

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Myers, Shanna; Mikola, Anna; Blomberg, Kati; Kuokkanen, Anna; Rosso, Diego Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge

Published in: Water Science and Technology

DOI: 10.2166/wst.2021.033

Published: 01/02/2021

Document Version Publisher's PDF, also known as Version of record

Published under the following license: CC BY

Please cite the original version:

Myers, S., Mikola, A., Blomberg, K., Kuokkanen, A., & Rosso, D. (2021). Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge. *Water Science and Technology*, *83*(3), 641-651. https://doi.org/10.2166/wst.2021.033

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Check for updates

Comparison of methods for nitrous oxide emission estimation in full-scale activated sludge

Shanna Myers MA, Anna Mikola MA, Kati Blomberg MA, Anna Kuokkanen MA and Diego Rosso MA

ABSTRACT

Nitrous oxide (N₂O) gas transfer was studied in a full-scale process to correlate liquid phase N₂O concentrations with gas phase N₂O emissions and compare methods of determining the volumetric mass transfer coefficient, K_La. Off-gas and liquid phase monitoring were conducted at the Viikinmäki wastewater treatment plant (WWTP) over a two-week period using a novel method for simultaneous measurement of dissolved and off-gas N₂O and O₂ from the same location. K_La was calculated with three methods: empirically, based on aeration superficial velocity, from experimentally determined O₂ K_La, and using a static value of best fit. The findings of this study indicated trends in local emitted N₂O consistently matched trends in local dissolved N₂O, but the magnitude of N₂O emissions could not be accurately estimated without correction. After applying a static correction factor, the O₂ method, using experimentally determined O₂ K_La, provided the best N₂O emission estimation over the data collection period. N₂O emissions estimated using the O₂ method had a root mean square error (RMSE) of 70.5 compared against measured concentrations ranging from 3 to 1,913 ppm and a maximum 28% error. The K_La value, and therefore the method of K_La determination, had a significant impact on estimated emissions.

Key words | full-scale, gas transfer, greenhouse gases, nitrous oxide, off-gas, wastewater treatment

HIGHLIGHTS

- The selected method for N₂O K_La determination significantly impacts estimated N₂O emissions.
- A novel method was developed for continuous, simultaneous measurement of dissolved and emitted O₂ and N₂O.
- Feasibility of estimating local emissions from dissolved N₂O measurements and O₂ transfer in a full-scale activated sludge basin was confirmed using this novel method.

INTRODUCTION

 N_2O released from wastewater treatment plants accounts for 3% of anthropogenic N_2O emissions worldwide (IPCC 2013). N_2O is a significant greenhouse gas (GHG) with a 100-year global warming potential nearly 300 times greater than that of CO_2 (IPCC 2013). Current knowledge suggests the majority

doi: 10.2166/wst.2021.033

of N_2O production in wastewater treatment occurs during biological denitrification and nitrification processes (Kampschreur *et al.* 2009). There is a desire for increased accuracy in estimating N_2O emissions from individual treatment plants in order to modify operational strategies to reduce GHG emissions from wastewater treatment.

Emissions of N_2O can be mathematically modelled with a derivation of the two-film theory (Matter-Müller *et al.* 1981; Von Schulthess *et al.* 1995), but use of this

Shanna Myers MA (corresponding author) Aalto University and Murraysmith, 888 SW 5th Avenue, Suite #1170, Portland, OR 97204, USA

E-mail: shanna.myers@murraysmith.us

Anna Mikola 🕅

Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland

Kati Blomberg 🕨

Anna Kuokkanen MA Helsinki Region Environmental Services Authority (HSY), P.O. Box 100, FI-00066 HSY, Helsinki, Finland

Diego Rosso 🕅

University of California, Irvine, CA 92697, USA

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Water Science & Technology | 83.3 | 2021

mathematical model requires an N2O KLa value. This KLa is specific to wastewater conditions, varies with time and location, and limited studies have focused on determining this K_I a in clean water and wastewater (Folev *et al.* 2010; Domingo-Félez et al. 2014; Mampaey et al. 2015). An empirical equation for N₂O K_La proposed by Foley et al. (2010), referred to within this study as the superficial velocity method, has been employed in estimating N₂O emissions with decent accuracy (Baresel et al. 2016; Fenu et al. 2020). N₂O K_La can also be estimated from a known O₂ K_La and diffusivity data (Higbie 1935; Fiat 2019), referred to within this study as the O₂ method. Many studies assume the impact of wastewater conditions on O2 and N2O transfer to be analogous (e.g. von Schulthess et al. 1995; Foley et al. 2010; Fiat 2019), and this is a key assumption in order to calculate N₂O K_La from O₂ K_La without having to determine the diffusivities of N₂O and O₂ in each wastewater matrix. However, the relationship between changes in wastewater quality and changes in N₂O transfer is relatively unknown compared to water quality impacts on O₂ transfer. The solubility of N_2O is higher than that of O_2 , and N_2O has a Henry's coefficient in water that is nearly 20 times larger than for O_2 in water (Sander 2015). Therefore, the accuracy of this assumption of analogous mass transfer impacts needs to be confirmed.

