
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Manzano, Gonzalo; Subero, Diego; Maillet, Olivier; Fazio, Rosario; Pekola, Jukka P.; Roldan,
Edgar
Thermodynamics of Gambling Demons

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.126.080603

Published: 26/02/2021

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Manzano, G., Subero, D., Maillet, O., Fazio, R., Pekola, J. P., & Roldan, E. (2021). Thermodynamics of
Gambling Demons. Physical Review Letters, 126(8), Article 080603.
https://doi.org/10.1103/PhysRevLett.126.080603

https://doi.org/10.1103/PhysRevLett.126.080603
https://doi.org/10.1103/PhysRevLett.126.080603


 

Thermodynamics of Gambling Demons

Gonzalo Manzano ,1,2,* Diego Subero ,3 Olivier Maillet ,3 Rosario Fazio,1,4 Jukka P. Pekola ,3 and Édgar Roldán 1,†
1International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy

2Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences,
Boltzmanngasse 3, 1090 Vienna, Austria

3PICO group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
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We introduce and realize demons that follow a customary gambling strategy to stop a nonequilibrium
process at stochastic times. We derive second-law-like inequalities for the average work done in the
presence of gambling, and universal stopping-time fluctuation relations for classical and quantum
nonstationary stochastic processes. We test experimentally our results in a single-electron box, where
an electrostatic potential drives the dynamics of individual electrons tunneling into a metallic island. We
also discuss the role of coherence in gambling demons measuring quantum jump trajectories.
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Maxwell’s demon, as introduced in 1867 [1], is a little
intelligent being who acquires information about the
microscopic degrees of freedom of two gases held in
two containers at different temperatures, and separated
by a rigid wall. The demon is able to control a tiny door,
which can be opened at stochastic times, allowing fast
particles from the cold container pass to the hotter one, and
hence generating a heat current against a temperature
gradient. This paradoxical behavior challenging the second
law of thermodynamics, has its roots in the link between
information and thermodynamics, which has fascinated
scientists from more than a century [2]. Maxwell’s demon
is nowadays considered a paradigmatic example of feed-
back control, for which modified thermodynamic laws
apply [3–6] which have been tested experimentally in
classical [7–9] and quantum systems [10,11].
Here, we propose and realize a “gambling demon”which

can be seen as a variant of the original Maxwell’s thought
experiment (Fig. 1). Such gambling demon invests work by
performing a nonequilibrium thermodynamic process and
acquires information about the response of the system
during its evolution. Based on that information, the demon
decides whether to stop the process or not following a given
set of stopping rules and, as a result, may recover more
work from the system than what was invested. However,
differently to Maxwell’s demon, a gambling demon does
not control the system’s dynamics, hence excluding the
possibility of proper feedback control. This is analogous to
a gambler who invests coins in a slot machine hoping to
obtain a positive payoff. Depending on the sequence of
outputs from the slot machine, the gambler may decide to
either continue playing or stop the game (e.g., to avoid
major losses), according to some prescribed strategy. How
much work may the gambling demon save or extract on

average in a given transformation by implementing a
prescribed gambling strategy?
In this Letter, we derive and test experimentally universal

equalities and inequalities for the work and entropy
production fluctuations in Markovian nonequilibrium proc-
esses subject to gambling strategies that stop the process at
a finite time during an arbitrary deterministic driving
protocol. Our results apply to both classical and quantum

FIG. 1. Illustration of a gambling demon. The demon spends
work (W, silver coins) on a physical system (slot machine)
hoping to collect free energy (F, gold coins) by executing a
gambling strategy. In each time step, the demon does work on the
system (introduces a coin in the machine) and decides whether to
continue (“play” sign) or to quit gambling and collect the prize
(“stop” sign) at a stochastic time T following a prescribed
strategy. In the illustration, the demon plays the slot machine until
a fixed time T ¼ 3 (top row) unless the outcome of the game is
beneficial at a previous time, e.g., T ¼ 2 (bottom row). Under
specific gambling schemes, the demon can extract on average
more free energy than the work spent over many iterations, a
scenario that is forbidden by the standard second-law inequality.
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stochastic dynamics, and provide tight bounds to work
extraction beyond the generalized second laws with con-
tinuous feedback control [9]. We derive these results
applying the theory of Martingale stochastic processes.
Martingales have been fruitfully applied in probability
theory [12], quantitative finance [13], and more recently
in nonequilibrium thermodynamics [14–18], providing
insights beyond standard fluctuation theorems, e.g., uni-
versal bounds for the extrema and stopping-time statistics
of thermodynamic quantities [14,15,19–22].
Work fluctuation theorems at stopping times.—We con-

