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ABSTRACT
Although brain imaging studies have demonstrated that listening to music alters
human brain structure and function, the molecular mechanisms mediating
those effects remain unknown. With the advent of genomics and bioinformatics
approaches, these effects of music can now be studied in a more detailed fashion. To
verify whether listening to classical music has any effect on human transcriptome,
we performed genome-wide transcriptional profiling from the peripheral blood
of participants after listening to classical music (n = 48), and after a control study
without music exposure (n = 15). As musical experience is known to influence
the responses to music, we compared the transcriptional responses of musically
experienced and inexperienced participants separately with those of the controls.
Comparisons were made based on two subphenotypes of musical experience: musical
aptitude and music education. In musically experiencd participants, we observed
the differential expression of 45 genes (27 up- and 18 down-regulated) and 97 genes
(75 up- and 22 down-regulated) respectively based on subphenotype comparisons
(rank product non-parametric statistics, pfp 0.05, >1.2-fold change over time
across conditions). Gene ontological overrepresentation analysis (hypergeometric
test, FDR < 0.05) revealed that the up-regulated genes are primarily known to be
involved in the secretion and transport of dopamine, neuron projection, protein
sumoylation, long-term potentiation and dephosphorylation. Down-regulated genes
are known to be involved in ATP synthase-coupled proton transport, cytolysis, and
positive regulation of caspase, peptidase and endopeptidase activities. One of the
most up-regulated genes, alpha-synuclein (SNCA), is located in the best linkage
region of musical aptitude on chromosome 4q22.1 and is regulated by GATA2, which
is known to be associated with musical aptitude. Several genes reported to regulate
song perception and production in songbirds displayed altered activities, suggesting
a possible evolutionary conservation of sound perception between species. We
observed no significant findings in musically inexperienced participants.

Subjects Genetics, Genomics
Keywords Music, RNA, Gene expression profiling, Dopamine, Long-term potentiation,
Genomics, Peripheral blood, SNCA
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INTRODUCTION
Listening to music is common in all societies. A plethora of neurophysiological studies

have demonstrated that listening to and/or playing music has multiple measurable effects

on human brain structure and function (Elbert et al., 1995; Blood & Zatorre, 2001; Sutoo

& Akiyama, 2004; Koelsch, 2011; Salimpoor et al., 2011; Salimpoor et al., 2013; Herholz

& Zatorre, 2012; Chanda & Levitin, 2013). In investigations using positron emission

tomography (PET), music listening has been reported to cause physiological changes

in cerebral blood flow, cardiovascular and muscle function, and enhanced dopamine

secretion in the human brain (Sutoo & Akiyama, 2004; Angelucci et al., 2007; Salimpoor

et al., 2011). Music has been demonstrated to regulate emotions and evoke pleasure,

primarily through its action on the brain’s reward centres like the limbic and mesolimbic

structures including the nucleus accumbens, hypothalamus, subcallosal cingulate gyrus,

pre-frontal anterior cingulate, and hippocampus (Brown, Martinez & Parsons, 2004;

Koelsch, 2011; Koelsch, 2014; Salimpoor et al., 2011; Salimpoor et al., 2013). Music has

also been used as a therapeutic tool in clinical settings (AMTA, 2014; Conrad, 2010; Holmes,

2012). However, the molecular mechanisms and biological pathways mediating the effects

of music remain unknown.

Genomics and bioinformatics offer methods (Lander, 2011) to explore the biology and

evolution of music and sounds at the molecular level. To date, few genome-wide scans have

been performed in musical traits in humans (Asher et al., 2008; Pulli et al., 2008; Park et

al., 2012; Oikkonen et al., 2014). Genome-wide expression analysis can be applied to study

human traits in an unbiased, hypothesis-free fashion based on their molecular properties,

rather than anatomic regions. Here, we have utilized a combination of genomic and bioin-

formatic methods to analyze the effect of classical music on the peripheral whole blood

transcriptome. Peripheral blood was used, as brain samples are inaccessible in humans.