Despite the use of $K_{L}a$ estimation methods in N_2O emissions modelling, there have been mixed results for the accuracy of these methods in differing conditions. Domingo-Félez et al. (2014) performed a lab-scale test comparing N₂O and O₂ K_La values, finding that these values were impacted to a different degree by superficial velocity. Foley *et al.* (2010) developed their superficial velocity K_{L} a estimation equation based on N2O emissions from lab data and full-scale data from the aerated zones of seven treatment plants in Australia, between 3.6 and 6.0 metres deep. Ye et al. (2014) tested this superficial velocity method in a system with surface aerators and found it less applicable in high turbulence such as caused by surface aeration. Marques et al. (2016) compared the superficial velocity method against the O2 method in a full-scale treatment plant, continuously monitoring gas and dissolved N₂O with Clark-type microsensors and calculating O₂ method K_La from a static average O₂ transfer rate for the plant. Their study found the O₂ method to be more accurate than the superficial velocity method under the conditions tested at a full-scale WWTP in Spain, using sequencing batch reactors. This study attempts to further assess the impact of K_La estimation methods as well as to compare dynamic calculated K_La values against a static estimated K_La value.

The Viikinmäki WWTP in Helsinki, Finland is wellsuited for GHG emission measurements due to the entire plant being enclosed underground. All emissions from Viikinmäki exit from a central exhaust point that is continuously monitored. The Helsinki Region Environmental Services Authority (HSY) began N₂O and GHG emissions studies at Viikinmäki in 2007, and continuous on-line monitoring of emissions in 2012 (Kosonen et al. 2016). Continuous on-line monitoring of dissolved N₂O began in 2016, using dissolved N₂O probes in the activated sludge basins of two of the nine treatment lines (Blomberg et al. 2018). The continuous measurements taken at Viikinmäki WWTP during this study, though limited in duration, were novel in that they included the continuous collection of dissolved and emitted N₂O alongside dissolved and emitted O₂ from the same location. This allowed for a more direct comparison of O₂ and N₂O transfer, as well as of O₂ and N₂O K_La values.

The goal of this paper was to compare multiple methods for N₂O K₁ a calculation in gas stripping equations and assess the differences attributable to the choice of method. Three calculation methods were used to estimate N_2O K_Ia: the superficial velocity method, which requires the fewest parameters to calculate K_L a but does not account for any changes to water quality except as they affect basin aeration; the O_2 method, which requires more data collection and takes into account impacts of water quality on O₂ transfer, but assumes they apply equally to N₂O transfer; and a static estimation that represented using a static K_La for N₂O emission calculations. The resulting calculated N₂O emissions were compared against measured emissions to assess accuracy. This study used a novel method to concurrently measure N₂O and O₂ transfer at a full-scale treatment plant and is one of the first to compare N₂O and O₂ transfer while considering the dynamic nature of gas transfer K_La values.

MATERIALS AND METHODS

Process description

The Viikinmäki WWTP treats wastewater for a population equivalent of over 1 million, consisting of 85% residential and 15% industrial wastewater. The average wastewater flow is 270,000 m³ d⁻¹ and the influent total nitrogen concentration is 49 mg L⁻¹. Viikinmäki WWTP performs physical, chemical, and biological treatment of wastewater, as well as tertiary treatment in denitrifying filters. The Viikinmäki WWTP has nine biological treatment lines with conventional floc-forming sludge, and each line

Water Science & Technology | 83.3 | 2021

includes a 12 m deep conventional activated sludge basin that holds $11,500 \text{ m}^3$. Each activated sludge basin is divided into six zones with fine-bubble membrane disc diffusers for aeration that can be turned on or off to modify the process. The activated sludge basins at Viikinmäki are built into rock tunnels and access to the basins consists of a single path in the middle of each basin.

Aeration can be turned on and off individually for each zone. Under typical conditions, zones 1 and 2 are anoxic, zone 3 aeration is controlled by NH_4^+ loading, and zones 4 through 6 are continuously aerated. During the measurement campaign, dissolved oxygen (DO) in each aerated zone was set to 3.0 mg L⁻¹. The hydraulic retention time in the activated sludge basin is typically 8 hours. Prior to exiting the tank and heading to secondary settling, the mixed liquor must pass through a degassing zone due to the depth of the process tanks. The instrumentation layout in the Viikinmäki WWTP line 9 activated sludge basin is shown in Figure 1.