sider thermodynamic systems in contact with a thermal bath
with inverse temperature β ¼ 1=kBT. The HamiltonianH of
the system depends on time through an external control
parameter λðtÞ following a prescribed deterministic protocol
Λ ¼ fλðtÞ; 0 ≤ t ≤ τg of fixed duration τ. The evolution of
the system is subject to thermal fluctuations and thus we will
describe its energetics using the framework of stochastic
thermodynamics [23–25]. We denote the state (continuous or
discrete) of the system at time 0 ≤ t ≤ τ by xðtÞ, and the
probability of observing a given trajectory x½0;τ� ≡ fxðtÞgτt¼0

associated with the driving protocol Λ by Pðx½0;τ�Þ. We
assume its dynamics is stochastic and Markovian with
probability density ϱðx; tÞ. Thermodynamic variables such
as system’s energy EðtÞ ¼ HðxðtÞ; λÞ and entropy SðtÞ≡
−kB ln ϱðxðtÞ; tÞ are then stochastic processes, functionals of
the stochastic trajectories x½0;τ�. We denote WðτÞ≡R
τ
0 dt∂tHðxðtÞ; tÞ the work exerted on the system up to
time τ, and ΔFðτÞ≡ FðτÞ − Fð0Þ the nonequilibrium free
energy change, with FðτÞ≡ EðτÞ − TSðτÞ. A key result
from stochastic thermodynamics is the fluctuation theorem
he−βðW−ΔFÞi ¼ 1 [26,27], which implies the second-law
inequality hWi − hΔFi ≥ 0, where the averages h·i are done
over all possible trajectories of duration τ in the nonequili-
brium protocol Λ.
We now ask ourselves whether the work fluctuation

theorem and the second law still hold when averaging over
trajectories stopped at stochastic times, following a custom
“gambling” strategy. We consider strategies defined through
a generic stopping condition that can be checked at any
instant of time t based only on the information collected
about the system up to that time. In each run, the demon
gambles applying the prescribed stopping condition, and
decides whether to stop gambling or not depending on the
system’s evolution. In this work, we consider stopping times
obeying T ðx½0;τ�Þ ≤ τ for any trajectory x½0;τ�, i.e., demons
which are enforced to gamble before or at the end of the
nonequilibrium driving. For this class of systems we derive
the inequality

hWiT − hΔFiT ≥ −kBThδiT ; ð1Þ
which involves averages of functionals of trajectories evalu-
ated at stopping times hOiT ¼ P

x½0;T � Pðx½0;T �ÞOðT Þ, i.e.,
taken over many trajectories x½0;T �, each stopped at a
stochastic time T . Importantly, the quantity

δðT Þ≡ ln

�
ϱðxðT Þ; T Þ

ϱ̃(xðT Þ; τ − T )

�
; ð2Þ

denoted here as stochastic distinguishability, is a trajectory-
dependent measure of how distinguishable is ϱðx; T Þ with
respect to the probability distribution ϱ̃ðx; τ − T Þ at the same
stopping (i.e., stochastic) time τ − T in a reference time-
reversed process which is defined as follows. Its driving
protocol Λ̃ ¼ fλ̃ðτ − tÞ; 0 ≤ t ≤ τg is the time-reversed
picture of the forward protocol and its initial distribution
is the distribution obtained at the end of the forward protocol,
i.e., ϱ̃ðx; 0Þ≡ ϱðx̃; τÞ [28]. We derive Eq. (1) by extending
the Martingale theory of stochastic thermodynamics to
generic driven Markovian processes starting in arbitrary
nonequilibrium conditions. This leads us to the fluctuation
relation at stopping times

he−βðW−ΔFÞ−δiT ¼ 1; ð3Þ
which implies Eq. (1) by Jensen’s inequality [29]. For the
particular case of deterministic stopping at the end of the
protocol T → τ, we get δðT Þ → 0 and thus Eqs. (1) and (3)
recover, respectively, the standard second law and the work
fluctuation theorem, as expected.
Equation (1) reveals that the time asymmetry introduced

