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ABSTRACT

Traffic classification groups similar or melated traffic data, which is one main stream technique of data
fusion in the field of network management and security. With the rapid growth of network users and
the emergence of new networking services, network traffic dasification has attmcted increasing attention.
Many new traffic classification technmiques have been developed and widely applied. However, the existing
literature lacks a thorough survey to summarize, compare and analyze the recent advances of network tmaffic
classification in order to deliver a holistic perspective. This paper carefully reviews existing network tmaffic
classifica tion methods from a new and comprehensive perspective by classifying them into five categories hased
on representative classification features, ie, statistics-based classification, correlation-based classification,
behavior-based classification, payload-based classification, and port-based classification. A series of criteria
are proposed for the purpose of evaluating the performance of existing traffic classification methods. For each
specified category, we analyze and discus the detsils, advantsges and disadvantages of its existing methods,
and also present the traffic features commonly used. Summaries of investigation are offered for providing a
holistic and specialized view on the state-of-art For convenience, we also cover a discussion on the mostly
used datasets and the traffic features adopted for traffic classification in the review. At the end, we identify a
list of open isues and future directions in this research field.

1. Introduction

Data fusion is a process that deals with association, correlation,
and combination of data from single and multiple sources to achieve
refined, significant or valuable information [1]. It has been widely used
in various fields [2,3], such as intrusion detection, target identification,
image processing, and resource allocation. Traffic classification groups
similar and related traffic data into a same category, which is one main
stream technique for data fusion in the field of network management
and security. Accurate and real-time network traffic classification is
essential for network management, security monitoring, and intrusion
detection. For network operators and administrators, correct ident-
fication of traffic categories generated by different applications and
protocols helps them in providing high CQuality of Service (QoS) for
network users. Traffic classification can be used to identify user be-
haviors and predict traffic categories, which greatly assists network
management. In addition, distinguishing abnormal network traffic is
also extremely important for intrusion detection and network security
measurement. For example, as shown in Fig. 1, in core detector module
of Intrusion Detection System (IDS), it is necessary to identify malicious
attack traffic by classifying obtained traffic data and matching with

malicious attack patterns in the knowledge base. Nowadays, continuous
development of network technology and rapid expansion of network
scale inspire network traffic classification methods to be more accurate
and faster.

Traditional widely used traffic classification schemes can be divided
intw port-based classification [4] and payload-based classification [5].
However, both two types of the methods have many limitatons. For
example, the payload-based methods cannot classify encrypted traffic.
However, most of the traffic data is ransmitted in an encrypted form
at present, which makes the payload-based methods infeasible. The
port-based methods can only classify data based on publicly known
ports. As more and more traffic chooses to hide ports or uses dynamic
ports, the port-based methods become invalid. Many new and effective
classification methods have emerged in order o solve the limitations
existing in the above two types of methods. Such as behavior-based,
statistics-based, and correlation-based methods.

S0 far, there exist some related surveys about traffic classifica-
tion. Different reviews have different focuses and summarize different
methods, as shown in Table 1. Nguyen and Armitage [6] conducted
a comprehensive review on the classification methods using machine
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Fig. 1. General intrudon detection model.

learning in 2008. This survey mainly summarizes statistics-based clas-
sification methods. Callado et al. [7] provided a detailed introduction
to the techniques used in traffic classification and reviewed the existing
classification methods from port-based, packet-based, and flow-based
perspectives. Cao et al. [£] summarized the classification methods of
encrypted traffic from four aspects, namely port-based, payload-based,
statistical-based, and behavior-based. They also indicated the chal-
lenges in current encrypted traffic classification. Finsterbusch et al. [9]
focused on the payload-based classification methods by analyzing and
comparing the perfformance, classificaion accuracy and technical re-
quirements of deployable Deep Packet Inspection (DPI) classification
modules. Gomes et al. [10] mainly reviewed the classification methods
for P2P traffic. They focused on the port-based and payload-based clas-
sification methods mainly. In addition, they also paid attention to the
following aspects: the features of packets or flows used in classification,
the classification methods using active crawlers, and the classifica-
thon using combined approaches. Valenti et al. [11] summarized and
compared existing classification methods by conceming port-based
methods, deep packet inspection, stochastic packet inspection, statist-
cal and behavioral perspectives. In additon, they discussed two of the
mostly used machine learning methods, Le Support Vector Machine
(S8VM) and decision tree, in traffic classification. Shafiq et al. [12] com-
pared classification performance of four machine learning algorithms
(C4.5, SVM, Bayes Net and Naive Bayes) for five traffic classes: WWW,
DNS, FTF, P2P and Telnet applications.

Recently, Pacheco et al. [13] provided discussions on traffic clas-
sification from the perspective of machine learning. They introduced
traffic classification from five stages: data collection, feature extrac-
tion, feature reduction and selection, algorithm selection, and model
deployment. the technology used in each stage is summarized and
analyzed. The paper also described the different data categories used in
the classification methods, such as statistical characteristics, payloads,
and host behaviors, Comparing with this survey, the differences and
advantages of our paper are provided as follows. First, Ref. [13] only
discusses the classification methods based on machine learning, while
the scope of our review is wider. Second, our review is based on a
holistic series of evaluation criteria, which is missed in [13]. Thus,
our review is performed in a uniform way and is deep insight. It is
possible for us to intuitively obfain interesting findings from com paring
results. Third, we analyze the datasets and features on various data
levels, such as flow level and packet level, which impacts classification

performance. However, this analysis is missing in [13]. Finally, we
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identify new open issues and indicate novel research directions, which
are different from [13] and other existing surveys.

Although there are several surveys about network traffic classifi-
cation [6-13], our paper beging with different concerns. We found
that the existing reviews discuss too little on behavior-based and
correlation-based classification methods. They do not consider user
privacy, limitations of feature redundancy, ete. This gives us motivation
to complete this survey.

In this paper, we review existing network traffic classification meth-
ods from a new and comprehensive perspective by classifying them
into five categories, Le., correlation-based classification, statistics-based
classification, behavior-based classification, payload-based classifica-
thon, and port-based classification. A series of criteria are also proposed
for the purpose of evaluating the performance of existing traffic classi-
fication methods. For each specified category, we analyze and discuss
the details, advantages and disadvantages of its existing methods, and
also the traffic features commonly used. Summaries of investigation are
offered for providing a holistic and specialized view on the state-of-art.
For comvendence, we present a discussion on the mostly used datasets
and the fraffic features adopted for traffic classification in the review.
At the end, we identify a list of open issues and future directions in this
research field. By comparing with previous surveys, we summarize the
main contributions of this paper as follows:

+ We thoroughly review current traffic classification methods by
classifying them into five categories: statistics-based, correlation-
based, behavior-based, payload-based, and port-based. The ad-
vantages and disadvantages of each classification method are also
discussed and compared.

+ We analyze and quantify classification gramilarity and divide it
into four levels, namely application type layer, protocol layer,
application layer, and service layer, which is missing in the
previous reviews.

+ Comprehensive evaluation criteria are presented to assess the

performance and quality of the classification methods and are

used to compare their pros and cons.

We summarize traffic features and datasets mostly used in cur-

rent traffic classification methods. We list the publicly available

datasets for the convenience of other researchers.

We further figure out a number of open issues and propose future

research directions to motivate network research.

The rest of this paper is organized as follows. Section 2 intro-
duces the basic of traffic classification by specifying classification pro-
cess, comparing several classification algorithms and summarizing the
features and datasets used in classification. We also classify existing
methods into five categories with four classification levels. Section 3
specifies the evaluation criteria for network traffic classificaton. In
Section 4, we review the existing classification methods based on their
categories and evaluate them by using the proposed evaluation crite-
ra. We summarize open issues and sugpgest future research directions
in Section 5. Finally, conclusions are drawn in the last section. For
convendence, the reader can refer to Table 2 for all abbreviations used

throughout the paper.

2. Traffic cassification overview

-

-

In this section, we provide an overview of traffic classification pro-
cedure, introduce five main categories of traffic classification methods
and machine learning algorithms used in traffic classification.

21. Machine learning

Machine learning is an interdisciplinary subject that can be used in
multiple fields, enabling computers to learn automatically by extracting

data and improving algorithm performance during leamning. The use of
machine learning in traffic classification can be traced back to a paper
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Fig. 2. Process of traffic classification.
Table 1
Comparison of our survey with other existing surveys.
Reviewed methods [6] [7] [8] [9] [10] [11] [12] [13] Our
and contents survey
Port-based method N Y N Y Y Y Y N Y
Payload-based method N N N Y Y Y Y Y Y
Behavior-based method Y Y Y N Y Y N Y Y
Statistics-based method Y Y Y Y N Y Y Y Y
Correlation-based method N N N N N N N N Y
Dataset summary N N N N N N N Y Y
Analysis on traffic data levels N Y N N Y Y N Y Y
Discussion on classification N N N N N Y N N Y
granularities
Summary of data features N N N N N N N Y Y

Y: discussed; N: not discussed.

Table 2

Abbreviations in this paper.
Abbreviation Explanation
AFF Advanced File Format
BNN Bayesian Neural Network
CBR Constant Bit Rate
CFS Correlation-based Feature Selection
CNN Convolutional Neural Network
DL Deep Learning
DPI Deep Packet Inspection
DDoS Distributed denial of service
DNS Domian Name System
FCBF Fast Correlation-Based Filter
FS Feature Selection
FTP File Transfer Protocol
GR Gain Radio
HTTP HyperText Transfer Protocol
IANA Internet Assigned Numbers Authority
IDS Intrusion Detection System
1G Information Gain
IMAP Internet Mail Access Protocol
P Internet Protocol
K-NN K-Nearest Neighbors
LSTM Long Short Term Memory Network
NFI Netflow Flow Identify
PC Pearson Correlation
PCA Principal Component Analysis
POP Post Office Protocol
p2p Peer-to-Peer
QoS Quality of Service
SBE Sequential Backward Elimination
SFS Sequential Feature Selection
SMTP Simple Mail Transfer Protocol
SPI Stochastic Packet Inspection
SVM Support Vector Machine
TLS Transport Layer Security
VoIP Voice over IP
WWW World Wide Web
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published in 1994 for intrusion detection [14]. Machine learning uses
different algorithms to analyze data and learn from it to give decisions
or predictions.

Machine learning algorithms are divided into supervised, semi-
supervised and unsupervised learning. In supervised learning, an ac-
curate prediction model is obtained by continuously comparing the
prediction results with the actual labels of the training data during
learning process. New data can be categorized (labeled) by using the
prediction model obtained previously. Supervised learning algorithms
include statistical classification and regression analysis. Unsupervised
learning, also known as clustering algorithms, uses unlabeled data to
distinguish different categories from a large dataset. Clustering and
dimensionality reduction are the two main applications of unsupervised
learning. Since a lot of data in the network is unlabeled, this method is
practical in reality. In addition, the semi-supervised learning method
that combines supervised and unsupervised learning is also applied
for traffic classification. The accuracy of semi-supervised learning is
improved compared with unsupervised learning. To a certain extent,
manual participation is reduced.

Appropriate traffic classification algorithm plays an crucial role for
achieving proper and efficient traffic classification. Various machine
learning based methods are widely used in traffic classification. In
Table 3, we summarize some popular machine learning algorithms used
in existing traffic classification methods and discuss their advantages
and disadvantages.

2.2. Classification procedure

A general process of classifying network traffic is shown in Fig. 2.
The first step is to collect data from a network environment. In Fig. 2,
some typical types of network traffic are provided as input to form
a traffic dataset for feature selection. The second step is to extract
and select traffic features. This process is important for the traffic
classification because it impacts the robustness and efficiency of the
classification. The third step is a decision process, which identifies the
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Review of some machine learning algorithms.
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Algorithms

Descriptions

Advantages

Disadvantages

Naive Bayes

Use probabilistic knowledge
and need prior
probability (supervised)

High accuracy, less
estimated parameters,
and insensitivity to
irrelevant data

The assumption that

the required attributes
are mutual independent is
difficult to satisfy

K-Nearest Use the distance between Simple, no feature Poor performance

Neighbors features for classification; assumption, suitable for for unbalanced datasets,

(K-NN) also used for regression multi-classification high computational cost
(supervised) problems

K-means Determine K initial Simple implementation; Sensitive to outlier,

centroids, use distance
to iteratively

achieve clustering
(unsupervised)

good clustering effect

performance is affected
by parameter k and
initial centroids

Decision Tree

Completing match and
classification based on
feature attributes
(supervised)

Small amount of
calculation, fast
classification

Suitable for high-dimensional
data; easy to

over-fit, ignoring

correlation between

data features

Support Vector
Machine (SVM)

Find classification
planes to achieve
binary classification
(supervised)

Improved generalization
performance, can solve
high dimensional and
nonlinear problems

High memory cost

Random Forest

Consist of multiple
decision trees
(supervised)

Not easy to overfit,
fast training

Not suitable for
low-dimensional
and small datasets

Logistic Regression

A generalized linear
regression method,
commonly used in
binary classification
(supervised)

Fast training,
dynamic adjustment of
classification threshold

Easy over-fitting,
complex feature
processing

Neural Networks

Mimic the behavioral
characteristics of
biological neural
networks and perform
distributed parallel
information processing

High accuracy, strong
distributed storage and
learning ability,
robustness

Requires a large
number of parameters,
long training time

High precision,
no over-fitting

Sensitive to outlier

AdaBoosting Integrate multiple
weak classifiers into
one multi-classifier
Public
Real Self-collection
Dataset Private
Simulated
data

Fig. 3. General classification of datasets.

class of traffic flow through pattern matching or model training. The
final step is to verify the results of the classification that aims to obtain
the accuracy of the traffic classification. The ground truth of the data
(i.e., the true classes of original data) is needed in this step. The detailed
discussion of each classification step is presented as follows.

(1) Datasets and Traffic Features: In this part, we firstly introduce
some datasets and features used in traffic classification. The
dataset is very important for the feature selection during the
classification process. The datasets obtained from different envi-
ronments are distinct [31-36], regarding different applications
(different service types), different characteristics and different

25

usages. They relate to different user groups, such as education,
business, medical, and so on. These datasets can be used to
meet various classification needs. Analyzing different datasets
can help us understand a traffic classification method in a holis-
tic way. This is because researchers normally choose different
datasets to meet their needs. For example, some classification
methods focus on classifying video traffic so that they use the
traffic generated by various video applications to classify; if a
classification method aims to identify different network attack
traffic, then they should at least choose the datasets that include
various malicious traffic to analyze. Herein, we discuss and com-
pare the public datasets that are widely used in current traffic
classification methods, as shown in Table 4. In addition to these
publicly available datasets presented here, there are many self-
collecting real datasets used for evaluating some classification
methods in experimental tests. There are also some studies that
simulate a network and perform experiments with simulated
network traffic data. In Fig. 3, we classify the datasets used for
traffic classification research according to real and simulated
data.