Measurement campaign and equipment

Data were collected from the aerated zones of the activated sludge basins in lines 5 and 9 at Viikinmäki WWTP during two months in late spring of 2019. The longest period of continuous measurement occurred from 14–20 May in the aerated zone 4 of line 9. During spring and summer 2019, Viikinmäki WWTP was experiencing an unprecedented increase in N₂O production, probably caused by the inhibition of nitrite oxidizing bacteria reflected in high nitrite concentrations (2–7 mg L⁻¹). This resulted in significantly higher N₂O concentrations and emissions (8–20% of the

influent nitrogen load) than recorded in the past 3 years of continuous monitoring.

Off-gas samples were collected using a modular off-gas hood placed near a dissolved N_2O probe. This modular off-gas hood was constructed at the Aalto University Water Laboratory in Espoo, Finland. The hood was based on a modular design used by Rosso (2018) in prior off-gas experiments, with modifications due to local differences in available materials. For images and dimensions of the modular hood, see section 1 of the supplemental material.

The emissions collected from the activated sludge basin were directed to a mobile measurement array. At this array, multiple parameters were measured and logged continuously. Velocity and air temperature were measured with a datalogging hot wire thermos-anemometer (Extech; Nashua, New Hampshire), and a Gasmet DX4015 Fourier-transform infrared (FTIR) analyser (Gasmet Oy, Finland) measured emitted N₂O concentrations downstream of velocity measurements. Further downstream, the gas sample was pumped through a desiccating column containing sodium hydroxide pellets for CO₂ removal and desiccant for water vapour removal before being run through an O₂ analyser (AMI model 65; Fountain Valley, CA) to measure the percent O_2 in the sample. An external datalogger (squirrel meter/logger 1,000 series; Grant Instruments, UK) recorded these readings. For images and a table describing the measurement array components, see section 2 of the supplemental material.

Dissolved N₂O concentrations were measured using online Clark-type microsensors (Unisense; Denmark) located near the modular off-gas hood. DO in the activated sludge basin zones and near the modular hoods was measured using a combination of the Viikinmäki process DO probes

Figure 1 | Schematic layout of the Viikinmäki line 9 activated sludge basin with location of probes and chemical analysers for online measurements (modified from Haimi 2016). ALK = alkalinity. SS = Suspended solids. L = Level sensor.

(Hach LDO2: Hach Lange, Loveland. Colorado), a handheld Hach LDO103 probe, and a handheld YSI 550A probe (YSI, Yellow Springs, Ohio).

Data analysis and gas stripping calculations

Continuous data were consolidated into 5-minute averages, and erroneous values removed. Identified erroneous values included impossible values (readings from probes with temperature readings that varied by more than 10 °C from the average basin readings of 15–17 °C, dissolved gas readings above the solubility limit, and concentration measurements below zero) as well as values collected during movement or calibration of probes. Consolidated data were then compared against 3 standard deviations from the same data set. Outliers were removed except for in situations when three or more consecutive outliers would have been removed, in which case data within a 6 standard deviation outlier check remained and data not within 6 standard deviations were removed.

Data from the FTIR analyser were sent to Gasmet for review to ensure accuracy. Gasmet data were measured on a 1-minute interval, so all data collected within the established 5-minute intervals were averaged to produce data on a 5-minute interval. FTIR data that had been affected by daily calibration or a known communication error were removed.

It was necessary to minimize the number of data gaps in order to compare data sets. For data gaps lasting no more than 20 minutes (4 contiguous blank values), including those created by deleting erroneous values, approximate values were extrapolated based on preceding and following values using Equation (1) below. In cases where data gaps exceeded 20 minutes or where data could not be extrapolated due to no preceding or following data, gaps were left unchanged.

$$x_n = \frac{\sum_{i=j+1}^{k+1} [x_{n-i}] + \sum_{i=k+1}^{j+1} [x_{n+i}]}{j+k+2}$$
(1)

where:

- $x_n =$ blank value to fill;
- i = summation index, determined by variables j and k;
- j = number of blank values preceding x_n ; and
- k = number of blank values following x_n .