by the driving protocol hδiT ≥ 0 enables for an apparent
“second-law violation” i.e., hWiT ≤ hΔFiT at stopping
times [42]. Because the system’s evolution is stopped at
stochastic times at which the external protocol takes on
different values, the average work done in the gambling
process is not bounded by the free energy change hΔFiT
between the initial and the final state that one could reach
with a deterministic protocol leading to the distribution
ϱðx; T Þ. The maximum extent of the violation of the tradi-
tional statement of the second law increases with hδiT
i.e., when the process is driven far from equilibrium and
the dynamics is strongly time asymmetric. Equations (1) and
(3) are valid for any stopping strategy, thereby introducing a
new level of universality. We next put to the test our results
applying one specific set of stopping times to experimen-
tal data.
Experimental verification.—The experimental setup that

we used to test the aforementioned predictions [shown in
Fig. 2(a)] consists of two capacitively coupled metallic
islands with small capacitance forming a single-electron
transistor (SET) as a detector, and a single-electron box
(SEB) as the system [43,44]. The SEB, with capacitance C,
is left unbiased: the offset charge ng of the SEB can be
externally tuned with a gate voltage Vg;sys ¼ eng=Cg,
where Cg is the gate capacitance and e the elementary
charge. At low temperature kBT < e2=2C the box can be
approximated as a two-state system with charge number
states n ¼ 0 and n ¼ 1, and the offset charge tuning
enables the control of individual electrons on the island
through the change in its electrostatic energy Ecðn − ngÞ2,
with Ec ¼ 1.94kBT and T ¼ 0.67 K. The other SET is used
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as an electrometer biased with a low voltage: through
capacitive coupling to the box, its output current is sensitive
to the box charge state, taking two values corresponding to
the system states. The tunneling of an electron into
the island corresponds to a jump between the states
n ¼ 0 and n ¼ 1 and is associated with an energy cost
ϵðngÞ ¼ Ecð1 − 2ngÞ. Through continuous monitoring of
the box state nðtÞ [see Fig. 2(b)], we experimentally
evaluate at real time the heat exchange between the system
and the bath during a driving protocol of the gate voltage
ngðtÞ ¼ λðtÞ. The tunneling (i.e., heat exchange) events
occur at rates of order Γd ∼ 230 Hz. If a jump occurs at time
t within a sampling time Δt ¼ 20 μs ≪ Γ−1

d at gate voltage
ng, the work increment is δW ¼ 0 and the heat increment is
δQ ¼ ϵðngÞ [δQ ¼ −ϵðngÞ] for an electron tunneling into
(out) of the island. Conversely, if no jump occurs, δQ ¼ 0
and δW ¼ 2Ecðng − nÞ _ngδt.
The experimental driving protocol Λ of duration τ is

depicted in Fig. 2(b). The system is initially prepared at
charge degeneracy, i.e., ngð0Þ ¼ 1=2 at thermal equilibrium
where the initial energies of states are equal, following a
uniform distribution. Then the energy splitting is tuned
according to a linear ramp, ngðtÞ ¼ 1=2þ Δngt=τ, with
Δng ¼ 0.1 fixed throughout the experiment. The protocol
is repeated several times (∼500–1000) to acquire sufficient

statistics. The gambling strategy that we chose consists of
stopping the dynamics at stochastic times T when the work
exceeds a threshold value Wth (red dashed line) or at τ
otherwise. The gambling strategy was applied a posteriori
on the data: for the same set of traces taken for the full
protocol duration, the stopping condition (threshold work
Wth) was varied between 10−4Ec and 10−1Ec. In Fig. 2(c)
we present two examples of stopped work trajectories
where one reaches the threshold value at a time T < τ
(black line), while the other remains below the threshold
until the final time τ (blue line).
Experimental values of hWiT − hΔFiT and −kBThδiT