MATERIALS AND METHODS
Ethics statement
The Ethics Committee of Helsinki University Central Hospital approved this study. Written

informed consent was obtained from all the participants.

Participants and phenotypes
A total of 48 individuals (aged 18–73; mean 42.5) participated in the study (Table S1). All

the 48 participants were characterized for musical aptitude and music education. Musical

aptitude was measured using three tests: the auditory structuring ability test (Karma

music test) (Karma, 2007), and the Seashore tests for pitch and for time (Seashore, Lewis

& Saetveit, 1960). Details of the tests have been described in Oikkonen et al. (2014). A

combined score of the three tests (COMB score; range 0–150) was used to define musical

aptitude. COMB scores were classified as either high or low based on the upper and

lower quartiles of score distribution. Data on music education were collected using a

questionnaire. The self-reported levels of music education (referred to as edu classes 1–4),

received through studies or degrees from music schools, institutes, or universities, were
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Table 1 Phenotype characteristics of the sample set (total n = 48).

Phenotype n*

Edu classes 1–2 19

Edu classes 3–4 29

Low COMB scores 12

High COMB scores 12

Male 22

Female 26

Notes.
* n represents the number of participants within each category.

classified as follows: 1 represents no music education; 2 represents music education of less

than two years; 3 represents music education of more than ten years; and 4 represents a

professional musician. The approximate time of systematic music education and training

was 21.42 years on average, in participants of edu classes 3–4. Table 1 shows the sample’s

phenotype characteristics.

Exposure to music
To our knowledge, no previous studies have systematically studied the effect of listening

to music on genome-wide transcriptional profiles of humans. We have previously shown

that music-listening habits vary a lot among listeners (Ukkola-Vuoti et al., 2011). To start

with, we chose to study the effect of classical music, Wolfgang Amadeus Mozart’s Violin

Concerto No. 3 in G major, K.216 because it is relatively familiar in the western culture.

As the human brain perceives complex sounds in a millisecond-level time frame (Wang et

al., 2009; Kayser, Logothetis & Panzeri, 2010), we expected that the 20 min-listening session

(duration that the concerto lasts) will induce an effect of music on human transcriptome.

In studies on the effect of pain in humans, very short durations of pain induction (8

to 150 s) have been used (Hubbard et al., 2011). The participants were unaware of the

type of music that was intended for the listening session. Peripheral blood samples were

collected from all the 48 participants just before and after the listening session. From here

on, participants who listened to music are referred to as listeners throughout the text.

Control study
The same 48 participants were invited to a control study. Of these, 15 participants could

attend. The participants were advised to avoid listening to music and hard exercise the day

before the control study. The control study was performed in a ‘music-free’ environment,

where the participants had an opportunity to converse, read a magazine, or take a walk

outside (no exercise) during the session. Peripheral blood samples were collected from the

participants just before and after 20 min in the control session (the same duration as in

the listening session). From here on, participants of the control session are referred to as

controls throughout the text.
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Genome-wide expression profiling
For this procedure, 2 × 2.5 ml samples of peripheral blood were drawn into PAXgene

blood RNA tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) as per the kit

instructions, in both of the sessions. Total RNA was isolated using the PAXgene blood

miRNA Kit (PreAnalytiX GmbH, Hombrechtikon, Switzerland) as per the kit manual.

Purified RNA samples were measured for concentration and purity on the NanoDrop

1000 v.3.7 (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Globin mRNA

was depleted from our samples using Ambion’s Human GLOBINclearTM kit (Applied

Biosystems, Carlsbad, California, USA) as per the kit insert. The samples were measured on

the NanoDrop 1000 to determine the sample concentration and purity and for integrity on

the 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) before being diluted

to 50 ng/µl using RNase-free water. A total of 2 µg of RNA was assayed on the Illumina

HumanHT-12 v4 bead array (Illumina Inc., San Diego, California, USA), which targets

more than 47,000 probes. The gene expression profiling assays for the listening and

control sessions were conducted in two separate batches. To account for the batch effect

corrections, six samples from the listening session were assayed together with the control

session samples. Intensity data were exported through Bead Studio software. The data

reported in this article have been deposited in the Gene Expression Omnibus database,

www.ncbi.nlm.nih.gov/geo (accession no. GSE48624).