Emitted N₂O was calculated from dissolved N₂O using a derivation of the two-film theory (Equation (2)) proposed by Matter-Müller *et al.* (1981). To solve for gas concentrations, the correct K_La value for mass transfer must be used. In this study, three methods were used to estimate the K_La value for N_2O : solving for a static K_La value, calculating K_La using an empirical relationship based on superficial velocity, and theoretical determination from O_2 K_La values. In the static method, a static K_La was solved for that minimized the sum of square errors (SSE) between measured N_2O emissions and estimated emissions calculated using Equation (2). This K_La was subject to temperature corrections per the Arrhenius equation (Equation (3)) but was otherwise kept constant in order to compare the impact of static and dynamic K_La estimates. The K_La constant for N_2O in wastewater at 20 °C was estimated from Equations (2) and (3) using the Microsoft Excel Solver add-in GRG non-linear method with Multistart to minimize the sum of the absolute error between calculated and measured values.

$$C_{G,out} = C_{G,in} * e^{-\frac{K_L a * V_L}{H * Q_A}} + H * C_L * \left(1 - e^{-\frac{K_L a * V_L}{H * Q_A}}\right)$$
(2)

where:

 $C_{G,in}$ = influent gas-phase concentration [ppm]; $C_{G,out}$ = effluent gas-phase concentration [ppm];

 C_L = concentration dissolved in liquid [ppm];

H = unitless Henry's coefficient;

 $K_L a$ = volumetric mass transfer coefficient [d⁻¹];

 V_L = volume of bulk liquid [m³]; and Q_A = air flowrate [m³ d⁻¹].

$$K_L a_T = K_L a_{T=20C} * \theta^{(T-20)}$$
(3)

where:

- $K_L a_T$ = volumetric mass transfer coefficient [d⁻¹] at temperature *T*;
- T = temperature in °C;
- θ = unitless temperature conversion factor, typically equal to 1.024 (ASCE 2007).

 K_{La} values for N_2O were also estimated using an empirical relationship proposed by Foley *et al.* (2010) based on data from a combination of lab-scale and full-scale N_2O transfer tests (Equation (4)):

$$K_L a_F^* = \left(\frac{d_R}{d_L}\right)^{-0.49} * 34\ 500 * v_g^{0.86} \tag{4}$$

where:

 $K_L a_F^* =$ field-determined N₂O volumetric mass transfer coefficient [d⁻¹];

 d_L = depth of the lab reactor from which this equation was established, defined by Foley *et al.* (2010) as 0.815 m;

 d_R = depth of the reactor the K_La is being solved for [m]; and v_g = superficial gas velocity [m³ m⁻² s⁻¹], equal to air flow in m³ s⁻¹ divided by aerated area in m².

This equation is heavily dependent on the aeration superficial velocity, which is why this method of K_{La} calculation was referred to as the superficial velocity method.

The remaining method calculated K_La using penetration theory (Higbie 1935) and the calculated O_2 K_La values (Equation (5)). This was referred to as the O_2 method due to its reliance on O_2 mass transfer data. This method required the assumption that the effects of contaminants on O_2 and N_2O are the same:

$$K_L a_{N_2 O} = K_L a_{O_2} * \sqrt{\frac{D_{N_2 O}}{D_{O_2}}}$$
⁽⁵⁾

where:

 $D_{N_2O} =$ diffusion coefficient of N₂O in clean water [1.84 * $10^{-9} \text{ m}^2 \text{ d}^{-1}$ (Tamimi *et al.* 1994)];

 $D_{O_2} =$ diffusion coefficient of O₂ in clean water [1.98 * $10^{-9} \text{ m}^2 \text{ d}^{-1}$ (Ferrell & Himmelblau 1967)]; and

 $K_La = volumetric mass transfer coefficient (for N_2O and O_2, per subscripts) [d^{-1}].$

Oxygen transfer efficiency (OTE, %) was calculated from the collected O_2 data using the mole ratio of O_2 to inert gas (Equation (6)), as outlined by the ASCE protocol for in-process testing (ASCE 1997). The measured OTE and O_2 mass flow rate were then used to calculate the oxygen transfer rate (OTR, kg_{O2} h⁻¹) with the same equation. Empirically observed mass transfer coefficients for O_2 (treated as one variable, K_La, that included wastewater impacts) were determined using a steady-state solution of the two-film theory equation for liquid-phase limited mass transfer (Lewis & Whitman 1924) using the calculated OTR (Equation (7)).

$$OTE = \frac{OTR}{W_{O_2}} \sim \frac{O_{2,in} - O_{2,out}}{O_{2,in}}$$
(6)

where:

W = mass flow rate [kg h⁻¹]; and

 $O_{2,in}$ and $O_{2,out}$ are mole ratios of O_2 to inert gases in and out of the system, respectively.

$$OTR = \frac{1}{24} K_L a * (C_s - C_L) * V_L * 10^{-3}$$
⁽⁷⁾

where:

 $K_L a =$ liquid-side volumetric mass transfer coefficient for O₂ [d⁻¹];

 C_s = saturated DO at operating temperature and pressure [mg L⁻¹];

 C_L = measured DO [mg L⁻¹]; and

V = aerated tank volume [m³].

The resulting N₂O emission estimations from all three methods were then compared against measured off-gas N₂O concentrations. Correction factors to minimize the sum of absolute error between calculated and measured N₂O emission concentrations in the O₂ and superficial velocity methods were determined using the Microsoft Excel Solver add-in GRG non-linear method with Multistart. The static K_La method solved for a single value that best estimated measured N₂O emissions during the week of data collection, so no additional correction factors were applied in this method.