Traffic classification is normally based on a number of features.
Herein, we summarize the traffic features that are mostly used
in the classification. Traffic data can be divided into four levels,
packet level, flow level, connection level and host level [37]. We
observe that most of the traffic classification methods use packet
level and flow level data, and a few classification methods use
connection level data. The following is a brief introduction of
these four levels of data.
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Table 4
Publicly available datasets.
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Dataset Descriptions Level Ground truth

CAIDA [15] Include different datasets for traffic Packet No
analysis attacks and Flow

UNIBS [16] Include data about several applications Packet No

MAWI/Wide/Keio [17] Include different datasets for traffic analysis Packet Yes

Moore/Cambridge’s Include 11 subdatasets for traffic analysis Flow Yes

Nprobe project [18] with 248 features

ISCX [19] For anomaly detection, include normal Packet Yes
traffic datasets and attack traffic datasets

IP Trace [20] Include different datasets for traffic analysis Flow No

KDD Cup99 [21] For anomaly detection Packet Yes

Digital Corpora [22] Distributed in RAW Image Format (RAW, Packet No
EnCase EO1, and Advanced File Format
(AFF) formats

NetOp [23] For anomaly detection Flow Yes

GTA/UFRJ [24] For anomaly detection Packet Yes

KAIST [25] About normal traffic behaviors in Packet No
Peer-to-Peer (P2P) networks

Snu [26] About normal traffic datasets of Constant Packet No
Bit Rate (CBR) and Voice over IP (VoIP)

Lbnl [27] About internal enterprise traffic in Packet No
an anonymized form

SIGCOMM2008 [28] A detailed trace of network activity in Packet No
an anonymized form

NLANR [29] Provide in-depth information and technical Packet No
support for high-performance networking

DARPA [30] For anomaly detection Packet Yes

+ Packet level data is generated when different hosts com-
municate with each other through network protocols. The
packet level data consists of three parts, namely header
information, payload information, and packet activity in-
formation that includes such information as Time to Live
(TTL), the flags of the packet header such as FIN, SYN, and
RST that can be used to describe the activity or commu-
nication behavior of a packet. The features of the packet
level refer to the information that can be obtained from
the packet(s), which can be obtained from a single data
packet, such as the size of a data packet and the value of
a specific field of a data packet, or obtained from multiple
packets that may not be in the same flow. Therefore, we
classify packet inter-arrival time and its statistical values,
as well as the statistical values of packet size as the features
of the packet level.

Flow level data is a collection of packets that share same
attributes. In general, packets with the same five-tuple
(source IP, destination IP, source port, destination port,
protocol) are integrated into a flow. The common flow
level characteristics include the size of the flow (refers to
the number of packets contained in the flow), the duration
of the flow, the direction of the flow, and others.
Connection level data describes the communication traffic
between two IP addresses. It contains at least two data
flows: inflow and outflow data. The number of connec-
tions, connection level, and connection duration are some
common connection level data information.

Host-level data are collected from a local host. They con-
tain host activities, host changes, host resource consump-
tion and other host-related information, thus can provide a
complementary view on network events. Since most exist-
ing traffic classification methods do not use host-level data,

26

we do not discuss host-level data features in this paper.
But we think it is essential to introduce the host-level data
since they could assist traffic classification.

The fusion of different level features helps improving clas-
sification performance and facilitating network manage-
ment and attack detection [38,39]. [38] and [39] provide
two DDoS attack detection schemes using traffic fusion
based on a novel reversible sketch. In Table 5, we list the
features that are commonly used in traffic classification
and describe them from different levels. The number of
features used in the classification methods highly impacts
their performance such as robustness, classification speed,
and other quality properties. So, we concern the number
of features used in each method in its performance eval-
uation. For the sake of brevity, the number in front of
the features in the table will be used directly in the latter
section to represent the corresponding features.

(2) Feature Selection: Feature Selection (FS) is one of the most im-
portant steps in traffic classification because the practicability
of the selected features could directly affect the performance
of a classification method. The number of features and the
degree of their redundancy also affect the speed of classifica-
tion. Feature selection aims to reduce data dimensionality and
solve over-fitting problems. Besides, feature extraction also helps
understanding the relationships between features and feature
values.

Feature selection methods can be divided into three categories,
namely filtering, wrapping, and embedding [40].

+ The filtering methods are roughly divided into two types.
One is univariate filtering. This method does not inter-
act with a classifier. The calculation is simple, but the
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Table 5
Traffic features.
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Type Features

Descriptions

1. Packet size

2. Packet header length

3. The number of packets

4. Packet inter-arrival time
Packet level 5. Time stamp
6. Size of first N bytes
7. Specific string
8

. Statistical values of packet size

9. Statistical values of packet
inter-arrival time

10. Source address

11. Destination address
12. Source port

13. Destination port
14. Protocol

15. TTL

The length of a packet in bytes;

The length of packet control information;

The number of packets transmitted during a certain period of time;
The packet arrival interval (i.e., the time of packet arrival);

The point-in-time of sending/receiving a packet;

The length of first N bytes in a packet;

The specific sequent bytes of packet payload;

The maximum, minimum, average, standard deviation,
etc. of packet length;

The maximum, minimum, average, standard deviation,
etc. of packet inter-arrival time;

The IP address of a source interface;
The IP address of a destination interface;
The end-point of a source interface;
The end-point of a destination interface;
The protocol used by an application;

Time to Live (Max. hop count);

16. Volume of bytes

17. Flow duration

The total number of bytes transmitted;

The interval between the timestamps of the

first packet and the last packet;

18. Flow length
19. Flow size
20. Size of the first N packets

Flow level 21. Statistical values of the first
N packets sizes

22. Ratio of Source and
Destination Bytes

23.min_iat

24. mean_iat The
25. var_iat The
26. mean_data_wire The
27. mean_data_ctrl The
28. avg_win_agv_c The
29. mean_data_wire_s The
30. mean_data_ip_s The
31. RDBUB The
32. APITD The
33. IEPSD The
34. NDSF The

The total number of packets in a flow;
The sum of the packets size contained in a flow;
The size of the first few packets in a flow;

The maximum, minimum, average, standard deviation, etc. of the
first N packets length;

The ratio of packets transmitted between a source host and a
destination host;

The minimum packet inter-arrival of a flow;

mean packet inter-arrival of a flow;

variance packet inter-arrival of a flow;

mean Ethernet packet bytes of a flow;

mean control bytes of a flow;

average window size from a source to a destination;

mean Ethernet packet bytes from a destination to a source;

mean IP packet bytes from a destination to a source;

ratio of downstream bytes to upstream bytes;

average packet inter-arrival time downstream;

information entropy of packet downstream size;

number of downstream sub-flows;

. 35. Connection duration
Connection level

36. Connection inter-arrival time

The length of the time interval for which the tunnel is active;

Time elapsed time between two consecutive requests for

establishing a tunnel from the same user and the same server.

correlation between features is ignored. Common univari-
ate filtering methods include Information Gain (IG)/Gain
Radio (GR), Chi-Square, etc. The other is multivariate fil-
tering, which captures the correlation between features,
but it performs slower than the single variable filtering
method. Commonly, the multivariate filtering methods in-
clude correlation-based feature selection methods.

The wrapping methods iterate the selection of feature sub-
sets and a model training process to generate the most

27

appropriate feature set. The advantage of the wrapper
methods is the ability to interact with the classifier. How-
ever, they suffer from high computing overhead and pos-
sible over-fitting problems. Common wrapper methods in-
clude Sequential Backward Elimination (SBE), estimation
of distribution algorithm [41].

The embedding methods are a part of machine learn-
ing process, which is usually associated with a specific
machine learning algorithm. The computational cost of
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the embedding method is smaller compared to the wrap-
per ones, but it relies on the classifier for feature se-
lection. Commonly used methods include random forests,
SVM [42], and others.

We summarize the widely used feature selection algorithms in
traffic classification, as shown in Table 6. In some other classifi-
cation methods, multiple different feature extraction algorithms
are integrated, and the optimal and most stable features are
selected from the feature set obtained by each feature selection
method. Dhote et al. [40] provided more specific FS algorithms.
Decision process: The decision process is an important phase in
classification, which is based on the previously obtained feature
set for traffic classification by pattern matching or applying
machine learning algorithms. Pattern matching is usually related
to a specific field of a packet. The string matching algorithm is
applied to compare with a predefined string library to determine
the class of traffic. However, this type of matching has a lot of
limitations when dealing with complex services due to its limited
form of expression. Machine learning algorithms are currently
widely used in traffic classification. Introduction to machine
learning has been introduced in Section 1 of this section.
Validation: The validation process tests the previous classifica-
tion results with the purpose of obtaining the accuracy of the
classification method. In this step, we need to compare the
real category of the original data with the experimental results
to get classification accuracy. The collection of true categories
of original data, i.e., ground truth, is currently a challenge.
A commonly used ground truth collection method is manually
labeling, based on port collection and collection using DPI tools.
This collection method has various shortcomings such as time-
consuming, labor-consuming, inaccurate, and so on. To solve
these problems, researchers proposed new collection methods
using active measurement and heuristics analysis [43]. These
methods improve the reliability of ground truth to a certain
extent. However, there are still many problems, such as excessive
load or the use of simulated traffic cannot accurately reflect
real-world network traffic. Refer to [43] for specific reference.

€))

4

2.3. Traffic classification methods

This paper reviews existing network traffic classification methods
from a comprehensive perspective by classifying them into five cate-
gories, i.e., statistics-based classification, correlation-based classifica-
tion, behavior-based classification, payload-based classification, and
port-based classification. We classify existing traffic classification meth-
ods into five categories based on the representative features used
by them. The representative features used in different classification
methods are different. The representative features used by the statistics-
based classification methods are the statistical values of the traffic at
the packet level and/or the flow level, e.g., the maximum, minimum,
mean, variance of packet size and flow duration. The correlation of
flows is applied as a main feature for classification by the correlation-
based classification methods, which can be seen as an expansion of the
methods based on statistical features. This type of methods combines
the statistical information of traffic with the correlation between flows
to construct a constraint relationship during the process of classification
in order to improve classification accuracy and efficacy. The behavior-
based methods mainly use the communication or activity behavior of
hosts to perform classification, e.g., host interaction and connection
data. The representative features adopted by the payload-based clas-
sification methods mainly include packet contents or the contents of
specific fields in a packet, e.g., the first few bytes of a packet. The
port-based classification methods rely on traffic ports for classification,
e.g., port number. Applying this taxonomy can well sort out most of
existing classification methods and provide a comprehensive view on
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traffic classification from different key perspectives. We summarize the
five types of methods and analyze their advantages and disadvantages
of each method, as shown in Table 7.

(1) Statistics-based Classification: The statistics-based classification
methods rely on the statistical features of traffic instead of the
packet payload. Common statistical features include the mini-
mum, the maximum, the mean of packet size and the number of
packets, and so on. Different traffic classification methods may
differ in adopted traffic features in traffic classification. Finding
the best feature subsets through different feature extraction
and feature selection methods and trying to train and classify
the datasets using different machine learning algorithms can
help improving the accuracy of the statistics-based classification
methods.

Correlation-based Classification: The correlation-based classifica-
tion methods aggregate packets into flows and classify them
according to the correlation between the flows in the network.
Here, the definition of flow refers to a collection of data packets
having the same five-tuple, that is, the same source IP, source
port, destination IP, destination port, and protocol. In general,
multiple flows are aggregated into Bag-of-Flow (BoF). Classify-
ing BoF is a unified classification of all flows in BoF. This type
of methods avoids the problem of feature redundancy faced by
the statistics-based classification methods, but still has a high
computational overhead in feature matching.

Behavior-based Classification: Behavior-based approaches give a
new perspective on traffic classification research. It performs
traffic classification by checking and counting the behaviors of
a host, for example, by checking which IP addresses the host
communicates with, what protocol is used, and which ports are
communicating in order to identify the applications in the host.
Although this type of methods has high classification accuracy,
its classification result is not fine-grained enough.
Payload-based Classification: The payload-based -classification
methods are proposed to improve classification accuracy, which
check the content of the packet, obtain the signature correspond-
ing to the protocol, and match it with the signatures stored in
the database to identify a particular application or protocol.
We divide the payload-based classification method into two
types according to the methods used for packet inspection, one
is Deep Packet Inspection (DPI), and the other is Stochastic
Packet Inspection (SPI). DPI is a network technology that detects
network traffic and packet contents. For the detailed definition
of DPI, refer to [49]. Because of its high classification accuracy,
DPI technology is very popular in traffic management, security
analysis and attack prevention. Commonly used DPI tools are
nDPI [50], OpenDPI [51], L7-filter [52], Tstat [53], Narusln-
sight [54], etc. SPI was proposed to deal with the problem
that DPI cannot classify encrypted data. This method does not
directly use the content of the packet but uses the statistical
information of the payload to automatically generate the pro-
tocol signature to identify different protocols. The classification
method is also highly accurate. Although SPI can classify en-
crypted data, this method still faces the problem of excessive
computational cost.

Port-based Classification: Port-based traffic classification methods
generally identify well-known applications or protocols based
on port numbers specified by the Internet Assigned Numbers
Authority (IANA) [55], such as port number 20, 21 for FTP
traffic, port 25 for SMTP traffic, and port 80 for HTTP traffic.
Therefore, using ports to identify applications or protocols is the
easiest and most direct method. But today, with the proliferation
of unknown applications, and the fact that many applications
choose to use dynamic ports instead of using known fixed ports,
this approach is no longer accurate and efficient.
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Table 6

Widely used feature selection algorithms.
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FS algorithms

Descriptions

Advantages

Disadvantages

Principal Component
Analysis (PCA) [44]

A set of variables that may be related to each
other are transformed into a set of linearly
uncorrelated variables through orthogonal
transformation. Mainly used for dimensionality
reduction.

Simple calculation, no
parameter restrictions

Not as interpretative
as original samples

Pearson Correlation
(PO)

This method measures the linear correlation
between variables, and the value range of the
result is [-1, 1].

Fast and easy
to calculate

Sensitive to linear
relationships only

Random Forest

Random forests include two methods of feature
selection: mean decrease impurity and mean
decrease accuracy.

High accuracy and
good robustness

Dependent classifier
selection feature

Distance correlation

Overcoming the PC’s insensitivity to nonlinear

relationships, the resulting value interval is [0,1].