Data preprocessing
The Lumi package was used to read and preprocess the signal intensity data. Specifically,

pre-processing included background correction, variance stabilizing transformation,

and quantile normalization. Data from both the listening (n = 48) and control (n = 15)

sessions were normalized separately. Five samples from the control session were excluded

from further analyses owing to data quality. In addition, we used the ComBat method

(Johnson, Li & Rabinovic, 2007) to adjust for batch effects and determine if this correction

affected the pre-post fold-changes across conditions. However, we did not find significant

differences between the fold-changes of corrected and uncorrected data over time across

conditions. Therefore, we chose to proceed with the uncorrected data owing to the

strengths of our analysis methods as described below. After normalization, duplicate

and un-annotated probes were excluded using the genefilter package (R package version

1.40.0). Before extracting the expression values from the normalized data, Illumina’s

detection p-values (threshold: 0.01) were used to filter out probes with low intensities

corresponding to the background signal. Finally, only those probes that were expressed in

at least half of all of the arrays (listening and control sessions) were chosen for the study.

Differential expression analysis
The choice of an appropriate statistical test for the identification of differentially expressed

genes depends upon several aspects of the data including the underlying distribution,

homogeneity, and the sample size. As the statistical tests for normality are known to be

sensitive to sample size, we used a normal Q-Q plot to get a glimpse of the distribution of
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the data. For this, we randomly visualized the distribution of transcriptional responses of

control samples (n = 10) for several transcripts (Fig. S1) using normal Q-Q plots. We ob-

served that the data appeared to deviate from normality in several instances. As the central

limit theorem does not always hold true for small sample sizes, a cautious approach here

would be to employ a non-parametric test (better being safe than sorry). Non-parametric

tests are deemed to be appropriate analysis tools when the distribution of data is difficult

to characterize, because they make less stringent distributional assumptions. Therefore, we

chose to use the rank product (Breitling et al., 2004) non-parametric test statistic, which is

relatively powerful especially for small sample sizes, and when the data is heterogeneous

and does not meet normality. Rank product-based methods outperformed several other

methods including empirical Bayes statistic (limma) and SAM, when the sample size

is small and when the data is non-homogeneous (Jeffery, Higgins & Culhane, 2006).

Also, a comparison of eight gene ranking methods using Microarray Quality Control

datasets (golden-standard) has demonstrated the high sensitivity and specificity of the

rank product method (Kadota & Shimizu, 2011).

To identify the differentially expressed genes, we compared the magnitude of pre-post

changes in gene expression across conditions using the rank product method implemented

in the RankProd Bioconductor package. Based on the estimated percentage of false predic-

tions (pfp), RankProd employs a non-parametric statistic to identify genes that are consis-

tently ranked high among the most up- or down-regulated genes in replicate experiments.

Instead of analyzing the actual expression value, this method utilizes the ranks of genes

in each sample. The strength of rank product method allows us to compare and combine

the datasets of the listening and control studies. After the identification of differentially

expressed genes using a pfp of 0.05 in RankProd, we selected only those genes that exceeded

an effect-size cut-off (>1.2-fold change over time across conditions, and at least a pre-post

change of 10% in gene expression in the listening session). Here, we would like to point

out a couple of aspects of these selection criteria. First, pfp employed by RankProd is

equivalent to the standard false discovery rate (FDR). Second, there exists a widespread

misconception that only two-fold changes are significant (Hoheisel, 2006) and that false

notion is based on the very initial publications of microarray studies, which used a two-

fold change criteria for a particular group of experiments because of biological relevance.