RESULTS AND DISCUSSION

The novel method for simultaneous measurements performed well, with some limitations to locations that could be measured due to turbulence in the activated sludge basin. From collected data, it was clear that off-gas N2O concentrations followed the same diurnal pattern as dissolved N_2O concentrations from the same location (Figure 2). This confirmed the findings from prior studies that dissolved N₂O monitoring can be used to reveal trends in N₂O emissions (Baresel et al. 2016; Marques et al. 2016; Fenu et al. 2020). However, linking the dissolved concentration to emitted N₂O requires calibration and verification. All three N₂O K₁ a estimation methods accurately represented trends in off-gas of N₂O due to the correlation between dissolved and emitted N₂O. In order to better match the magnitude of N₂O in the off-gas, a static correction factor of 0.58 was applied in the superficial velocity method and a factor of 0.43 was applied to the O_2 diffusivity K_La method (Figure 3).

Prior to using a static correction factor to adjust the K_La values from the superficial velocity and O_2 methods, N_2O

Figure 2 | Measured dissolved and off-gas N₂O concentration, 14–21 May 2019. Note the units for dissolved N₂O are ppm in water, while the units for off-gas N₂O are ppm in air.

Figure 3 | Measured N_2O emissions and calculated emissions from the three K_La estimation methods.

emission estimations were less accurate. The superficial velocity calculations resulted in K_La values ranging from 34 to 69 d⁻¹ and the O₂ method calculations estimated a K_La ranging from 42 to 107 d⁻¹ at 20 °C. These K_La values overestimated N₂O emissions when plugged into off-gas estimation calculations (Equation (2)).

After the static correction was applied, calculated K_La for N_2O stripping at 20 °C ranged from 19 to 40 d⁻¹ when applying the superficial velocity method of calculation, 18 to 46 d⁻¹ using the O_2 method, and was estimated as 24.9 d⁻¹ using the static method (Figure 4). The calculated K_La values for the superficial velocity and O_2 methods had static correction factors of 0.58 and 0.43, respectively, applied to the dynamic K_La values to better fit the

Figure 4 Comparison of N₂O mass transfer coefficients for superficial velocity, static, and O₂ methods. Superficial velocity and O₂ method N₂O mass transfer coefficients had their respective static correction factors of 0.58 and 0.43 applied prior to graphing.

magnitude of measured N_2O emissions. The resulting calculated values estimate the measured data well, with the O_2 method showing the closest fit and the superficial velocity method following as the second closest fit (Figure 3).

When comparing against prior studies, there were limited papers with K_{La} values that could be used for comparison. Many N₂O K_{La} values come from laboratory studies using significantly higher aeration flowrates compared to basin volume. Mampaey *et al.* (2015) found an N₂O K_{La} of 1,025 d⁻¹ when aerating a 100 mL stripping flask with 1 L min⁻¹ airflow. Harper *et al.* (2015) measured an N₂O K_{La} between 450 and 510 d⁻¹ aerating a 500 mL vessel with a 1 L min⁻¹ air flowrate. Domingo-Félez *et al.* (2014) found K_{La} values ranging from 85 d⁻¹ to 475 d⁻¹ for air flowrates from 0.25 to 2.5 L min⁻¹ in a 4 L reactor. In comparison, Viikinmäki's zones are approximately 1.9 * 10⁶ L and the maximum zone aeration during this study was 34,700 L min⁻¹.

Data from full-scale studies are even more limited and can also be difficult to compare due to differing conditions. Ye *et al.* (2014) determined $N_2O K_1$ a at a full-scale plant with surface aerators using the equivalent of the O_2 method but with a known methane K_La instead of an O₂ K_La. In their study, K_I a values were as high as 1,150 d⁻¹ where the aerators were located and decreased to 12.5 d⁻¹ in the turbulent zone immediately following the aerators. The surface aerator N_2O K₁ a value was comparable to laboratory experiments with incredibly high airflow to volume ratios, while the turbulent zone following aeration had lower values than observed in this study because there was no airflow. Foley et al.'s study (2010) calculated KLa values between approximately 10 and 90 d^{-1} in activated sludge basins up to 6 m deep. The tanks at Viikinmäki are 12 metres deep, so even though calculated K_La values from this study were within this range, Foley et al.'s empirical relationship may not accurately estimate N₂O K_La in deep reactors.