Easy to calculate

The correlation
interval is [0,1],

and the correlation is
not as rich as PC.

Correlation-based Feature
Selection (CFS) [45]

Apply correlation metrics to assess the
superiority of feature subsets.

Consider the correla-
tion between features

Cannot handle large
amounts of data in
high dimensions

Fast Correlation-Based
Filter (FCBF) [46]

An algorithm based on mutual relationship
metrics, using correlation coefficients to analyze
the relationship between features, categories
and features.

Accurate and efficient

Cannot handle large
amounts of data in
high dimensions

Information Gain

The number of bits of information provided in

Simple and fast, able

Poor performance

(IG) [47] the category prediction is measured by the value to process extremely when classes and fea-
of the feature. When the dataset category is large datasets tures are unbalanced
extremely uneven, IG is better than Chi-square.

Gain Ratio Normalize information gain by using split Overcoming the bias Ignore feature

(GR) [47] information metrics. of information gain on correlation

features with a large

number of different values

Chi-square [48]

Based on the chi-square distribution of statistics,
the degree of metrics and category independence
is lacking. The larger the chi-square, the smaller

Simple and fast, able
to process extremely

Ignore feature
correlation

large datasets

the independence and the greater the correlation.

When the dataset is evenly distributed, the
effect of Chi-Square is slightly better than IG.

Table 7

Five categories of traffic classification methods.

Classification methods

Descriptions

Advantages

Disadvantages

Statistics-based

Correlation-based

Behavior-based

Payload-based

Port-based

Use statistical features such as packet
size etc.

Uses correlations between flows to
estimate traffic clustering

Capture social interaction observable
from the perspective of a host

Generally use deep packet inspection to
look into packet contents

Use statistics on the port number of
packets

Protect user privacy
to a certain extent

High accuracy
Make most encryption

methods robust

Accurate classification

Fast and simple

Too much redundant features

High computational overhead

Classification result is not
fine enough

Cannot deal with encrypted
payload, legitimacy and privacy
issues

Poor performance; infeasible
for hidden ports

2.4. Classification granularity

service layer (Level 1), application layer (Level 2), protocol layer (Level
3), and application type layer (Level 4) (see Fig. 4).

In this subsection, we discuss the granularity of traffic classifica-
tion results. In general, different classification methods give different
classification categories. For example, some classification methods can
give specific application names, such as Google, YouTube, Facebook,
and so on. There are also some classification methods, as discussed
in [56], they classify applications or protocols with the same functions
into the same category, that is, each classification category contains
different applications and protocols. Taking the Mail category as an
example, protocols (such as SMTP, POP, and IMAP) are classified into
the Mail category. Inspired by the paper [57], we divide the results of
traffic classification into four levels of classification granularity: specific
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* Level 1 is the most finest granular level of classification results.
It further categorizes different traffic generated by the same
application based on Level 2. According to the different services
provided by the traffic, it is divided into different categories, such
as downloading, chatting, and so on.

Level 2 classifies network traffic according to applications and

gives specific application names related to the traffic.

Level 3 classifies traffic at a protocol level. Because different

applications are likely to use the same protocol, the granular-
ity of protocol-based classification is slightly coarser than the
application-based classification.
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Flows or packets
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Fig. 4. Four-level classification granularity.

+ Level 4 is to classify traffic according to the type of the applica-
tion, that is, the applications with the same or similar functions
are classified into the same category. Therefore, the classification
result given by Level 4 is a collection of a series of applications,
and it cannot give a specific application name.

3. Classification performance measure and criteria

In this section, we specify a number of criteria that can serve as a
measure to evaluate the performance of traffic classification methods.
Two types of criteria are concerned: criteria of classification effective-
ness and criteria of classification performance.

3.1. Criteria of classification effectiveness

(1) Information Granularity(G): We use four-level information gran-
ularity as discussed in Section 2.4 to judge the granularity of
different classification results. Different classification granular-
ities can provide different traffic information. The finer the
granularity of the classification results, the more traffic infor-
mation is provided, and the readability of the data can also
be enhanced. According to distinct requirements, traffic can be
classified with distinct granularities. Similarly, different classifi-
cation granularities can also help network managers providing
different services.

(2) Robustness (R): The classification method should be able to
perform stably in a constantly changing network environment,
that is, it can still ensure high classification accuracy in the face
of various problems in the network, such as congestion, packet
loss, delay, etc. So, the robustness should be an important crite-
rion for classification methods. We evaluate the robustness of a
scheme based on whether the features used are universal or not,
and whether the scheme can maintain the same classification
performance for different network types or traffic types.
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(3) Identification of unknown applications (IUA): The classification
method is required to detect not only known labeled traffic in
a training dataset, but also unknown or new applications. If
only known applications can be detected, some new types of
applications will be classified into known types, which definitely
impacts detection accuracy. In the constantly changing and up-
dated network environment, unknown traffic is appearing and
increasing, so the ability to classify unknown traffic becomes
very important. The fast and accurate classification of unknown
traffic can greatly help us identify malicious traffic and provide
network security.

Online classification: An important criterion for assessing classifi-
cation methods is online classification in real-time. The network
traffic is updated regularly, so the classification methods should
be able to classify traffic online in real-time. Efficient classifi-
cation of network traffic is essential to improve service quality
and detect malicious traffic. This requires that the classification
methods can identify the correct category of traffic in a short
period.

4

3.2. Criteria of classification performance

There are several metrics for evaluating the performance of the
classification methods, as summarized in Table 8. In different traffic
classification methods, researchers use different accuracy evaluation
metrics to measure classification performance, such as overall accuracy,
F-measure, precision, recall and so on. In this paper, we focus on the
overall accuracy to evaluate and compare the performance of reviewed
classification methods.

(1) Overall Accuracy: The Overall Accuracy (OA), as shown in
Table 8, refers to the percentage of samples that are correctly
classified in all samples.

(2) Class Accuracy: Class accuracy (CA) refers to the classification
accuracy with regard to an individual class. For example, if a
method divides network traffic into different categories such as
P2P, HTTP, and SMTP, the classification accuracy of P2P, HTTP,
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Table 8
Measures of classification performance.
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Measures

Explanation

True Positive (TP)

The number of traffic that are correctly

assigned to a specific traffic category.

False Positive (FP)

The number of traffic that are incorrectly

assigned to a specific traffic category.

True Negative (TN)

The number of traffic that are not part of a specific

traffic category and are classified into other categories.

False Negative (FN)

The number of traffic that belong to a specific

traffic category and are classified into other categories.

TPR= TP/(TP+FN)

The proportion of traffic that belongs to an underlying traffic

category and are really classified into that category.

FPR = FP/(FP+TN)

The proportion of traffic that is incorrectly assigned to a

particular traffic category that it should not belong to.

Recall (R)

TP / (TP+FN) (=TPR) the percentage of objects from a given

category that are properly attributed to that category.

Precision (P)

TP/(TP+FP) the ratio of flows correctly attributed to a

category over the total flows attributed to that category.

F-measure
Sensitivity TPR

Specificity

(@ +1)P = R/a*(P + R)

TNR= TN / (FP + TN) the percentage of negative objects

identified correctly from all negative objects.

Accuracy

(TP+TN)/(TP+TN+FP+FN)

and SMTP is calculated separately. This makes it more intuitive
to see which class is more sensitive to the classification method.
Moreover, classification accuracy based on individual classes is
also more helpful in understanding and analyzing the advantages
and disadvantages of a classification method.

(3) Flow Accuracy: Flow accuracy is the classification accuracy
about a single flow, often used in the methods that classify flows,
such as correlation-based classification methods.

(4) Byte Accuracy: Byte accuracy refers to how many bytes are
correctly classified in an entire dataset. In the classification of
an imbalanced dataset, byte accuracy is very important. Because
most traffic flows are mice flows in the Internet, and the bytes
generated by the mice flows account for a relatively small por-
tion, while the bytes generated by a small number of elephant
flows account for a relatively high portion of total bytes in the
entire dataset [58].

4. Review of existing classification methods

In this section, we review the existing traffic classification methods
by classifying them into the five categories as specified above. In
our review, we first introduce each work derived from the current
literature. We then comment its performance and remark its pros and
cons based on the criteria presented above. Finally, we summarize our
review on each category in terms of the proposed criteria in a table.

4.1. Statistics-based classification methods

In this subsection, we review and comment main statistics-based
methods published from 2012 to present by further grouping them
according to machine learning types.

4.1.1. Supervised classification

Dong et al. [59] focused on the identification and classification
of Skype traffic. They proposed a Naive Bayes-based Netflow Flow
Identify (NFI) mechanism. Their goal is to solve the real-time problem
of tracing and the problem when labeled data is not enough. This
paper used a Fast Correlation-Based Filter (FCBF) [46] method for
feature extraction. In the construction phase of classification modeling,
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they used a Bayesian update mechanism. It uses new training data to
continuously update the classification model to improve the accuracy of
the classification. They built their classifier upon the Netflow V5 format
and extended Netflow records. In addition, they used Netflow sampling
to improve the efficiency of traffic identification, which impact traffic
behavior and classification accuracy. In experimental tests, they com-
pared the proposed method with other four methods and discussed the
effects of sampling rate on flow identification. This method can be used
in online classification in real-time. But it cannot identify unknown
traffic and its robustness is not good. The classification level of this
method is unknown.

Moore and Zuev [60] used an improved kernel density estimation
theory based on Bayesian to improve the overall accuracy of classifica-
tion. In this method, 248 discriminators (i.e., features) per-flow were
used. They also used the FCBF feature extraction algorithm proposed
in [46] to process high-dimensional data and wrapper methods to per-
form feature extraction. In order to minimize the redundancy of feature
sets, they used information entropy to calculate symmetry uncertainty
to determine the correlation between features, reduce redundancy and
select the best features. This method can only classify traffic of known
categories, cannot identify unknown traffic. It cannot support the ro-
bustness and online classification . Its classification granularity is at
Level 4.

Since most methods of using machine learning for traffic clas-
sification need to be completed under the assumption that training
data and test data satisfy independent identical distribution. Most real
data cannot fully satisfy this assumption, and when classifying traffic
from different network environments, the previously trained classifica-
tion model is likely to be unable to perform classification accurately.
This is because different network environments have different data
characteristics and traffic sizes. In order to solve this problem, Sun
et al. [61] proposed a method based on transfer learning for traffic
classification. This method can perform classification well without
satisfying the above assumptions. About the transfer learning, refer
to the survey [62]. Dai et al. used a TrAdaBoost algorithm proposed
in [63], a new algorithm based on the traditional AdaBoost algorithm,
to perform classification by applying a maximum entropy model (Max-
ent) as a classifier. Through experiments, they found that when the
maximum entropy model is set to 5, the best classification effect can be
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achieved. The classification accuracy of the method can reach 98.7% in
total. For WWW and MAIL, the classification accuracy exceeds 99.5%.
This method is also robust due to the use of transfer learning. It can
offer robustness but cannot support online classification and IUA. The
granularity is at Level 4.

Fahad et al. [64] presented an integrated FS technique. Three new
evaluation metrics for feature picking techniques were proposed as
well, namely goodness, stability and similarity. The authors applied six
FS technologies (i.e., IG, GR, PCA, Correlation-based Feature Selection
(CBF) [65], Chi-square, and Consistency-based Search (CBC) [66]).
Using the Moore dataset, the above six FS techniques were evaluated
and compared based on three metrics through experiments. Based on
experimental results, they found that a single FS technology could
not maintain good performance in all datasets. Therefore, a new FS
technology called Local Optimization Approach (LOA), which combines
the above five FS technologies (excluding PCA) and integrates their
respective advantages, was proposed. LOA can select the most reliable
feature subset from the feature subsets in different FS technologies.
Therein, they proposed a Support concept to select the best feature
subset. With three different datasets, LOA has shorter modeling and
testing time than each individual FS method, and its performance is
more prominent regarding the three metrics. Since the LOA method
can achieve classification in a short time, this method can be used for
online traffic classification. It can also satisfy robustness. But it cannot
support IUA. The classification granularity of this method is unknown.

In [67], Sun et al. proposed an Incremental Support Vector Ma-
chines (ISVM) method based on SVM to save memory and CPU during
training. This method can update the classifier according to the newly
arrived traffic in time. The ISVM discards original training data and
saves only the Support Vectors (SVs) generated during the last update.
When new training data arrives, the classifier combines the new data
with the SVs to re-train and update the SVs. In order to improve the
classification accuracy of ISVM, they further improved this method and
proposed the ISVM with attenuation factors (AISVM) scheme. The new
scheme gave each SV a weight value. In the process of continuous
updating, the SV with the weight value less than the threshold is
discarded. Experiments showed that the AISVM is 1.2 percent more
accurate than the ISVM solution. This method can support online
classification but cannot satisfy robustness and IUA. The granularity of
its classification is unknown.

Lopez et al. [68] proposed a fast method for data pre-processing,
including a feature normalization algorithm and a correlation-based
feature extraction algorithm. Because the range of features is different
in different datasets, the feature normalization can improve classifica-
tion accuracy when the feature span in a certain dimension is large. The
feature normalization algorithm can complete data filling within O(log
N) time complexity. In the feature extraction algorithm, they used the
correlation between features in a dataset to weight the features. The
weight value w ranges from O to N, where N represents the number of
features contained in the dataset. The Pearson coefficient was used as a
metric of correlation. They compared the method with three traditional
algorithms (Relief [69], Sequential Feature Selection (SFS), and PCA),
using four machine learning algorithms (Decision Tree (DT), C4.5, Ar-
tificial Neural Networks (ANNs), Support Vector Machines (SVMs)) to
evaluate the performance of feature extraction algorithms. Experiments
showed that different classification accuracy can be achieved under
different feature numbers and different classifiers. Their feature extrac-
tion algorithm can achieve the best classification performance under
the decision tree classifier, which is accurate to 97.2%, better than
other feature extraction algorithms. But the performance under other
classifiers is not as good as the PCA algorithm. The biggest advantage
of this method is its low time consumption, which is beneficial for
real-time monitoring and network traffic classification. However, this
method cannot satisfy robustness and IUA. Its classification granularity
is at Level 4.
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Shafiq et al. [70] proposed a hybrid method, which includes two
metrics of feature selection, one is Weighted Mutual Information (WMI)
and the other is the area under the ROC curve (AUC). These two metrics
constitute a new hybrid mechanism named WMI_AUC to pick out
effective features in imbalanced traffic. In addition, they also proposed
a Robust Feature Extraction (RFS) algorithm that can select robust and
stable features from the features obtained in WMI_AUC. They extracted
22 features from a dataset using the NetMate [71] tool and verified the
classification performance with 11 classifiers (Bayes Net, Naive Bayes,
SMO, AdaBoost, Bagging, Oner, PART, Hoeffding, C4.5, R/forest, and
R/tree). Experiments showed that the overall accuracy of the method
can reach more than 95%. The feature selection algorithm used in this
method is very robust, so the method can support the robustness. In
addition, this method can classify traffic online in real-time. However,
it cannot satisfy IUA. Its classification granularity is at Level 2 and 3.

