets for the “method
of representative” (see [14, 27]). However, it is not clear whether this lower bound applies to the
specific setting of this paper, i.e., finding k-cycles in graphs. On the other hand, there are graphs
in which our algorithm, i.e., Algorithm 3, does produce exponentially many sequences of k IDs
to be sent by a node at some round — that is, the bound given by Lemma 3.4 is essentially tight.
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For instance, let us consider a graph in which the edge e = {u,v} is part of a multi-layered graph
with ⌈k/2⌉ + 1 layers L0,L1, . . . ,L ⌈k/2⌉ where, L0 = {u,v}, and, for i ≥ 1, Li is a 2-node stable,
and Li and Li−1 form a complete bipartite graph. Let us assume that nodes in this multi-layered
graph are labeled with IDs from 1 to 2(1 + ⌈k/2⌉) in increasing order, layer by layer, starting from
L0, then L1, and so on until L ⌈k/2⌉ . In this graph, nodes at level L1 receive two sequences at
round 1. Then, by induction on the number of rounds, let us assume that, at the end of round t ,
nodes with IDs 2t + 1 and 2t + 2 in layer Lt receive 2t different sequences of IDs, of the form
(x1, . . . ,xt ) where xi ∈ {2i − 1, 2i} for i = 1, . . . , t . By line 16 of Algorithm 3, it follows from the
induction hypotheses that, for every received sequence L = (x1, . . . ,xt ), the set X contains the
set Y = {y1, . . . ,yt ,−1, . . . ,−k + 2t } as subset, where yi = 4i − xi − 1 for i = 1, . . . , t . Since L is
the only sequence in R that is disjoint with Y , it follows that L will be added to S by Algorithm 3.
Thus, each of the two nodes 2t + 1 and 2t + 2 at layer Lt will append its ID to L, and will send it to
the next layer Lt+1, in which the nodes will receive 2t+1 sequences of the form (x1, . . . ,xt+1) such
that xi ∈ {2i − 1, 2i} for i = 1, . . . , t + 1. Therefore, in particular, 2 ⌈k/2⌉−1 sequences of IDs are sent
between layer L ⌈k/2⌉−1 and layer L ⌈k/2⌉ .

3.4 Proof of Theorem 3.1
Let us first compute the probability of detecting a cycle in a network which is ϵ-far from being
Ck -free. We exploit the fact that, in such a network, there must be many edge-disjoint copies of Ck ,
as stated below:

Lemma 3.5 ([21]). Let H be any graph. Let G be anm-edge graph that is ϵ-far from being H -free.
Then G contains at least ϵm/|E (H ) | edge-disjoint copies of H .

Hence, a graph G that is ϵ-far from being Ck -free contains at least ϵm/k edge-disjoint copies of
Ck , i.e., ϵm edges belong to edge-disjoint cycles.

In order to compute the probability of having a unique edge of minimum rank, we exploit the
isolation lemma.

Lemma 3.6 (Isolation Lemma [28]). Let n and N be positive integers, and let F be an arbitrary
family of subsets of the universe {1, . . . ,n}. Suppose each element x ∈ {1, . . . ,n} in the universe
receives an integer weightw (x ), each of which is chosen independently and uniformly at random from
{1, . . . ,N }. The weight of a set S ∈ F is defined asw (S ) =

∑
x ∈S w (x ). Then, with probability at least

1 − n/N , there is a unique set in F that has minimum weight among all sets of F .

The next lemma is a direct consequence of the Isolation Lemma.

Lemma 3.7. The probability that there is a unique edge with minimum rank after the execution of
Phase 1 is at least 1/2.

Proof. Set n = |V |, F = E, and N = 2n, and then apply Lemma 3.6. □

Let G be a graph that is ϵ-far from being Ck -free, and let E be the event “there is a unique edge
with minimum rank after the execution of Phase 1, and this edge belongs to a k-cycle”. Combining
the previous two lemmas, we get that

Pr[E] ≥ ϵ/2.

Now, if event E holds, then, by Lemma 3.3, at least one node will output reject, as desired. To boost
the probability of detecting a cycle in a graph that is ϵ-far from being Ck -free, we repeat the whole
process 2 ln 3

ϵ times. In this way, the probability that E holds in at least one of these repetitions is at
least 2/3 as desired.
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By Lemma 3.4, each repetition of the whole process of executing Phases 1 and 2 requires a
constant number of rounds. This completes the proof of Theorem 3.1. □

4 CONCLUSION
In this paper, we have proved that, for every k ≥ 3, there exists a 1-sided error distributed property
testing algorithm forCk -freeness, performing inO (1/ϵ ) rounds.Wemention hereafter some possible
directions for further work.
It was proved in [21] that, for every graph pattern H with at most 4 nodes, there exists a

distributed property testing algorithm for H -freeness, performing in constant number of rounds,
and the question of whether a distributed property testing algorithm for H -freeness exists for every
arbitrarily large pattern H was left open in [21]. The techniques in this paper does not seem to
extend to arbitrary patterns. To see why, consider H as a k-cycle with a chord between two nodes.
The pruning technique in Algorithm 3 discarding some sequences of nodes is oblivious to the
neighborhood of the nodes in these sequences. Hence, while Algorithm 3 makes sure to keep at
least one sequence corresponding to a cycle, if such cycle exists, it may well discard the sequence
corresponding to the cycle in H , and keep a sequence without a chord. It was also pointed out
in [21] that their techniques do not seem to extend to induced subgraphs2. The same apparently
holds for the techniques in this paper. The reasons are the same as for detecting a given graph
pattern H . Indeed, our pruning mechanism is not adapted to detect an induced cycle. It may well
discard a sequence corresponding to the induced cycle, and keep a sequence with chords.
We believe that proving or disproving the existence of distributed property testing algorithms

for H -freeness, as a subgraph or as an induced subgraph, are potentially challenging but definitely
rewarding issues whose study is susceptible to shed new light on the congest model, and, more
generally, to improve our understanding of local distributed computing in presence of bandwidth
limitation. The most recent results in this field (see [15]) extend the results in this paper by
establishing that H -freeness can be tested in O (1/ϵ ) rounds for every graph pattern H composed of
a forest F , an edge e , and arbitrary connections between the extremities of e and the nodes of F .
K5 is the smallest graph pattern that cannot be described as a “forest plus one edge”. Proving or
disproving that K5-freeness can be tested in O (1) rounds in the congest model is therefore quite
an intriguing problem.
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