Mass transfer calculated using the $O_2 K_L a$ and diffusivity had the smallest RMSE (70.5), followed by the superficial velocity method (73.4) and the static method (82.2). The maximum variation between measured and calculated N_2O in the O_2 , superficial velocity, and static methods were 27.9, 49.1, and 52.0%, respectively. Marques *et al.* (2016) compared methods of $K_L a$ determination in aerobic and anaerobic conditions and also found the O_2 method of calculating $K_L a$ to result in more accurate N_2O emission estimations than the superficial velocity method even though they determined N_2O $K_L a$ from a static OTR. Based on the accuracy of calculating N_2O transfer using $O_2 K_La$ values, similar water quality parameters may have impacted both O_2 and N_2O transfer. However, the corrected mass transfer coefficient for N_2O transfer was half as large as was predicted with the clean water diffusivities of O_2 and N_2O . This suggests that N_2O stripping and O_2 transfer may be impacted to a different degree by water quality. Domingo-Félez *et al.* (2014) compared K_La values for O_2 and N_2O over varying aeration flowrates and found that the relationship was not linear, suggesting that the different solubilities of N_2O and O_2 may make the exact relationship between O_2 and N_2O transfer difficult to correlate. Although this study was not sufficient to prove that the impacts of water quality and superficial velocity on O_2 and N_2O K_La are not analogous, it does cast further doubt on the accuracy of this assumption.

Gas transfer data for N₂O and O₂ showed daily and weekly fluctuation related to the fluctuations in aeration and water quality at the WWTP, as has been observed in other studies (e.g. Kampschreur *et al.* 2008; Daelman *et al.* 2015; Kosonen *et al.* 2016; Emami *et al.* 2018). OTE was higher at the start and end of the week of measurements, as were N₂O emissions. Any variations in water quality or operational parameters can impact bubble size and diffusivity, therefore impacting the effective K_La and OTE. Oxygen transfer and mass transfer K_La values were heavily affected by airflow, and variance between the temporal pattern of O₂ transfer and airflow suggests additional impacts from variations in water quality (Figure 5). However, no one water quality parameter could be decisively linked to impacts on O₂ or N₂O transfer within this study.

Data used in K_La value and N_2O emission calculations were collected during a single week of unusually high N_2O concentrations and are not representative of average conditions at Viikinmäki. Due to the limited time scale of this study, there was not a separate calibration and validation period to test the applicability of the calculated static correction factors in different conditions.

Potential sources of error in N_2O measurements included probe uncertainties and reliability of Gasmet readings. Probe noise and signal errors caused occasional incorrect readings for probes, but once outliers caused by probe calibration and impossible (negative) concentrations were removed, the remaining variability did not appear to significantly compromise the data. Expected error for Gasmet DX4015 data is listed in Table 1.

Additional error in N_2O calculations is possible as a result of errors in readings used for O_2 transfer calculations, for example from noise and drift in the O_2 analyser signal. The AMI model 65 O_2 analyser is reported to have drift

Figure 5 | Air flow rates, OTR, OTE and O₂ K_La, 14–21 May 2019.

 Table 1 | Gasmet DX4015 calibration, measurement drift, and deviation (provided by Gasmet)

Zero-point calibration	Every 24 hours, calibrate with N_2 (5.0 or higher recommended)
Zero-point drift	<2% of measuring range per zero-point calibration interval
Sensitivity drift	None
Linearity deviation	<2% of measuring range
Temperature drifts	<2% of measuring range per 10 K temperature change
Pressure influence	1% change of measuring value for 1% sample pressure change. Ambient pressure changes measured and compensated.

under 1% of the full range over 4 weeks and a repeatability within $\pm 0.1\%$. Other sources of uncertainty included temperature probe integrity, temperature variation between the gas hood and the temperature probe, and local variation in aeration air flowrates.

A sensitivity analysis was performed to assess the impact of potential erroneous readings on N_2O concentration estimations. Probes at the WWTP are calibrated on a regular schedule, so it was assumed that no probe readings deviated by greater than 10% from the true value. The remaining parameters were evaluated using variability similar to what was observed in this study. Within this sensitivity analysis, variability in calculated K_La values and in dissolved N_2O concentrations both significantly impacted calculated emissions (Figure 6). Dissolved N_2O variations up to observed levels of +/- 10% resulted in changes up to +/- 10% in calculated N_2O emissions. The relationship between dissolved and emitted N_2O was effectively linear when K_La was held constant due to negligible N_2O in process gas entering the activated sludge basins (Equation (2)). The K_La values that best fit measured N_2O emissions deviated from initial calculated values by an average factor of 0.5. For this range of +/- 50% N_2O K_La values, calculated N_2O emissions varied by +/- 25%.

The calculated K_La for N_2O stripping using the O_2 method is dependent on the calculated O_2 K_La value and therefore sensitive to variability in airflow and O_2 readings. A 10% air flowrate change resulted in peak differences in O_2 K_La that were nearly 15% higher or lower than initial measured values (Figure 7). Erroneous readings of percent O_2 in the off-gas up to 0.2% (twice the listed error for the AMI sensor) had a similar level of impact compared to the 10% difference in air flowrate, suggesting that variability in aeration across an activated sludge basin could skew plantwide N_2O emission calculations using the O_2 method.