Aceto et al. [72] focused on a Multi-Classification System (MCS)
approach to accurately classify mobile applications. The MCS architec-
ture includes data pre-processing, Service Bursts (SB) (decomposition of
traffic as in [73,74]), feature set extraction and several modules of dif-
ferent classifiers. In this article, they used seven existing base classifiers:
Lib_NB in [75], Her_Pure, Her_TF, Her_Cos in [76], Tay_RF, Tay_SVC
in [68], Classification And Regression Tree (CART) in [77]. These
classifiers integrate Soft and Hard classifier fusion techniques. The six
hard combiners used in this paper are Majority Voting, Weighted Ma-
jority Voting, Recall Combiner Naive Bayes, Behavior-Knowledge Space
method, Wernecke’s method (MV, WMV, REC, NB, BKS, WER, respec-
tively), and the five soft combiners are Non-trainable combiners (within
CQC), Fuzzy Integral (within CC), trainable linear combiners (within CC),
Decision Templates (within CI), Dempster-Shafer approach (within CI).
The fusion rules for different classifiers can be found in [78,79]. A
dataset containing 49 different mobile applications was classified by the
multi-classification system constructed using different combiners. This
method can satisfy robustness but cannot support online classification
and IUA. The granularity of classification is at Level 2.

In order to solve the problem that the common SVM algorithm is
susceptible to the influence of dataset size and feature dimension, an
accurate real-time classification method SPP-SVM [80] was proposed.
This method uses unbiased samples to process original data. Also, to
reduce the impact on classification performance and speed caused by
the scale of data, they re-scaled the data. Experiments verified that
the scaling method they used does improve classification accuracy.
This method employs PCA to extract data features, which can reduce
feature dimensions, reduce feature redundancy, and avoid over-fitting,
thus increases the universality of the method. Then, an improved
Particle Swarm Optimization (PSO) algorithm was used to optimize the
parameters of a kernel function in order to reduce computational load.
Finally, a cross-validation method was proposed to train the SPP-SVM
classifier. The classifications of two-class and multi-class were verified.
The accuracy of the two-class classification is 8.4% higher than the
multi-class one, arriving at 98.6%. This method can support online
classification because of low computational load, but cannot satisfy the
requirement on robustness and IUA. Its classification granularity is at
Level 4.

Tong et al. [81] proposed a method that can be used for real-
time classification. They selected eight flow-level features that were
considered to be the most efficient. These features were combined to
form six feature sets. The continuous feature values are converted to
discrete ones using the Minimum Description Length (Entropy-MDL)
algorithm. Because the literature [82] proved that discretization could
help to improve the accuracy of classification. A comparison experi-
ment was performed on each feature set, and the feature set with the
best classification accuracy was recorded as an Empirical Optimization
Feature Set (EOFS). At the same time, they found in the experiment that
extracting features from the first four packets of a flow can achieve
the highest accuracy. Therefore, they used EOFS and the first four
packets of the flow to train the classifier. In this method, they used
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the classifier based on the C4.5 algorithm. In order to enable the
proposed method to be used for online classification, they proposed two
acceleration algorithms, Optimized Decision Tree (ODT) and Divide
and Conquer (DQ). They compared these acceleration algorithms in
the Field Programmable Gate Array (FPGA) and multi-core platforms.
This method can support online classification, and its overall accuracy
reaches 97.92%. But it cannot identify unknown traffic. Thus, this
method can support online classification and robustness but cannot
satisfy IUA. Its classification granularity is at Level 2.

Dong et al. [83] focused on classifying web browsing and video
traffic and proposed a new feature selection algorithm based on the
coefficient of variation [84]. The coefficient of variation was used to
reflect the degree of dispersion of a dataset. They had verified that
this algorithm is lower in time complexity than previous information
gain based or Chi-Square methods. They selected a series of statisti-
cal features for classification and verified the validity of the selected
features by analyzing the two-dimensional distribution of features. The
proposed feature selection algorithm was verified by K-NN and SVM
classifiers and compared with existing feature selection algorithms. This
method achieves an accuracy of 98.17% and a very fine classification
granularity. But it cannot support online classification, robustness and
IUA. Its granularity level is at Level 1.

Later, in the literature [85], Dong et al. proposed a modified
consistency-based feature selection algorithm. More than 40 features
were extracted from an original dataset. Finally, four features were
selected based on a consistency feature selection process, namely RD-
BUB (ratio of downstream bytes to upstream bytes), IEPSD (information
entropy of packet size downstream), NDSF (the number of downstream
sub-flows), APITD (average packet inter-arrival time downstream). A
hierarchical K-NN classification scheme was employed to allow each
sub-classifier to process a limited subset of video streams, making
an applications easier to be distinguished. Their hierarchical K-NN
classification scheme consists of two layers. The root K-NN classifier
of the first layer divides all flows into symmetric flows and asymmetric
flows. The features of RDBUB and IEPSD are used in this step. The
second layer consists of a symmetric K-NN classifier and an asymmetric
K-NN classifier, which respectively process the symmetric flows and
the asymmetric flows generated by the upper layer. The symmetric
flows are divided into three categories: QQ, Xunlei and Sopcase. The
asymmetric flows are divided into three categories: ASD, AHD, and
HTTP-download. Through experiments, they found that after the fea-
tures used in other different classification schemes were changed to
the features proposed in this method, the accuracy of the classification
was improved to some extent in those schemes. This method is robust
due to the usage of stable features. However, it cannot support online
classification and IUA. Its granularity is at Level 1 and 2.

Alshammari et al. [86] proposed a method for classifying VoIP
encrypted traffic. Instead of using IP addresses, ports or payload in-
formation to generate application signatures, they first proposed to
generate signatures based on machine learning methods. There are
three supervised machine learning methods applied in this paper, C5.0,
AdaBoost and Genetic Programming (GP), which automatically gener-
ate signatures for classification. They collected three datasets in their
own school and lab, and used PacketShaper (2008) to label traces,
i.e., ground truth, for verifying classification accuracy. Because the
previous literature [87] pointed out that selecting different subsets of
samples has an impact on classification performance, this article eval-
uated three different sampling methods to select the best training data
samples. The first method is a uniform random N sampling method, the
second is a stratified sampling method, and the third is a continuous
data flow. The obtained training dataset was trained by the three
machine learning methods mentioned above to obtain a classification
model. Through verification, they found that the C5.0 algorithm has
the best classification accuracy and the lowest FPR. This method can
satisfy robustness but cannot support online classification and IUA. Its
granularity is at Level 3.
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Wang et al. [88] proposed a random forest approach to implement
the clustering process. This paper used 20 flow features to aggregate
traffic into classes at a specific protocol level. Each tree is generated by
iteratively splitting the nodes based on m variables randomly selected
from input variables, where m is a predefined number of variables used
to split the nodes. After the forest is constructed, the proximity of each
pair of nodes is calculated in trees, and the proximity is divided by
the number of trees to normalize it. The proximity between the node
and itself is 1. In this way, a symmetric proximity matrix is generated,
where each value has a range of [0, 1]. The proximity is repeatedly
calculated by multiple iterations, and finally, the average value is taken
as the final proximity matrix. Using the obtained proximity matrix as
an input, the data points are clustered using a Partitioning Around
Medoids (PAM) clustering algorithm. In addition, they used the out-
of-bag data that were discarded in the sampling to estimate the error
of the classification. This estimate has proven to be unbiased. The
classification accuracy of this method is related to the number of
clusters. When the number of clusters is set to 200, the accuracy can
reach 93%. This method can identify unknown network traffic, but
it cannot perform online classification in real-time. And this method
cannot satisfy robustness. Its granularity is at Level 3.

Huang et al. [89] proposed a high-accuracy APPlication Round
method (APPR) for traffic classification, which determines the features
of traffic data flows from the application layer rather than the transport
layer. They defined the concept of interaction rounds. An interaction
round consists of a series of transport layer data segments transmitted
in one direction and a series of data segments transmitted in a reverse
direction. The first few inter-action rounds of a flow are used to identify
the flow. The flow is identified mainly by different behaviors during
a negotiation stage. In order to not involve the payload content of
the packets, they used the network layer and transport layer headers
to calculate statistical features. Experiments were performed using
the machine learning tool WEKA [90] to evaluate the method using
six different machine learning algorithms. Experiments showed that
among the six methods, J48 has the best classification accuracy, the
highest accuracy can reach 99.21%, and the average overall accuracy is
92.88%. This method can identify application traffic at an early stage,
shortening model-built-duration and test-duration to varying degrees,
so it can be used for online classification. However, unknown traffic
cannot be detected. It cannot satisfy robustness. The granularity of this
method is at Level 3.

In [91], based on the LOA method proposed in [64], Fahad et al.
further proposed another method that can select optimal features and
automatically find stable features from network traffic based on a
Global Optimization Approach (GOA). GOA consists of three phases.
The first phase is the same as the LOA method, that is, multiple FS
technologies are combined, and a optimal feature set is selected in dif-
ferent datasets. In the second phase, the concept of maximum entropy
is applied to estimate the probability distribution of the flow charac-
teristics. The stable and robust features were selected based on the
probability distribution. Because it is generally believed that features
with distinct distributions are considered stable. They used an adaptive
threshold to select features. The third phase uses a random forest filter
to select the most representative features from the features obtained in
the previous two steps for classification. In addition, they discretized
features because this can help improving classification accuracy and
speeding up classification. The classification accuracy of this method
reaches 97.7%. However, unknown traffic cannot be recognized. And
this method cannot support online classification. Its granularity is at
Level 4.

Since most classification methods need to process all packets, this
causes high resource consumption. Random Packet Sampling (RPS)
could reduce the accuracy of the classification although it increases
classification speed. So, Zander et al. [92] proposed a Sub-flow Packet
Sampling (SPS) approach to reduce resource usage while keeping classi-
fication time within 1 s and maintaining classification accuracy around
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98%. The SPS method takes W seconds as a time slot, and samples
N consecutive packets in a flow in each time slot. They skipped the
first O (O fairly small) packets of the flow to further reduce processing
time because an active flow would last for a long time. They improved
the method that samples data packets in a certain time interval by
using the Bloom filter proposed in [93], because sampling starts after
skipping O data packets. The authors focused on the identification and
classification of VoIP and First Person Shooter (FPS) game traffic. This
method can achieve online classification in real-time but cannot satisfy
robustness and IUA. Its classification level is unknown.

Fukumoto et al. [94] categorize smartphones by whether they are
active or not, because some of the applications or services (such as
VoIP, Web browsing, etc.) running on the smartphone are quality-
sensitive, which means best-effort is required, it is likely that the
running of these applications on active state will affect the user quality
of experience. The main feature of this scheme is to automate the peri-
odic estimation of whether the smartphone is active, and then combine
the time stamp as the training dataset of machine learning. First, the
Logging Application collects the data generated on the smartphone
and uploads it to the training data generator, which categorizes the
data into active and inactive data based on user behaviors, and links a
time series of active/inactive states with collected traffic data for each
smartphone. Then, the machine learning module performs supervised
learning based on the data provided by the training data generator.
The classification granularity is rough because there are only two
categories, active and inactive. It can be used for online classification,
and the scalability and robustness of the scheme is verified in the LTE
environment. However, it cannot support IUA.

Many existing classification methods ignore the problem of a misla-
beled training dataset, which leads to poor classification performance
when the training dataset is mislabeled. [95] is mainly aimed at this
problem. The Noise-resistant Statistical Traffic Classification (NSTC)
method can filter the noisy training samples so that the reliable training
samples will be kept for traffic classifiers. This method is divided into
two processes: offline training and online classification. In the process
of offline training, firstly, data are aggregated into flows, then multiple
classifiers are used to identify whether the flows are noise data or not,
and non-noise data are selected as training datasets. They used a combi-
nation of several classification algorithms [96] to identify noise traffic
data using a consensus filtering strategy. In the online classification, the
scheme uses a classifier based on random forest to classify the online
data. The classification accuracy can be kept above 80% under different
noise ratio. This scheme supports online classification, robustness, but
not satisfy IUA. Its granularity is at Level 3.

The main purpose of [97] is to propose a classification method
which can deal with large-scale network traffic and real-time on-
line classify. They used a parallelized Convolutional Neural Networks
(CNN). The CNN model is parallelized by parallelizing the input data.
This scheme divides the data into n data blocks RDDs (RDD is a data
structure provided by Spark), and then n worker nodes train the n
data blocks RDDs respectively. At the end of the training, the Master
integrates the n weight file generated by n nodes into an average weight
file. The CNN model is updated based on this weight file. The com-
parison experiment shows that the method has good stability and the
accuracy of 99.17% is achieved while the classification time is greatly
shortened. This scheme supports online classification, robustness, but
not satisfy IUA. Its granularity is at Level 4.

Obaidy et al. [98] propose a method to categorize encrypted traffic
generated by social media applications, such as Facebook, YouTube.
This method mainly includes the process of data collection, feature
extraction, machine learning training and testing. The dataset was
collected using Wireshark from end-user machines, which included
traffic generated by five applications, namely Facebook, YouTube,
Skype, Netflix, and WhatsApp. Then, they use five common feature
selection methods (ReliefF, Sequential Floating Forward Selection, Se-
quential Floating Backward Selection, Sequential Backward Selection,
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Sequential Forward Selection and Binary Genetic Selection [99,100]) to
select 14 features that can maintain high classification accuracy in most
cases. Four supervised machine learning methods are used for machine
learning training and testing, Multilayer Perceptron (MLP), decision
tree, SVM and C4.5. The C4.5 algorithm achieves the best classification
accuracy of 88.29% in experiment. Because of its limited application
scenarios, it is not robust. And it cannot be used to classify online and
identify unknown traffic. The granularity of this method is at Level 2.