are shown in Figs. 3(a) and 3(d) for two different ramps
of durations τ ¼ 0.05 s (a) and τ ¼ 0.2 s (d) as a function of
thework thresholdWth. These results are validated and are in
good agreement with numerical simulations over the entire
threshold range when including the experimental uncer-
tainty. For both ramp durations hWiT − hΔFiT is negative at
smallWth, defying the conventional second law but is yet in
agreement with Eq. (1) within experimental errors. We
find that the faster is the protocol, the more negative
hWiT − hΔFiT becomes, which can be understood as a
consequence of the irreversibility (and hence hδiT ) asso-
ciated with the ramp driving speed. For large values of Wth,
almost all trajectories are stopped at τ and the conventional
second law is recovered, as hδiT becomes small.
Furthermore, Figs. 3(b) and 3(e) report the exponential
averages he−βðW−ΔFÞiT and he−βðW−ΔFÞ−δiT evaluated at
the stopping times. Notably, the conventional work fluc-
tuation theorem he−βðW−ΔFÞiT ¼ 1 only holds for largeWth,
while for small Wth, he−βðW−ΔFÞiT is significantly greater
than one within experimental errors. On the other hand, we
obtain an excellent agreement (with accuracy ∼99.5%) of
our fluctuation relation (3) for all values of Wth and both
ramp speeds. To gain further insights, in Figs. 3(c) and 3(f)
we show histograms of the stopping times T and the value of
thework at the stopping timeWðT Þ. For small thresholds we
observe that the distribution of T is broad and includes
stopping events that take place at short times T ≲ Γ−1

d
[Fig. 3(c), top panel]. Its corresponding distribution ofWðT Þ
[Fig. 3(f), top panel] has a peak at Wth arising from
trajectories stopped before τ and a tail WðT Þ < hΔFiT
from trajectories ending at the end of the protocol. By
increasing the threshold value [Figs. 3(c) and 3(f), middle
panels] we reduce the number of trajectories that stop before
τ hence the distribution of T becomes narrower [Fig. 3(c),
bottom panel]. This effect is accompanied by a broadening
of the WðT Þ distribution recovering a Gaussian-like shape
with mean above the free energy change for large enough
Wth (i.e., typically far outside the standard fluctuation
interval of W), Fig. 3(f) bottom panel.
Quantum gambling.—The gambling demon can also be

extended to the quantum realm by considering quantum
jump trajectories [45]. Here, the pure state of the system
jψðtÞi follows stochastic evolution conditioned on the

(a) (b)

(c)

FIG. 2. (a) Scanning electron micrograph of the single-electron
box (SEB) with false-color highlight on the Cu island (red) and
the Al superconducting lead (turquoise). The superconducting
leads are tunnel coupled through thin oxide barriers (yellow) to
the island. The dc SET electrometer is coupled capacitively to the
box through a bottom electrode (blue) which detects the excess
charge of the box nðtÞ. (b) Representative time traces of the
current measured through the electrometer (red solid line) and its
digitized version (black solid line). The blue dashed line
corresponds to the driving protocol ngðtÞ of duration
τ ¼ 0.05 s. (c) Example traces of the stochastic work done on
the box as a function of time. We execute the following gambling
strategy: the process is stopped at T < τ (black line) only when
the work reaches a threshold valueWth (red dashed line) before τ.
On the contrary, the process is stopped at final protocol time
T ¼ τ if the work threshold is never reached during the driving
protocol (blue line).

PHYSICAL REVIEW LETTERS 126, 080603 (2021)

080603-3



measurement outcomes generated by the continuous mon-
itoring of the environment [46–48].
In this case, we derive the following quantum stopping-

time work fluctuation relation

he−β½W−ΔF�−δqþΔSunciT ¼ 1; ð4Þ
where again W and ΔF are, respectively, the work
performed and free energy change during trajectories
stopped at T [29]. The term δqðtÞ≡ lnhψðtÞjρðtÞjψðtÞi −
lnhψðtÞjΘ†ρ̃ðτ − tÞΘjψðtÞi is the quantum analog of
Eq. (2), ρ and ρ̃ being the density operators in the forward
and backward process respectively, and Θ the time-reversal
operator in quantum mechanics. As before, time-inversion
at time τ implies δqðτÞ ¼ 0. The key difference of the
quantum fluctuation relation (4) with respect to its classical
counterpart in Eq. (3) is the appearance of a genuine
entropic term associated to quantummeasurements, namely
the “uncertainty” entropy production