The impact of changes to the O_2 K_La value on calculated N₂O emissions would be reduced in magnitude, as seen in the sensitivity analysis on impacts of K_La variations

Figure 6 | Impact of (a) dissolved N₂O readings on calculated off-gas N₂O using O₂ method compared against measured N₂O values and (b) mass transfer coefficient on calculated off-gas N₂O using static method, compared against measured N₂O values.

(Figure 6). The overall impact on estimated N_2O emissions would therefore be expected to be closer to a 7–8% difference in N_2O values for a 10% change in airflow or a 0.2% change in O_2 readings.

Additional parameters including temperature, DO, and zone dimensions were also analysed for their impact on data integrity, but these did not have as significant an impact.

CONCLUSIONS

Trends in emissions of N_2O from WWTPs can be accurately estimated using dissolved N_2O concentrations, and with sufficient calibration and validation dissolved N_2O concentrations could be used to estimate the magnitude of emissions as well. The method of determining mass transfer coefficients for modelling of N_2O stripping significantly impacts the resulting calculations, and therefore calculation accuracy.

This study introduces a novel method to concurrently measure N_2O and O_2 transfer in aerated zones of full-scale treatment plants. Within this study, the N_2O K_La calculation method based on O_2 mass transfer had the lowest RMSE and lowest estimation error, making it the most accurate. However, the necessary application of a site-specific correction factor suggests that either additional factors such as basin depth or water quality influenced N_2O emissions or the K_La estimation methods were unable to accurately represent the gas transfer. Although the assumption of analogous impacts of wastewater conditions on N_2O and O_2 transfer may not be fully accurate, it is clear that O_2 transfer can provide useful information for estimating N_2O

Figure 7 | Impact of variation in (a) airflow readings on calculated O₂ K_La compared against O₂ K_La values calculated in this study and (b) off-gas O₂ readings on calculated O₂ K_La compared against values from this study.

transfer. Additional research is still necessary to determine the exact impacts of deep basins and changes in water quality on O_2 transfer and N_2O stripping, as well as to determine more accurate methods of K_La calculation that do not require empirically determined correction factors.

ACKNOWLEDGEMENTS

The authors of this study would like to thank the operators and engineers at the Viikinmäki WWTP for assisting during the sampling campaigns.

FUNDING

This research was financially supported by Helsinki Region Environmental Services Authority (HSY), Aalto University, and the Finnish Water Utilities Association (FIWA) development fund.

DATA AVAILABILITY STATEMENT

Data cannot be made publicly available; readers should contact the corresponding author for details.

REFERENCES

ASCE. 1997 Standard Guidelines for In-Process Oxygen Transfer Testing. ASCE Standard. American Society of Civil Engineers, Reston, Virginia. doi:10.1061/9780784401149.

- ASCE. 2007 Measurement of Oxygen Transfer in Clean Water. ASCE Standard. American Society of Civil Engineers, Reston, Virginia. doi:10.1061/9780784408483.
- Baresel, C., Andersson, S., Yang, J. & Andersen, M. H. 2016 Comparison of nitrous oxide (N₂O) emissions calculations at a Swedish wastewater treatment plant based on water

concentrations versus off-gas concentrations. Adv. Clim. Change Res. 7 (3), 185–191. doi:10.1016/j.accre.2016.09.001.