AlSabah et al. [101] proposed a real-time encrypted traffic classifi-
cation method to enhance the performance of the Onion Router (Tor).
Tor [102] is the implementation of the second generation of onion rout-
ing, which provides a low-latency anonymous communication service.
The authors proposed an accurate and real-time traffic classification
method to improve Tor’s performance and usability, so as to provide
users with high anonymous service quality. First, they collected dif-
ferent applications traffic appeared in Tor circuits in order to obtain
useful application attributes for classification. By observing upstream
and downstream traffic data, they extracted some attributes, such
as link duration, total transmission volume, and cell arrival interval.
They then used four different supervised machine learning algorithms,
namely Naive Bayes, Bayes Network, Functional Tree (FT) [103], Lo-
gistic Model Tree (LMT) classification [104] for classification based on
the dataset collected in a Tor network, which includes three types of
traffic: Bulk transfer, Interactive, and Streaming. The best classification
accuracy can reach over 95%. This classification method can support
online classification, but its robustness is weak. It also lacks ability to
identify unknown traffic. Its classification granularity is at Level 4.

Muliukha et al. [105] proposed a method that mainly classifies
the traffic generated by virtual connection technologies. There are two
levels of virtual connections, one is technical virtual connections (TVC),
and the other is information virtual connections (IVC). This paper
focuses on the traffic generated by TVC. In addition, this method also
classifies Virtual Private Network (VPN) connection traffic, which is a
commonly used encrypted transmission technology. For TVC traffic, the
features used in classification mainly contain a total of 67 flow-level
features, such as the total number of packets in a flow, the number
of packets with payload, and the number of packets with flags. For
VPN connection traffic, the method uses both packet-level and flow-
level features, such as IP address, port, flow duration, total number of
packets transmitted in a flow, and packet inter-arrival time. In terms
of datasets used in experiments, they used Network Namespaces to
collect specific application traffic. For TVC traffic, they used a Naive
Bayes classifier to classify the traffic at the application level. And the
VPN connection traffic mainly includes seven different types of traffic,
such as Email, Chat, Browsing, VoIP, etc. They used the random forest
algorithm for classification, and achieved classification accuracy as
87.9%. This method is not sufficiently robust. Online classification and
IUA cannot be supported. Its classification granularity is at Level 4 and
Level 2.

4.1.2. Unsupervised classification

Bernaille et al. [106] proposed a new method to identify the appli-
cations associated with TCP flows by only using the size of the first few
packets of each TCP flow. They used an unsupervised clustering method
(a K-Means algorithm) to aggregate the flows with common behaviors
into clusters by monitoring and analyzing the first few packets of the
TCP flows, as while as the supervised clustering with a pre-labeled
set of samples to construct a model for each cluster. By analyzing a
dataset containing 10 applications, they found that only the first five
packets of the flow need to be analyzed to identify the application
corresponding to the flow. The method firstly trains and learns the
dataset offline, and uses the first 5 packets to form a 5-dimensional
space. Each dimension uses the length of a packet as a coordinate,
and uses the Euclidean distance to measure the similarity between the
flows. For a newly arrived flow, the method compares its distance from
the center of each cluster and classifies it into the nearest cluster. The
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authors used a payload analysis tool, Qosmos, to associate each flow
with a corresponding application. Then the two sets of offline learning
phase outputs were used for online classification. This method can
achieve online classification, but the classification accuracy is not high
enough, which is just over 90% in a few application protocols. It cannot
satisfy robustness and IUA. Its classification granularity is at Level 2 and
3.

Ahmed et al. [107] proposed an unsupervised and nonparamet-
ric clustering method using the Dirichlet Processing Mixture Model
(DPMM). They classified normal traffic and attack traffic with applica-
tion fingerprints. This classification method is roughly divided into two
parts: using packet-level features for normal network traffic classifica-
tion and using flow-level features for attack traffic detection. Firstly,
they extracted the packet-level features from datasets for generating
the application fingerprints, classified the obtained fingerprints using
unsupervised clustering methods. The resulting cluster classes were
mapped to applications by using the labeled training data obtained with
supervised machine learning, and the clusters that were not mapped
are marked as unknown. A multi-modal probability distribution was
formed by using the mapped clusters, which were classified by mod-
eling the normal traffic distribution of the application. Secondly, the
flow-level features were merged with the package-level features. For
extracting extended flow-level and packet-level features of unknown
clusters, they used DPMM to analyze extended features to identify nor-
mal or attack traffic, mainly for detecting and classifying DDoS attacks
(e.g., Slowloris and flooding attacks). This method can support IUA but
cannot satisfy robustness and online classification. Its granularity is at
Level 4.

Regarding classification of unknown traffic, Zhang et al. [108]
proposed an unsupervised classification method. Traffic was divided
into different categories based on applications by using the statistical
features of flows and packet payloads. In the training phase, they ag-
gregated traffic into clusters based on flow features. The bag-of-words
model was introduced to represent the payload content of the cluster
constructed by the flow statistical features. According to the payload
content of the clusters, a Latent Semantic Analysis (LSA) method was
used to analyze cluster similarity, and similar clusters are integrated
by using a packet payload clustering method. The corresponding ap-
plication was identified based on the specific string contained in the
payload of the cluster. In the testing phase, in order to protect user
privacy, the payload content of the packet was no longer used, and only
the statistical information of the flows was used for classification. This
classification method can identify unknown traffic and is very robust,
but cannot be used for online classification. Its granularity is at Level
2.

In order to provide deep network visibility to network operators,
Grimaudo et al. [109] proposed an adaptive method named Self-
Learning Classifier for Internet Traffic (SeLeCT). This approach can
provide network operators with specific traffic categories that are not
even known by the operator. They used an unsupervised method (based
on K-means algorithm) and an iterative seeding approach to automati-
cally identify and classify traffic. Unsupervised data mining techniques
automatically group flows into pure (or homogeneous) clusters with
simple statistical features. In order to improve the homogeneity of
clusters, they used an iterative clustering method to filter outliers in the
clustering process. This method makes the overall homogeneity of the
clusters obtained close to 100%, and the classification accuracy is close
to 98%. An iterative seeding approach was used to improve the ability
to classify new protocols and applications. Traffic categories are based
on a specific application and can even be distinguished by different
service types. This method can be used for online classification, and has
good robustness, and can also classify unknown traffic. The granularity
of this method is at Level 2.
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4.1.3. Semi-supervised classification

Mahdavi et al. [110] proposed a method to classify encrypted traffic
at the application layer. The method was divided into two steps: train-
ing and classification. In the training phase, unlabeled data is clustered
firstly. The graph theory and Minimum Spanning Tree algorithms were
used here to complete the clustering of flows. In order to optimize the
number of clusters, they merged the clusters with the same label re-
garding intra-cluster distances. A label propagation technique was then
used to label the generated clusters by using smaller tagged datasets.
In the classification phase, the obtained labeled clusters were taken as
inputs, and the statistical features of the data were used to construct a
classification model by using the C4.5 algorithm. Then the classification
model can be used for subsequent classification. They used four public
datasets to validate and evaluate the proposed method. They measured
the detection rates of SSH [111] and NOTSSH in different datasets
and evaluated the relationship between standard deviation, number
of clusters, and detection rate. However, this method cannot support
robustness, online classification and IUA. Its classification level is at
Level 4.

Vlddutu et al. [112] had the same classification idea as [110]. That
is, the unsupervised clustering algorithm was first used to aggregate
traffic flows into clusters according to the similarity between the data
flows. The clusters were then used as training input to construct a
training model for classification using supervised learning methods. In
this article, the unsupervised K-means algorithm was used to implement
the clustering process, and the supervised C4.5 algorithm was used to
train the classifier. They converted the dataset in the form of .pcap
generated by the application traffic simulator Ixia BreakingPoint [113]
into unidirectional flows and bidirectional flows, and selected the 25
most relevant statistical features from the data flows, such as the num-
ber of packets contained in the flow, the flow duration, etc. Through
experiments, they compared the classification accuracy under different
numbers of clusters. It was found that when the number of clusters
was 15, the classification performance was the best. At this time, the
classification accuracy of the unidirectional flow was 85%, and the
bidirectional flow was 86%. This method cannot support robustness,
online classification and IUA. Its classification level is at Level 2 and 3.

Ran et al. [114] proposed a Self-adaptive Semi-supervised Traffic
Classification System (SSTCS) that can automatically select parameters
and increase cluster centers. This approach also aggregates the flows
into clusters using an unsupervised clustering algorithm and then maps
each cluster to an application-oriented traffic class with the help of a
labeled dataset. In order to solve the problem of identifying different
protocols that need to set different optimal features, they used fixed
features to simplify the process of feature selection. They calculated the
information gain of the selected features in the labeled dataset as the
weight of the features. These weighted fixed features were used to train
to fit into different input protocols. They used the improved K-means
algorithm to cluster traffic. This algorithm can dynamically increase the
number of clustering centers during the iterative process. The generated
clusters were labeled with a probability allocation mechanism (i.e., the
clusters are mapped to different application categories), and for clusters
that do not contain any labeled flows, they are defined as unknown
categories. In addition, in order to analyze unknown categories, the
proposed classification system also includes update operations. They
picked a certain amount of traffic flows in an unknown category and
performed manual inspections. If the selected flows corresponded to
a new application, a new category would be added to the system as
training data; if the selected flows corresponded to a known category,
the unknown cluster would be merged with the corresponding category.
So, this method is very robust, can satisfy online classification and IUA.
The granularity of this classification method is at Level 3.
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4.1.4. Others

Since many feature extraction and selection algorithms cannot ex-
tract enough stable and robust traffic features for machine learning
algorithms, Shi et al. [115] proposed a novel Feature Selection al-
gorithm Principal Component Analysis-based FS (PCABFS). Firstly, to
overcome the problem that complex non-linear characteristics of net-
work traffic cannot be described by Transport Layer Statistics (TLS),
they proposed to use Wavelet Leaders Multifractal Formalism to extract
multifractal features. They also proposed a feature selection algorithm
based on PCA. The algorithm can select optimal and stable features
from multi-fractal features to reduce data dimensions and redundancy.
Because the proposed method selects stable and robust features, this
classification method has improved robustness. They analyzed the dif-
ferences between multifractal features in different traffic flows and
gave reasons. They verified through experiments that the multifractal
features used in the paper are indeed superior to the TLS in classifi-
cation performance. Besides, since the method can classify traffic in a
short time, it is suitable for online classification. This method has good
robustness but cannot satisfy [UA. The granularity of this classification
is at Level 3 and 4.

In order to classify encrypted traffic and shorten classification
training time, Zhang et al. [116] proposed a classification algorithm
named Stereo Transform Neural Network (STNN). STNN is a multi-
classification system that classifies multiple traffic categories by con-
structing multiple single-class classifiers. Each class classifier includes
Long Short Term Memory Network (LSTM) and Convolutional Neural
Network (CNN). In the phase of offline training, 23 statistical features at
flow level are firstly extracted and converted into an image. The image
is sent as input to two LSTM models for processing, and the output
is a 3D image; then the 3D image is the input of the CNN module to
extract representative features. Finally, a softmax function gives the
traffic category corresponding to the representative features. In the
phase of online classification, for an underlying testing flow, if only
one classifier recognizes the flow, it should be labeled as the category
represented by the classifier; if no classifier recognizes the flow, it
should be labeled as an unknown flow. For the case that multiple
classifiers identify the flow, a voting mechanism is applied to decide
final classification. Experiments show that the average accuracy of this
classification method is over 99.5%. Moreover, the method is scalable
and robust, and does not need to be retrained for identifying new
application traffic. It can also support IUA and online classification.
The granularity of its classification is at Level 2.

* Discussions: We summarize the above survey results about
statistics-based classification methods in Table 9. From Table 9,
we can see the most frequently used features (e.g., feature number
3, 8, 9, 18, etc.). They are the number of packets, the statistical
value of the packet size, the packet inter-arrival time, and the
total bytes transmitted. This is mainly because these features
are simple, and easy to be obtained and handled. In addition,
these features also have good stability and robustness. By com-
paring the accuracy of the methods based on the classification
of statistical information, we find that different methods have
large differences in accuracy. Some are as high as 98% and
some are only about 80%. Their classification granularity also
varies widely. In addition, we find that most of the methods
cannot meet all the criteria as we proposed. Only three pa-
pers [109,114,116] can satisfy robustness, online classification,
and are capable of classifying unknown traffic. Moreover, the
classification methods in these two papers can also realize the
reclassification of unknown traffic to determine their categories.
Overall, in terms of classifying unknown traffic and classification
granularity, statistics-based classification methods need to be
further improved.
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4.2. Correlation-based classification methods

In this subsection, we review and comment main correlation-based
classification methods by further grouping them according to machine
learning types.

4.2.1. Supervised classification

Zhang et al. proposed several methods that use correlation to clas-
sify traffic, of which [117,118] mainly aim at solving the problem
of low classification accuracy. The method in [117] obtains the Des-
tination IP, Destination port, Protocol 3-tuple based on the header
information of packets, integrates the packets into a Bag-of-Flow (BoF)
by using the 3-tuple, and then extracts the features of the flow, such as
the number of packets, the Mean, Min., Max., Std dev. of packet size,
etc. And then, the features are discretized. Finally, multiple single Naive
Bayes (NB) classifiers and aggregated predictor were used to obtain the
posterior probability set and traffic classes of the flows. The aggregated
predictor uses sum rule, max rule, median rule, and the majority vote
rule to aggregate the flows. This method requires manual labeling of
training samples in advance, so it is not suitable for online real-time
classification. They choose the features which are not sensitive to the
classifier and noisy data to aggregate the flows, so this scheme is robust.
Its granularity is at Level 3.

In [118], in the same way, they used BoF and the same features as
in [117]. This method is designed to solve the problem of low accuracy
when the training samples are too small. They find that the Nearest
Neighbor (NN) algorithm has the best performance So they use three
flows aggregate strategies based on NN algorithm, AVG-NN, MAX-NN,
MIN-NN classifies traffic. Experiments showed that AVG-NN has the
best classification accuracy. Because the NN algorithm used in this
method is suitable for various complex network environments, it makes
the method meet the requirements of robustness. However, this method
also needs manual labeling of training samples, so it does not support
online classification. It can identify unknown traffic and reduce the
number of unknown flows as much as possible to provide classification
accuracy. The granularity of this method is at Level 3.

Divakaran et al. [119] proposed a classification method based on
the K-NN algorithm that could self-learn and classify non-static traffic.
Similarly, the newly arrived packets were preprocessed to generate
BoF. The system consists of two main components, in which a clas-
sifier component labels the BoF and determines classes, a developer
component is used to dynamically select a sufficiently good training
dataset and feed it back into the classifier component to improve
classification accuracy. This method is very robust and can support
online classification because it has a good self-learning ability and can
adapt to dynamic real network environments. But it cannot support
IUA. It granularity is at Level 3.