ΔSuncðT Þ ¼ − ln

� hnðT ÞjρðT ÞjnðT iÞ
hψðT ÞjρðT ÞjψðT Þi

�
: ð5Þ

This quantity measures how much more surprising is a
particular eigenstate jnðtÞi of ρðtÞ with respect to the
stochastic wave function jψðtÞi, as characterized by the

logarithm of the Uhlman fidelity, hψðtÞjρðtÞjψðtÞi [20]. In
general, jψðtÞi can be an arbitrary superposition of the
instantaneous eigenstates jnðtÞi. In the classical limit the
stochastic evolution of jψðtÞi is given by jumps between
energy levels and thus jψðT Þi ¼ jnðT Þi. Consequently,
ΔSuncðT Þ ¼ 0 in Eq. (5) and δqðT Þ ¼ δðT Þ for any T , thus
recovering Eq. (3) in the classical limit. The corresponding
stopping-time second-law inequality for quantum systems
reads hWiT − hΔFiT ≥ −kBTðhδqiT − hΔSunciT Þ, where
hΔSunciT modifies the entropic balance. Even if hΔSunci ≥
0 for any fixed time t ≤ τ, the average over stopped
trajectories hΔSunciT may be either positive or negative
depending on the selected gambling strategy. Therefore, the
quantum fluctuations induced by measurements may act
either as an entropy source or as an entropy sink.
Conclusions.—We have introduced and illustrated the

stochastic thermodynamics of gambling demons, i.e.,
driven nonequilibrium processes that are stopped at sto-
chastic times following a prescribed criterion. Our results
generalize the second law to arbitrary stopping (“gam-
bling”) strategies for classical and quantum systems driven
out of equilibrium. Even though all finite-time horizon
gambling strategies fulfill the stopping-time fluctuation
relation (3) and the inequality (1), not all guarantee average
work extraction above the average nonequilibrium free

(a) (b) (c)

(d) (e) (f)

FIG. 3. Dissipated work hWiT − hΔFiT (blue) and stochastic indistinguishability at stopping times (red) −kBThδðT Þi (dots:
experimental data; solid lines: simulation) in charging energy Ec ¼ 109μeV units averaged over many realizations for protocol durations
τ ¼ 0.05 s (a) and τ ¼ 0.2 s (d) as a function of work threshold values. (b),(e) Test of the generalized work fluctuation relation and of
Eq. (3) (dots: experimental data; solid lines: simulation) for τ ¼ 0.05 s (b) and τ ¼ 0.2 s (e). (c),(f) Histograms of stopping times T (c)
and corresponding work values WðT Þ (f) for a ramp time τ ¼ 0.05 s for work thresholds Wth ¼ 5 × 10−4; 3 × 10−2 and 10−1Ec. The
total uncertainty is shown by shadowed areas; it is the combination of the statistical uncertainty and error on temperature (about 10%).
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energy change. Such “negative dissipation” requires the
usage of gambling strategies in a sufficiently irreversible
process: stopping the dynamics at stochastic times with a
suitable gambling strategy, and a time-asymmetric driving
protocol. This contrasts with heat and information engines
which achieve maximal work extraction in the quasistatic
reversible limit [49,50].
Our relations are fundamentally different to the gener-

alized second law with feedback hWi − hΔFi ≥ −kBTI,
where I is the information acquired by a feedback con-
troller from the system in a fixed-time protocol [3,4], or
at stochastic times [9]. The information used to implement
a gambling strategy can be estimated assuming periodic
measurements every sampling time Δt, each providing at
least a bit of information, corresponding to “stop” or “don’t
stop” the trajectory. In the small sampling time limit, these
measurements generate sequences of N ∼ T =Δtþ 1 bits
per trajectory. Erasing these bits would have an energetic
cost that becomes infinitely large in the continuous meas-
urement limit Δt → 0 [9]. Our results show that gambling
demons are, nevertheless, constrained by the bound in
Eq. (1), which is tighter than an extension of the second law
with feedback at stopping times. In the experiment re-
ported here we indeed obtain kBThδiT ∼ 7.8 × 10−3kBT ≪
kT ln 2, but faster protocols are expected to achieve larger
values of hδiT . It would be interesting in the future to
further investigate the interplay between our fluctuation
relations and information acquisition, as well as with recent
stopping-time uncertainty relations [51], and speed limits
[52]. Applications to experimental quantum devices
[53,54] may allow us to exploit quantum superpositions
to enhance work extraction beyond the classical limits.
Finally, it would be interesting to explore optimization of
stopping strategies using knowledge in quantitative finance
(e.g., option pricing, arbitrage, etc.) and gambling [55,56]
such as Parrondo games [57].
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