- Blomberg, K., Kosse, P., Mikola, A., Kuokkanen, A., Fred, T., Heinonen, M., Mulas, M., Lübken, M., Wichern, M. & Vahala, R. 2018 Development of an extended ASM3 model for predicting the nitrous oxide emissions in a full-scale wastewater treatment plant. *Environ. Sci. Technol.* 52 (10), 5803–5811. doi:10.1021/acs.est.8b00386.
- Daelman, M., van Voorthuizen, E., van Dongen, U., Volcke, E. & van Loosdrecht, M. 2015 Seasonal and diurnal variability of N₂O emissions from a full-scale municipal wastewater treatment plant. *Sci. Total Environ.* 536, 1–11. doi:10.1016/j. scitotenv.2015.06.122.
- Domingo-Félez, C., Mutlu, A. G., Jensen, M. & Smets, B. 2014 Aeration strategies to mitigate nitrous oxide emissions from single-stage nitritation/anammox reactors. *Environ. Sci. Technol.* 48 (15), 8679–8687. doi:10.1021/es501819n.
- Emami, N., Sobhani, R. & Rosso, D. 2018 Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes. *Water Sci. Technol.* 77 (7), 1838–1850. doi:10.2166/wst.2018.054.
- Fenu, A., Wambecq, T., de Gussem, K. & Weemaes, M. 2020 Nitrous oxide gas emissions estimated by liquid-phase measurements: robustness and financial opportunity in single and multi-point monitoring campaigns. *Environ. Sci. & Pollut. Res.* 27, 890–898. doi:10.1007/s11356-019-07047-0.
- Ferrell, R. T. & Himmelblau, D. M. 1967 Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12, 111–115. doi:10.1021/je60032a036.
- Fiat, J. 2019 Analyse et modélisation des émissions de protoxyde d'azote par les biofiltres nitrifiants tertiaires à échelle industrielle (Analysis and Modelling of Nitrous Oxide Emissions From Tertiary Nitrifying Biofilters on an Industrial Scale). Toulouse, France: s.n.
- Foley, J., de Haas, D., Yuan, Z. & Lant, P. 2010 Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. *Water Res.* 44 (3), 831–844. doi:10.1016/j.watres.2009.10.033.
- Haimi, H. 2016 Data-derived Soft Sensors in Biological Wastewater Treatment with Application of Multivariate Statistical Methods. Espoo, Finland: s.n. ISBN: 978-952-60-6650-9 (electronic).
- Harper, W., Takeuchi, Y., Riya, S., Hosomi, M. & Terada, A. 2015 Novel abiotic reactions increase nitrous oxide production during partial nitrification: modeling and experiments. *Chem. Eng. J.* 281, 1017–1023. doi:10.1016/j.cej.2015.06.109.
- Higbie, R. 1935 The rate of absorption of a pure gas into a still liquid during short periods of exposure. *Trans. Am. Inst. Chem. Eng.* 31, 365–388.

Water Science & Technology | 83.3 | 2021

- IPCC. 2013 Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK and New York, NY, USA. ISBN: 978-92-9169-138-8.
- Kampschreur, M. J., van der Star, W. R., Wielders, H. A., Mulder, J. W., Jetten, M. S. & van Loosdrecht, M. C. 2008 Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. *Water Res.* 42 (3), 812–826. doi:10. 1016/j.watres.2007.08.022.
- Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. & van Loosdrecht, M. C. 2009 Nitrous oxide emission during wastewater treatment. *Water Res.* 43 (17), 4093–4103. doi:10. 1016/j.watres.2009.03.001.
- Kosonen, H., Heinonen, M., Mikola, A., Haimi, H., Mulas, M., Corona, F. & Vahala, R. 2016 Nitrous oxide production at a fully covered wastewater treatment plant: results of a longterm online monitoring campaign. *Environ. Sci. Technol.* 50 (11), 5547–5554. doi:10.1021/acs.est.5b04466.
- Lewis, W. & Whitman, W. 1924 Principles of gas transfer absorption. *Ind. Eng. Chem.* **16** (12), 1215–1237. doi:10. 1021/ie50180a002.
- Mampaey, K. E., van Dongen, U. G., van Loosdrecht, M. C. & Volcke, E. I. 2015 Novel method for online monitoring of dissolved N₂O concentrations through a gas stripping device. *Environ. Technol.* **36** (13), 1680–1690. doi:10.1080/ 09593330.2015.1005029.
- Marques, R., Rodriguez-Caballero, A., Oehman, A. & Pijuan, M. 2016 Assessment of online monitoring strategies for measuring N₂O emissions from full-scale wastewater treatment systems. *Water Res.* **99**, 171–179. doi:10.1016/j. watres.2016.04.052.
- Matter-Müller, C., Gujer, W. & Giger, W. 1981 Transfer of volatile substances from water to the atmosphere. *Water Res.* 15 (11), 1271–1279. doi:10.1016/0043-1354(81)90104-4.
- Rosso, D. 2018 Aeration, Mixing, and Energy: Bubbles and Sparks. IWA Publishing, London. ISBN: 9781780407838.
- Sander, R. 2015 Compilation of Henry's law constants (version 4.0) for water as solvent. *Atmos. Chem. Phys.* 15 (8), 4399–4981. doi:10.5194/acp-15-4399-2015.
- Tamimi, A., Rinker, E. B. & Sandall, O. C. 1994 Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293–368 K. J. Chem. Eng. Data 39, 330. doi:10.1021/je00014a031.
- von Schulthess, R., Kuhni, M. & Gujer, W. 1995 Release of nitric and nitrous oxides from denitrifying activated sludge. *Water Res.* **29** (1), 215–226. doi:10.1016/0043-1354(95)00204-9.
- Ye, L., Ni, B. J., Law, Y., Byers, C. & Yuan, Z. 2014 A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators. *Water Res.* 48, 257–268. doi:10.1016/j.waters.2013.09.037.

First received 16 September 2020; accepted in revised form 13 January 2021. Available online 27 January 2021