Ding et al. [120] wanted to reduce the computational overhead by
reducing the number of packets used in the classification process. They
established a constraint relationship among flows that have some of
the same attributes (such as source IP, source port, and destination
IP). For example, if two flows have the same source IP, source port,
and destination IP, the relationship between them is considered to
be L3SRC, “3” means that three attributes are the same, and ‘“SRC”
indicates that the two flows are involved in source side. According
to this analysis, they divided the relationships between flows into
seven different relationship types, namely L3SRC, L3DST, L2+, L2SRC,
L2DST, L1SRC, and L1DST. Based on the different types and expanding
windows, the Expanding Vector (EV) of the flow was calculated by
using the number of related flows contained in the expanding set. Two
methods were proposed to construct the expanding vector. In addition,
they constructed an EV tree based on the temporal activity of the flow.
In each extending set, there is a dominant application that classifies the
entire extending set. They considered five machine learning classifiers,
in which the random forest classifier has the best classification accuracy
and achieves an accuracy of 99.8%. This method is very robust when
facing problems such as packet loss. It can also identify unknown
traffic in a dataset. However, it cannot support online classification.
Its granularity is at Level 3.
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Table 9
Summary and comparison of statistics-based classification methods.
Ref. Data Features NoF Analysis methods Datasets OA R Online IUA G
type
[59] Flow 17-19 16 Naive Bayes Real 96.7% N Y N -
level
[60] Flow 2 248 Naive Bayes Cambridge’s 96.29% N N N Level3
level Nprobe Project
[61] Flow 12,13,23- 9 Transfer learning Cambridge’s 98.7% Y N N Level4
level 30 Nprobe Project
[64] Flow - - Bayes Moore, Wide, - Y Y N -
level KDD99
[67] Packet - - SVM Cambridge’s 95.9% N Y N -
level Nprobe Project
[68] - - 4 Unsupervised ML NSL-KDD, 97.2% N Y N Level4
GTA/UFRJ,
NetOp
[70] Flow 4,15, 17, 22 Supervised ML Self-collection More than Y Y N Level4
level 22 95%
[72] Packet 1, 8 - Multi-Classification Self-collection - Y N N Level2
level
[80] - - - SVM Moore 98.6% N Y N Level4
[81] Flow 8, 12-14, 8 C4.5 Tstat 97.92% Y Y N Level2
level 20
[83] Flow 8,9 - K-NN, SVM Self-collection 98.17% N N N Levell
level
[85] Flow 31-34 4 hierarchical K-NN Self-collection 98.97% Y N N Levell-2
level
[86] Flow 3, 4, 8, 14, 22 Supervised ML Self-collection 97% Y N N Level3
level 16, 17
[88] Flow 3,8,9 16 20 Random Forest Keio, Wide 93% N N Y Level3
level proximity, PAM
[89] Flow 4, 12-14, 14 J48, Naive Bayes, Self-collection 92.88% N Y N Level3
level 16 PART,zeroR, oneR,
BN(K2)
[91] Flow 3, 12, 16, - Random Forest Moore 97.7% Y N N Level4
level etc.
[92] Flow 8,9 - C4.5, Naive Bayes Real 98% N Y N -
level
[94] Packet 3,8, etc. 10 SVM Simulation 96.2% Y Y N -
level
[95] Flow 3,8,9,16 20 Random Forest ToN,ISP - Y Y N Level3
level
[97] Packet - 249 Convolutional Moore 99.17% Y Y N Level4
level Neural Networks
[98] Packet 3, 10-13, 14 C4.5, SVM, MLP, Self-collection 88.29% N N N Level2
level 16, 31, etc. Decision Tree
[101] - - - Supervised ML Self-collection More than N Y N Level4
95%
[105] Packet 1-4, 10-13, - NB, Random Forest Self-collection - N N N Level4,
and 17, 18 Level2
Flow
level
[106] Flow 20 - K-means - More than N Y N Level2-3
level 80%
[107] Flow 17-19 18 Unsupervised ML CAIDA, ISCX, 97.5% N N Y Level4
and KAIST
packet
level
[108] Flow 3, 7-9, 16 20 K-means Real More than Y N Y Level2
level 85%

(continued on next page)
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Table 9 (continued).
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Ref. Data Features NoF Analysis methods Datasets OA R Online IUA G
type
[109] Flow - - K-means Self-collection Around Y Y Y Level2
level from ISP 98%
[110] Flow - - Semi-supervised; NLANR (AMP), - N N N Level4
level C4.5 MAWI,
DARPA99,
Moore
[112] Flow 3, 8,9, 16, 25 K-means, C4.5 Simulation 86% N N N Level2-3
level 18
[114] Flow 3,89 9 K-means Moore 95.8% Y Y Y Level3
level
[115] Flow - - PCABFS Self-collection 95.67% Y Y N Level3-4
level
[116] Flow - 23 LSTM, CNN Self-collection More than Y Y Y Level2
level 99.5%

NoF: Number of Features; OA: Overall Accuracy; R: Robustness; IUA: Identify Unknown Applications; G: Granularity. Y: supported or considered; N: not supported, discussed or

considered.

4.2.2. Semi-supervised classification

Wang et al. [121] proposed the concept of equivalence sets, each
of which contains the flows with the same {Destination IP, Destination
Port, Protocol} 3-tuple during a certain period of time. So the flows
in the same equivalence set belong to the same type of traffic. They
used the Gaussian Mixture Model (GMM) to model data and constraints
and applied an unsupervised learning algorithm Set-Based Constrained
K-Means (SBCK) to approximate GMM. This method cannot satisfy
robustness, IUA and online classification. Its granularity is at Level 3.

In another article [122], Wang et al. proposed a traffic classification
method based on semi-supervised learning, which also uses the 3-tuple
given in [123]. They used the form of paired mandatory link constraints
to express the background information of the network traffic, i.e., the
correlation between the packets. A must-link means that two entities
must belong to the same cluster. In their scenario, three improved K-
means algorithms were used to implement traffic classification, namely
COP-KMEANS, MPCK-MEANS, LCVQE. This method can support IUA
but cannot satisfy robustness and online classification. Its granularity
is at Level 3.

The other two papers [124,125] mainly addressed the problem of
unknown applications or flow classification (i.e., zero-day application).
In [124], Zhang et al. incorporated correlation information between
flows into a semi-supervised learning framework for traffic classifica-
tion. The framework consists of three modules: flow label propagation,
Nearest Cluster Based Classifier (NCC), and compound classification.
In the flow label propagation module, a dataset is a mixture of a small
pre-labeled flow-set and a large unlabeled dataset. The data was trained
and labeled using an unsupervised learning algorithm. In the second
module, they built an NCC by using the k-means algorithm and finally
used the majority vote rule to classify the BoF in the third module.
This method can satisfy IUA and has a better robustness than other
semi-supervised classification methods but cannot support online classi-
fication. Its granularity is in Level 3. In [125], Zhang et al. also used BoF
to express the correlation between flows. They used the k-means and
random forest algorithm to identify zero-day applications and improve
the accuracy of classification. BoF was used to divide the flows into
N+1 categories and the newly identified zero-day application category
was added to the classifier to improve the classification granularity.
So this method can satisfy [UA. This method can satisfy robustness and
RT because it can auto-update parameters to optimize the classification
process during online classification. Its granularity is at Level 3.

Ede et al. [126] proposed a method to classify encrypted network
traffic generated by mobile-apps. This method can quickly identify
previously unseen apps, even there is no prior knowledge about the
unseen apps before classification. They used four encrypted traffic
datasets and applied Adjusted Mutual Information (AMI) to analyze and
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rank the features available in the datasets. They finally got some highly-
ranked features, such as packet size, arrival interval, source/destination
IP address, TLS certificate, etc. Their proposed approach was built upon
the observation that mobile apps are composed of different modules,
each of which communicates with a static set of network destinations.
Based on this character, different communication modules correspond-
ing to different patterns can be discovered. They first aggregated and
clustered encrypted flows based on destinations, and then grouped indi-
vidual flows into corresponding clusters based on temporal correlation.
When each cluster has a strong correlation, app fingerprints can be
generated based on multiple features and temporal correlation. Finally,
the obtained fingerprint was matched with a database of known finger-
prints to identify apps or detect unseen apps. This method can recognize
unknown apps. It can perform online classification with robustness. Its
classification accuracy can reach 89.2%, with granularity at Level 2.

4.2.3. Others

Canini et al. [123] proposed a system by combining hardware and
software to automatically identify traffic. The hardware is used to
provide minimal packet processing latency and to ensure no unexpected
packet loss occurs. The software can support complex functions such
as rule creation and flow identification, as well as managing and
controlling hardware components. They found that each application
had its unique {IP, Port, Protocol} 3-tuple in a given period, so they
had a reason to believe that flows with the same {IP, Port, Protocol}
should belong to the same application. Therefore, utilizing the cor-
relation between such flows enables to improve the speed of traffic
identification, which costs less memory than other methods. Their
system consists of two caches, Host Cache (HC) and Flow Cache (FC).
Firstly, the matching process is performed on the newly arrived packets
in the HC. If the 3-tuple of the packet already exists in the HC, the
instantaneous classification can be implemented. If the packets cannot
be matched in the HC, the FC is used to classify the packets. The FC
classification method is performed by collecting the features of the
first few packet headers. Due to its fast classification speed, it can
be used for online real-time classification. However, it cannot identify
unknown applications and cannot support robustness in a good way.
The classification level of this method is unknown.

« Discussions: By summarizing the correlation-based classification
methods in Table 10, we find that all correlation-based clas-
sification methods classify traffic by using flow data. This is
not difficult to understand. Because the methods classify all the
flows in the flow cluster consisting of the same attributes(such
as three-tuples,temporal correlation). The features used by the
correlation-based methods are mostly header information (such as
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Table 10
Summary and comparison of correlation-based classification methods.

Ref. Data Features NoF Analysis methods Datasets OA R Online IUA G
type

[117] Flow 3,89 16 20 Naive Bayes Wide, isp 90% Y N N Level 3
level

[118] Flow 3,8,9 16 20 Nearest Neighbor Wide, isp About Y N Y Level 3
level 90%

[119] Flow 8,9 - K-NN Wide, isp 98% Y Y N Level 3
level

[120]  Flow - - - Self-collection 99.8% Y N Y Level 3
level

[121] Flow 3,89 16 20 GMM, SBCK Wide, Keio, isp - N N N Level 3
level

[122] Flow 3,8,9 16, 21 K-means Wide, Keio, Lbnl, 90% N N Y Level 3
level 17 Sigcomm, isp

[123] Flow - - - - More than N Y N -
level 99%

[124] Flow 3,89, 16 20 K-means Wide, isp - Y N Y Level 3
level

[125] Flow 3,8 9,16 20 Random Forest Wide, Keio, isp 95% Y Y Y Level 3
level

[126] Flow 1,9-11, 17 - Semi-supervised ReCon [127,128], 89.2% Y Y Y Level 2
and Cross Platform
packet [129], Andrubis
level [130] and

Self-collection

NoF: Number of Features; OA: Overall Accuracy; R: Robustness; IUA: Identify Unknown Applications;G: Granularity. Y: supported or considered; N: not

supported, discussed or considered.

IP address, port number, protocol, etc.), statistical information of
the packets (the statistics of the packet size and inter-arrival time,
etc.). Most of these methods use supervised machine learning
algorithms due to its high classification accuracy. Regarding the
evaluation criteria we proposed in Section 3, the correlation-
based classification methods need further improvement. Because
we found that except for the papers [125,126], other methods
cannot simultaneously satisfy the requirements of robustness,
online classification and identify unknown traffic. We see that
the accuracy of the most correlation-based classification methods
is above 90%, and some methods even exceed 99%. However,
it should be pointed out that the classification granularity of
majority of reviewed methods is to classify traffic at the protocol
layer (Level 3). The granularity also needs further refinement.

4.3. Behavior-based classification methods

In this subsection, we review and comment main behavior-based
classification methods by further grouping them according to machine
learning types.

4.3.1. Supervised classification

Grimaudo et al. [131] improved the behavior-based classification
method to refine classification results and used a hierarchical classifier
to divide network traffic into more than 20 categories. They used a
tree-based structure to divide the classification process into several
stages and gradually refine classification results. The benefit of us-
ing hierarchical classification is that each sub-classifier only needs to
process very small datasets and traffic classes. They selected a appro-
priate feature set for each sub-classifier from more than 200 features.
They also compared a single-stage classifier (called Flat classifier)
with a hierarchical classifier by using seven classification algorithms
(Naive Bayes, Bayesian Kernel Estimation, Rule-Based, Decision Trees,
Neural Networks, Support Vector Machine (SVM), K-Nearest Neighbor
(K-NN)). Through comparison, they showed the advantages of the hier-
archical classifier and selected an appropriate classification algorithm.
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Experiments showed that the classification accuracy of hierarchical
classifiers is always higher than that of the Flat classifier, and it has
good robustness. The hierarchical classifier divides the classification
results into “known” and ‘“unknown” at its root node. This paper
only discusses the refinement classification for known applications, and
there is no discussion about the unknown. This method can satisfy ro-
bustness because the hierarchical classifiers used offer good robustness,
but cannot support online classification. Its granularity is at Level 2.

Kohout et al. [132] used snapshots of individual user activities
to perform context simulation on HTTP-based encryption requests to
compensate the inconvenience caused by encrypted information. It
can classify network traffic as abnormal or normal. A communication
snapshot is defined as a collection of all requests issued by the same
user for establishing a TLS tunnel (which is used for HTTP commu-
nication) during a 5-minute interval. This communication snapshot is
represented by the statistical descriptor of the HTTP connection in a
server, that is, a fixed-dimensional real vector is used. Based on the
communication snapshot, three machine learning algorithms (Neural
Networks, Random Forests, and gradient boosted trees implemented
via the Extreme Gradient Boosting algorithm) were used for abnormal
traffic identification. They mapped the real vector representing the
communication snapshot to the interval [0, 1], with O representing
normal behavior and 1 representing abnormality. This method can be
combined with other methods as a pre-filtering tool, by adjusting a
recall rate and precision rate mode to filter normal flows or abnormal
flows, so as to further analyze retained flows.

4.3.2. Unsupervised classification

Iliofotou et al. [133] combined network-wide behaviors with flow-
level features and used Traffic Dispersion Graphs (TDGs) to classify
each set of flows. They used directed graphs G(V, E) to represent TDGs,
where V is the set of IP addresses of the nodes contained in the flow
set, E represents a collection of connections between nodes. That is to
say, TDG indicates the communication relationships between the nodes.
This graph-based classification framework (called Graption) consists
of three steps. The first step is flow isolation, i.e., using port, IP or
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payload information to isolate the already classified flow. The second
step is flow grouping, the flows generated by the same application
are aggregated into groups, but at this time, the specific application
category represented by each group is not known. The third step is
to label the groups. By constructing a TDG for each group generated
in the previous step, they classified groups based on the selected
metrics and rule sets. When this framework is used for the classification
of P2P traffic, it first isolates legacy applications using a port-based
classification based on the usually used default ports of the legacy
applications. Then they used a payload-based approach to group the
flows. They analyzed the first 16 bytes of each flow and used the K-
means algorithm to generate clusters. Then, they applied the Hamming
distance to measure the similarity between the clusters. The next step
was to generate TDG according to the flow group, and marked each
group by metric to identify P2P traffic. Although the method presented
in this paper mainly identifies P2P traffic recorded a dataset, it can also
be used to classify other categories of traffic by changing parameters
and metrics. So it offers robustness. However, it cannot identify the
unknown traffic category and cannot support online classification. Its
granularity is at Level 4.

4.3.3. Others

In 2005, a behavior-based host traffic classification method named
BLINC was firstly proposed by Karagiannis et al. [56]. This method ana-
lyzed the host behavior patterns from social, functional and application
layers. At the social layer, it acquires other hosts that communicate
with the host. At the functional layer, it obtains the host information
from the host’s role in the network, generally to identify whether the
host is a server or a consumer. At the application layer, it captures the
interaction behaviors between the host and a specific host on a specific
port. They proposed a new concept called graphlets. Each graphlet in a
graphlet library identifies the most common behavioral features of an
application. Each graphlet consists of 4-tuple {source IP, destination IP,
source port, destination port}. They identified an application by match-
ing its graphlet that is closest to the host’s behavior. Then, according
to the characteristics of the flow, such as the protocol, the size of the
packet, etc., the classification is further refined. This method can find
unknown applications in a dataset. But it cannot satisfy robustness and
online classification. Its granularity is at Level 4.

Qu et al. [134] evaluated a traffic morphing strategy for behavior-
based classification schemes through a series of experiments. Traffic
morphing is a technique that masks or modifies the statistical features
of packets in order to protect user privacy or hide attacks. This article
divides the existing traffic morphing strategy into two types: packet
size (PS) based and packet inter-arrival time (IAT). The PS morphing
strategies modified the packet size and IAT modified the packet inter-
arrival time. They used three typical traffic classification algorithms
SVM, Bayesian, and C4.5 to evaluate the impact of traffic morphing
on classification, and evaluated the performance of the above two
morphing strategies. They pointed out that the combination of two
strategies has the best performance for weakening traffic classification,
while the PS-based strategy has the worst performance.

Choi et al. [135] proposed a four-phase classification system. The
first phase is to convert packets into two-way flows that are required
for classification. The second phase uses four different classification
schemes to classify the generated flows. These schemes are head sig-
nature classifier, statistical signature classifier, payload signature clas-
sifier, and behavior algorithm classifier. The flows generated in the first
phase are respectively passed into the four classifiers to obtain respec-
tive classification results. In the third phase, i.e., a flow integration (FI)
phase, the FI selects the classification result according to the priority
of the four classifiers. Wherein the behavior algorithm classifier has the
highest priority, the payload signature classifier has the second priority,
and the head signature classifier has the lowest priority. The fourth
phase classifies the flows that are not classified in the second phase
by using a correlation algorithm classifier, and takes the integrated
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flow obtained in the third phase as an input, and uses three correlation
algorithms to classify the additional flows. This integrated classification
method uses the first few packets of a flow to classify the flow and
complete the classification before the end of the flow, so it can be
used online for real-time classification. Besides, this method can satisfy
robustness and support IUA. Its granularity is at Level 2.

Glatz and Dimitropoulos [136] aimed to analyze and classify one-
way flows. One-way flow refers to the traffic connection that does not
accept network reply. Generally speaking, the one-way flow has the
following sources: failed access due to failure or policy; attack traffic
(such as vulnerability scanning, DoS attack, etc.); peer-to-peer appli-
cations etc. Through observation, they found that malicious scanning
accounted for the largest proportion of the one-way flows, followed
by P2P data. They monitored and analyzed the communications be-
tween the hosts and created a set of signs, including four types of
sign categories: Host-pair signs, Remote host signs, Local host signs
and Flow signs, for a total of 17 signs. They classified the flows into
seven categories, including the unknown, and proposed 13 rules. They
classified flows by matching the flows with the rules. For conflicting
classification results, this method can reclassify them. And it also
updates and refines the rules in the classification process. They reduced
the conflicting flow through continuous iteration and repeated classifi-
cation until all conflicts disappear and unclassified flows can no longer
be reduced. Therefore, this method can classify unknown traffic and is
also scalable. But it does not satisfy robustness and online classification.
Its granularity is at Level 4.

* Discussions: We summarize our review on the behavior-based
classification methods in Table 11. By analyzing Table 11, we find
that the behavior-based classification methods prefer to use the
header information of packets as features, and commonly used IP,
port, and protocol. Other features such as interaction information
between different hosts within the network are also widely used.
The data used by the methods include flow level, packet level,
and connection level data. Because communications are between
hosts, the flows used by the behavior-based classification methods
are two-way flows, except for analyzing abnormal attack traffic
since this kind of analysis often uses a one-way flow. Using IP
addresses, ports, and connection relationships between hosts, the
behavior-based classification methods use the concept of graph
to represent behavior patterns between hosts. From the papers
we reviewed, we find that only one behavior-based method can
classify traffic online in real-time with robustness and detect
unknown traffic simultaneously. In addition, the classification
granularity is not fine enough if it only relies on the header
information of packets. This causes that the traffic was classified
on the applications categories level, i.e., Level 4. Using more
statistical features at the package or flow level can help us achieve
fine-grained classification results.

4.4. Payload-based classification methods

In this subsection, we review and comment payload-based classifica-
tion methods by further grouping them according to machine learning

types.

4.4.1. Supervised classification

Kampeas et al. [137] proposed a precise online classification method
based on Zero-Length Packets for TCP data. The Zero-Length Packets
only contain control bit information without payload. Their method
is based on their findings: the exchange of data between applications
follows a specific features pattern, which can be used to identify
the application. They built Application Protocol Data Units (APDUs)
fingerprint sequences based on Zero-Length Packets and used the J48
decision tree algorithm in machine learning to classify traffic. They
pointed out that the method is not affected by network delay, packet
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Table 11
Summary and comparison of behavior-based classification methods.
Ref.  Data type Features NoF Analysis methods Datasets OA R Online VA G
[56] Flow level 10-13 - Feature matching CAIDA More than N N Y Level4
95%
[131] Packet level - More than Hierarchical isp More than Y N Y Level2
200 classification 90%
[132] Connection level 35,36 - Neural Networks, Self-collection - - - - -
Random Forests,
XGBoost
[133] Flow level 6 - K-means Self-collection 95% Y N N Level4
[134] - - - - UNIBS 2009 - - - - -
[135] Flow level 3, 5, 10-14, - - Self-collection 97.94% Y Y Y Level2
etc.
[136] Flow level - 17 - Self-collection - N N Y Level4

NoF: Number of Features; OA: Overall Accuracy; R: Robustness; IUA: Identify Unknown Applications; G: Granularity. Y: supported or considered; N: not supported,

discussed or considered.

loss, re-transmission, and congestion, etc., so it has good robustness.
They extended this method to UDP data. Experiments showed that this
method is applicable for UDP data with high accuracy. This method
can identify unknown traffic categories and it can support online
classification in real time network environment. Its granularity is at
Level 2 and Level 3.

Liu et al. [138] proposed a three-level classification scheme that
incorporates multiple classification methods. First, the packet header
is checked by the ServerTag method proposed in [139], and unknown
traffic could be identified quickly. ServerTag cannot identify the traffic
generated by an unknown server and a server hosting multiple appli-
cations, so this type of traffic will be classified in payload level and
flow level. At the payload layer, unencrypted data is classified using
Payload Distribution Inspection (PDI). The further step is classifying
encrypted data in the flow layer, which cannot be recognized using
PDI. The classification in the flow layer uses a random forest algorithm
according to the characteristics of the data flow. This is because the
random forest algorithm has the best performance compared with other
algorithms. They divided the classification results into six categories,
social, service, streaming, web, mail, and unknown. Thus, the granu-
larity of the classification is not fine enough. This method can support
IUA. This method has good stability and can adapt to most classification
scenarios, so it is robust, but it cannot support online classification. Its
granularity is at Level 4.

Wang et al. [140] proposed a method of traffic classification by
using packet payload. This method first extracted the first N bytes
of the flow payload. For a large number of byte strings of a given
application class, a common substring extraction component was used
to extract their common substring. They consolidated all application
tokens into a single token set and deleted duplicate tokens. To further
reduce the computation overhead, feature extraction algorithms were
used to reduce the number of tokens contained in the token set. Finally,
six machine learning algorithms (Naive Bayes, Bayesian network, Multi-
layer perception, C4.5, random forest, AdaBoost) were used to evaluate
the classification performance of this method. Experiments showed that
the classification accuracy of this method can reach more than 99.5%.
This method can be used for online classification because it has a low
computational load and uses only the first N bytes of the flow. And this
method can satisfy robustness, but cannot support IUA. Its classification
granularity is at Level 2 and 3.

Finamore et al. [141] proposed an architecture that uses the statis-
tical features of the payload to classify UDP traffic, named Chi-Square
Signatures (KISS). A statistical packet inspection method was used to
automatically identify the format of application protocol. It ignores the
semantics and synchronization rules of the application. The statistical
signatures of payload were obtained by chi-square-like test. Use the DPI
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tool (Tstat) to execute the KISS method and classify the P2P traffic
from the application level. Geometric decision based on Euclidean
distance and SVM-based decision were used to compare. They used
a confusion matrix to represent the performance of the classification.
Through experiments, they found that 98.1% of True Positive (TP) can
be achieved using SVM. This method has inherent robustness to packet
sampling, packet loss, reordering, and flow asymmetry, so it can be
applied to most networks. And it does not require high computational
and storage consumption, suitable for online classification in real-time.
Besides, it supports IUA also. But like other payload-based classification
methods, this method has the disadvantage of not being able to classify
encrypted traffic. Its granularity is at Level 2.

Yang et al. [142] proposed a method that uses the content of hand-
shake packets to classify encrypted traffic. Because end-hosts need to
establish connection through handshake before performing encrypted
secure communications. The handshake information used to authenti-
cate each other is unencrypted. Therefore, the handshake information
can be used to classify encrypted traffic. This method focuses on the
classification of data traffic that uses the Transport Layer Security
(TLS) protocol for encrypted communication. In the handshake phase
of TLS, the server and client need to negotiate an encryption algorithm
and secret session keys that will be used in data communication. This
information can be used as features to identify which application gen-
erates the current traffic. So, they used cipher suites and compression
methods [143], and TLS extensions [144] as input features, and applied
Bayesian Neural Network for classification. The experimental dataset
contains four different categories of traffic, namely web, mail, file, and
VoIP. For each category, this method’s classification precision and re-
call rate can reach 99%. However, this method cannot classify unknown
traffic and perform online real-time classification. The granularity of
its classification is at Level 4. In addition, this method is mainly for
classifying TLS protocol data, which has somehow limitations, so its
robustness needs to be further improved.

4.4.2. Unsupervised classification

Park et al. [57] proposed a new approach aiming to divide classifica-
tion results into refined categories rather than improving classification
accuracy. They further subdivided the traffic that generated by a single
application into different traffic groups. They used the algorithm that
was proposed in [145] to automatically generate application signatures
and used document retrieval techniques to construct fine-grained traffic
classifiers. Document retrieval technology judges the similarity be-
tween documents by the frequency of keywords in the document. They
used similarity scores to divide the data flow into different flow groups.
When the similarity score is less than a threshold, a classifier can create
a new flow group in the classification process, where unsupervised
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machine learning techniques were used to implement the classification
process. So this method can identify unknown traffic. But its robustness
is not good and it cannot online classification. Its granularity is at Level
1.

4.4.3. Semi-classification

Wang et al. [5] proposed a traffic classification method that does not
require any prior knowledge to identify and classify unknown traffic.
First, the flows were classified online. For unknown flows that cannot
be identified online, an unsupervised clustering algorithm X-means
proposed in [146] was used, which aggregates clusters according to
the statistical features of the flows. The clusters were dominated by a
single application. Then, the authors used a supervised machine learn-
ing method to build application signatures based on the payload and
classified unknown flows into new application signatures. The offline
generated application signatures were inserted into the online classifier
to update the application signature to classify unknown traffic. Through
experiments, the overall accuracy of the classification method can reach
more than 99.5%, and this method implements the classification of
unknown applications. This method can satisfy robustness and IUA and
online classification. Its granularity is at Level 3.

4.4.4. Others

Mayank and Neminath [147] proposed a method to classify text-
based protocol traffic, named RDClass. The method extracts keywords
from the packet payload and uses the relative distance between key-
words to identify an application. The keywords and relative distances
were encoded in the form of a state transition machine. They proposed
a new state transition machine, named Relative Distance Constrained
Counting Automata (RDCCA). This method is able to generate one or
more state machines for each application in the order of the keywords.
The RDClass classifier consists of three components, the first is a flow
constructor to aggregate packets into a flow, in which the packets have
the same five-tuple. The second component is a term extractor, which
uses newline characters, spaces, and special characters as delimiters
to parse the content extracted from a payload to generate terms. The
third component uses the state transition machine to process terms.
The generated terms act as input to a series of state machines. Each
state transition machine reads the term and performs an allowed state
transition. If any of the state transition machines moves to an accept
state, the flow is classified. Otherwise, the flow will not be classified.
For unclassified flows, the RDClass method can generate RDCCA for
further classification. Experiments showed that the method has a clas-
sification recall rate of over 99%. This method has good robustness and
scalability in most text-based protocols cases, but it is not suitable for
online classification, and it is not able to classify encrypted data. It
cannot support IUA as well. Its granularity is at Level 3.

Khandait et al. [148] proposed a classification method based on
Deep Packet Inspection. Because of the common payload-based clas-
sification methods involve two scanning process, first scanning is to
extract the keywords, and second scan to match the keywords with
characteristics of the applications. This method completed classification
with only one scan. They use application-based keywords and key-
words ordering, combined with a heuristic-based approach to speed
up classification. The scheme consists of two parts. The first part is
to generate signatures for each application, which is extracted from
the first K byte of each application’s flow. The signature includes both
common and application-specific keywords. The second part is to use
these signatures to classify the data flows. The classification accuracy
of this method is up to 98%. This classification method is only suitable
for unencrypted data, and does not satisfy online classification, IUA,
and robustness. The classification level is in level 3.

Marin et al. [149] proposed a method based on deep learning
(DL) to classify malicious network traffic. Because the classification
method based on manually extracted features has certain limitations
when facing a real and complex network environment. Deep learning
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can automatically learn representative features from raw data, so us-
ing deep learning can solve this problem well. This method builds a
DL model based on the input byte flow without any sort of expert
handcrafted inputs or data pre-processing process. The DL architecture
of the raw packets and the DL architecture of the raw flows were
constructed in the paper to evaluate and compare the performance of
the DL architecture at the packet level and the flow level. The classifi-
cation architecture was tested using publicly available attack detection
dataset [150], and three different malicious attack traffic were detected
and classified, namely Neris, Rbot, and Virut. The experimental results
were represented with classification accuracy: the accuracy of Rbot can
reach 99.9%, while the accuracy of Neris and Virut are 63.5% and
54.7%, respectively. This method has good robustness, but does not
support the classification of unknown traffic and online classification.
The classification level is relatively rough, at Level 4.

» Discussions: We summarize our review on the payload-based
methods in Table 12. From Table 12, we find that major payload-
based classification methods tend to use flow-level data. We
observe that the mostly used features are the first few bytes in
a packet or the first few packets in a flow. Besides, some methods
use the specific sequence of the packet payload as a keyword or
signature to classify traffic. By comparing the payload-based clas-
sification methods with other types of methods discussed above,
the overall accuracy of the payload-based classification methods
is higher, all exceed 95%. There are some methods that can reach
99%, and even 99.5% in [5,140]. In addition, by analyzing clas-
sification granularity and accuracy, we can see that the method
with higher classification accuracy has a rougher classification
granularity, the method with relatively lower accuracy has a finer
classification granularity. Of course, classification accuracy is not
only affected by the granularity of classification. The features,
classification algorithms, etc. all affect accuracy. Taking [138]
and [141] as examples, they both used the first few bytes of the
packet. The method proposed in [138] classifies traffic at the level
of the application type, that is, its classification granularity is
rough, with classification accuracy as 99%. The method proposed
in [141] classifies traffic at the application level, its classification
granularity is finer than [138], with classification accuracy as
98.1%, lower than [138]. This is very easy to understand because
the finer the classification granularity is, the harder to classify.

4.5. Port-based classification methods

In this subsection, we review the port-based classification methods.
Since many applications no longer use known fixed ports but tend to
use dynamic ports, the simple port-based classification methods can no
longer meet the requirements of traffic classification, so research in this
area is very rare. Here we briefly introduce a couple of methods fallen
into this category.

Lin et al. [151] combined each connected Packet Size Distribution
(PSD) with a port to identify an application. This method contains two
phases, offline training and online classification. Since each application
has its independent PSD, it can be identified by analyzing the PSD
of each connection. After obtaining the PSD, they compared it with
the representatives of all pre-defined applications, and calculated the
Euclidean Distance. Classification was made based on one of their find-
ings: an application tends to communicate using a consecutive port in a
single session. Specifically, if two connections have the same Source IP
address and destination IP address, as well as similar ports, they could
be considered as generated by the same application. This method has
a high classification accuracy for some applications such as Apache
Server, which reaches an average of 98%, while other applications,
such as Skype-Voice, have a low classification accuracy of only 74%.
For the new traffic that did not occur in training phase, this method
classifies them into unknown. This method can support IUA and online
classification but cannot satisfy robustness. Its granularity is at Level 2.
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Table 12
Summary and comparison of payload-based classification methods.

Ref. Data Features NoF Analysis methods Datasets OA R Online IUA G
type

[51 Flow 3,89 16, 11 X-means Self-collection More than Y Y Y Level3
level 17 99.5%

[57]1 Packet - - Unsupervised ML Self-collection - N N Y Levell
level

[137] Packet 21 - J48 decision tree Simulated data More than Y Y Y Level
level 97% 2-3

[138] Packet - - Hierarchical Self-collection 99% Y N Y Level 4
and classification
flow
level

[140] Flow 6 - Supervised ML Self-collection More than Y Y N Level
level 99.5% 2-3

[141] Flow 6 - SVM, Euclidean Self-collection 98.1% Y Y Y Level 2
level distance

[142] Packet 7 392 BNN Self-collection - N N N Level 4
level

[147] Flow - - RDCCA Real and private - Y N N Level 3
level data

[148] Flow - - - Self-collection, 98% N N N Level 3
level Digital Corpora

[149] Packet - - CNN Stratosphere IPS ~ More than Y N N Level 4
level Project 95%

NoF: Number of Features; OA: Overall Accuracy; R: Robustness; IUA: Identify Unknown Applications; G: Granularity. Y: supported or considered; N: not

supported, discussed or considered.

Karagiannis et al. [4] proposed a systematic method to classify P2P
traffic at the transport layer based on flow connection patterns. They
used two heuristics, one is TCP/UDP IP pair, and the other is {IP,
Port} pair, to classify P2P traffic. They found that more than half of
traffic that uses both TCP and UDP protocols belongs to P2P. For non-
P2P traffic that uses both TCP and UDP protocols also, they observed
and listed their ports commonly used. If a TCP/UDP IP pair that uses
both TCP and UDP protocol and the port it uses is not in the list, it
can be considered as P2P traffic. For the second pair of IP, port, the
number of different connection IPs equals to the number of different
connection ports is considered to be P2P. If the difference between the
number of different connection IPs and the number of ports is too big,
it is considered as non-P2P traffic. This method can classify unknown
traffic. However, since it only classifies P2P traffic and uses only packet
header information, the method is not robust. It is also not suitable for
online real-time classification. Its granularity is at Level 3.

5. Open issues and future research directions

In this section, we discuss and analyze some current challenges and
future research directions of network traffic classification.

5.1. Open issues

According to the above review, discussions, and comparisons, we
identify some open problems in the field of traffic classification.

First, it is not easy to get reliable ground truth with regard to dataset
collection, which greatly impact the accuracy of traffic classification.
An inaccurate ground truth also affects the efficiency of machine learn-
ing [152]. However, traditional dataset labeling methods (including
manually labeling, port-based labeling and DPI-based labeling) suffer
from some problems. These methods are either time consuming or
not accurate enough. Some new dataset labeling methods are active
measurement [153] and heuristics-based analysis [154]. These methods
can achieve high accuracy, but face some other problems, such as
increased computational overhead, limited application scope, and so
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on. Oliveira et al. [155] pointed out that perfect ground truth is difficult
or impossible to obtain. Therefore, it is necessary and significant to
work out a classification method that does not rely on ground truth
too much.

Second, efficiency of classification cannot satisfy the real-time traf-
fic classification requirement in practice. Although there are many
classification methods proposed, we find that many of them cannot
classify traffic in real-time. As observed from Tables 9-13, more than
half of the traffic classification methods do not explicitly consider the
real-time of traffic classification. However, it is very important to iden-
tify the traffic within a short time after it is generated. The real-time
classification is necessary for network operators to improve networking
QoS, and observe abnormal network traffic timely for security purposes.
Since traffic classification involves multiple processes such as extracting
features, training data, and matching features, the real-time problem
of traffic classification is still a major challenge in existing research.
Researchers need to propose lightweight classification methods to im-
prove classification speed in each of classification stages from multiple
aspects.

Third, we find that many studies ignore the classification of un-
known traffic. Many existing classification methods classify all traffic
into known established categories. This causes classification results
not accurate enough in some situations. For example, if the method
encounters a traffic category that did not appear during the training
phase, it would incorrectly classify this category traffic into a known
one. We also notify that there are a few methods that can classify traffic
into an unknown category rather than a known category. However, it
is rare for them to reclassify unknown traffic in order to determine
its real category. The identification and reclassification of unknown
traffic require a classification method that continuously and adaptively
updates its classification model adaptive to specific traffic. At present,
accurate and efficient reclassification of unknown traffic is still an open
problem in the field of traffic classification.

Fourth, fine-grained traffic classification lacks accuracy, efficiency
and support on IUA. Most existing methods perform traffic classification
at the application category or protocol level, i.e. Level 4 or Level 3.
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Table 13
Summary and comparison of port-based classification methods.
Ref. Data Features NoF Analysis Datasets OA R Online IUA G
type methods
[151] Packet 12, 13 - PSD Self-collection 96% N Y Y Level 2
level
[4] Flow 4-7 - System - 94% N N Y Level 3
level methodology

NoF: Number of Features; OA: Overall Accuracy; R: Robustness; IUA: Identify Unknown Applications; G: Granularity. Y: supported or

considered; N: not supported, discussed or considered.

Some of these classification methods can achieve high classification
accuracy. However, there are very few methods that can classify traffic
with the granularity of Level 1. Of all the papers we reviewed, there
are only two proposed methods [57,83] that can reach this goal. And
there are few methods that can classify traffic with the granularity of
Level 2. Furthermore, for the methods with classification in Level 2 and
Level 1, their classification accuracy still needs to be further improved.
Different classification granularity can provide network managers with
different information at different levels. More fine-grained classification
granularity can help network operators and network administrators to
improving network services and optimize network resource allocation.
Therefore, obtaining fine-grained classification with high accuracy,
efficiency and IUA support still needs further research.

5.2. Future research directions

The above open issues motivate future research. We further suggest
some promising future research directions in this field.

First, the classification methods that with low computational load
and memory consumption needs to be explored. Many existing clas-
sification methods consider a large number of traffic features so that
the computational cost is high when performing feature matching in
the process of identifying network traffic. These methods spend much
computation time and consume a large amount of system resources,
which makes classification efficiency very slow. Therefore, lightweight
classification methods that only need to analyze few features or packet
payloads are highly expected. Meanwhile, classification optimization
becomes essential for the purpose of improving classification accuracy
and realizing real-time classification.

Second, effective methods for ground truth collection needs further
exploration. According to the previous discussion, the methods of ob-
taining ground truth still face big challenges. Due to the limitations
of passive measurement collection methods (that is, port-based and
DPI tool based methods), such as the inability to cope with dynamic
ports and encrypted traffic, the methods for active measurement and
heuristic analysis are expected. At the same time, in addition to further
improving the reliability of ground truth, there are other issues that
need to be addressed. For example, most active measurement methods
use simulated data to test the reliability of labels, which cannot fully
reflect the complexity of real traffic. Therefore, it becomes essential to
study a reliable and versatile ground truth collection method.

Third, the identification of unknown network applications becomes
crucial, especially for security intrusion, attack and threat detection.
With the development of network environments, more and more new
applications are emerging. This requires classification methods to im-
prove the ability to classify new applications in the constantly chang-
ing network environment. In other words, the classification method
should be robust and scalable in order to adapt to various network
environments. The classification of new application traffic helps us
understanding the status of network traffic and identifying malicious
applications. Therefore, identifying unknown traffic and determining
its category still deserve more efforts.

Fourth, efficient and effective feature extraction request deep re-
search for the purpose of reducing computational load and improving
classification speed. The accuracy and efficiency of traffic classification
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highly depend on the performance of feature selection to a large
extent. A low dimensional and irredundant feature set greatly helps
improving classification speed and enabling real-time classification.
We think feature selection should be further studied in order to re-
duce the number and dimension of features while maintaining the
accuracy of the classification. Most of the existing machine learning
classification methods use manually-designed features, which requires
additional manpower. Automatically obtaining features directly from
original data stream instead of manually designing features can further
help improve classification performance. In particular, adaptive feature
selection that fits into networking contexts and demands should be
deeply pursued [156].

Fifth, traffic classification that can overcome traffic obfuscation
with privacy preservation is a very interesting and significant research
topic. Traffic obfuscation technology has emerged as a solution to
counter traffic classification. Therefore, traffic classification methods
need to resist the obstacles caused by traffic obfuscation. Due to per-
sonal privacy or other reasons, many network users (especially mali-
cious users) do not want others to analyze the traffic they generate.
Therefore, some technologies are used to hide or modify their traffic to
obfuscate traffic. Traffic obfuscation techniques have caused confusion
or obstacles to traffic classification to a large extent. By analyzing
the existing traffic classification methods, we observed that there is
almost no method to consider and deal with the impact of traffic
obfuscation. However, the issue of traffic obfuscation should be paid
special attention in the future research of traffic classification.

Sixth, we should pay special attention to the classification of en-
crypted network traffic. Because network users pay more and more
attention to personal privacy, this makes efficient privacy-preserving
classification become essential in a privacy-focused networking envi-
ronment [157]. Due to privacy concern, a lot of traffic is encrypted
for transmission. Encrypted communication connections are also widely
used in various network fields, such as the Internet of Things, cloud
computing, and blockchain and so on. The existing methods for classify-
ing encrypted traffic need to be further improved in terms of scalability
and accuracy. For example, deep learning, collaborative learning, meta-
learning and other technologies could be applied to improve the per-
formance of encrypted traffic classification. Using the self-learning and
transfer learning capabilities of these technologies could further reduce
the dependence of classification methods on classification features to a
certain extent.

Seventh, it is highly suggested to investigate novel classification
methods that can offer high efficacy regarding accuracy, fine granular-
ity and efficiency, especially when a small number of training samples
with labels are available. This is very beneficial for practical applica-
tions due to high cost of real-world data collection and labeling. In
particular, embedding a knowledge graph [158] including correlation
relationships [159] into learning constraints to instruct classification
could greatly improve classification efficacy [160], especially when the
number of labeled samples is small. From this point of view, construct-
ing proper knowledge representation and computation like Zheng’s
method [158] becomes significant for improving classification quality
towards wide adoption in practice. Thus, exploring how to effectively
integrate a knowledge graph into traffic classification becomes a very
interesting research topic. We hope this study can open a new research
direction in traffic classification.
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Last but not the least, we should further extend the basic re-
quirement on classification robustness to allow traffic classification
to effectively resist potential attacks, such as adversarial learning,
malicious data provision, untrusted data collection, false training, etc.
Future traffic classification should be intelligent to judge potential
attacks during classification execution.

6. Conclusion

This paper gave a thorough review on the state of art of network
traffic classification. We first introduced traffic features, summarized
research datasets, and specified traffic classification granularity. We
then reviewed feature selection and classification algorithms that are
widely used in traffic classification. We further proposed a set of criteria
for evaluating the performance of traffic classification methods. By
employing the proposed criteria, we comprehensively surveyed and
compared the traffic classification methods by classifying them into
five categories, namely statistics-based, correlation-based, behavior-
based, payload-based and port-based. At the end, we indicate some
open issues and suggest future research directions for improving the
performance of traffic classification. Shortly, high efficiency, low cost,
unknown application identification, fine granularity with ensured accu-
racy, encrypted traffic classification, classification with small labeled
data and advanced robustness with privacy concern are promising
future research directions in the field of traffic classification.
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