Fold-change thresholds are completely arbitrary and in the majority of the cases they

depend upon the underlying biological question. For example, studies that investigated

the effect of gene-environment interactions (socio-environmental effect (Cole et al., 2007),

yogic meditation effect (Black et al., 2012)) used unorthodox fold-change thresholds.

We further performed successive functional annotation analyses using GeneTrail

(http://genetrail.bioinf.uni-sb.de/) and IPA (Ingenuity® Systems, www.ingenuity.com).

The gene ontological overrepresentation analysis in GeneTrail uses a hypergeometric

distribution test along with a conservative multiple testing correction method (FDR

< 0.05) to assess whether genes belonging to certain functional categories are enriched

in the dataset. In addition to the standard gene ontology analyses, we performed upstream

transcription regulator analysis, which essentially predicts all the upstream transcription
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regulators (transcription factors, receptors, cytokines, microRNA, and kinases) that could

have possibly mediated the observed differential expression. Based on the overlap between

known targets of a transcription regulator and the set of differentially expressed genes, an

overlap p-value is computed using Fisher’s exact test (p < 0.01). Further, the activation

states of the predicted transcription regulators are also inferred using an activation Z-score,

which is based on literature-derived knowledge on the direction of regulation (either

activating or inhibiting).

RESULTS
Transcriptional responses after a control session
First we assessed the homogeneity of transcriptional responses in the control session.

For this, we analyzed whether the transcriptional responses of participants belonging

to edu classes 3–4 (n = 4) and edu classes 1–2 (n = 6) differed in the control session.

Only 4 genes were found to be differentially expressed, suggesting no major differences

in the transcriptional responses between groups to a ‘non-musical activity.’ Therefore,

we used the expression data of the whole ‘music-free’ control group as a reference for the

comparative analyses.

We used Spearman’s rank-based correlation to check for each gene, whether the

transcriptional responses correlated with the age or sex of the participants in either

the listening session (n = 48) or the control sessions (n = 10). After multiple testing

corrections, we found no significant effects of age or sex on the transcriptional responses.

Transcriptional response after listening to music
Based on neuroscientific studies, the brains of musicians and non-musicians differ

structurally and functionally (Elbert et al., 1995; Gaser & Schlaug, 2003). This led us to ask

whether the transcriptional responses of musically experienced participants would differ

from those of musically inexperienced participants when listening to music. Therefore,

we compared the transcriptional responses of listening to music separately for musically

experienced and inexperienced participants vs controls. Comparisons were made based on

two subphenotypes of musical experience: musical aptitude and music education.

First, we compared the magnitude of pre-post fold-changes in the genome-wide

transcriptional profiles of listeners of edu classes 3–4 (n = 29) and controls (n = 10).

Using RankProd non-parametric statistics and stringent selection criteria, we identified

45 differentially expressed genes (27 up-regulated and 18 down-regulated). Next, we

compared the genome-wide transcriptional profiles of listeners with high COMB scores

(n = 12) and controls (n = 10). Similar statistical analysis identified 97 differentially

expressed genes (75 up-regulated and 22 down-regulated). The differentially expressed

genes from both the comparisons are listed in Table S2, and a comparison of the pre-post

changes in both conditions is shown in Fig. 1.

Functional annotation
Based on gene ontology analyses (Table S3), the genes up-regulated in the listeners of

edu classes 3–4 are known to be primarily involved in the regulation, secretion and
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Figure 1 Differential gene expression in experienced listeners vs ‘music-free’ controls. Heatplot representations of mean expression values pre-
and post-music listening session and control sessions. The red-yellow-green palette represents low-moderate-high expression values. (A) Educated
listeners vs controls, (B) Competent listeners vs controls.

transport of the neurotransmitter dopamine (e.g., SNCA, RTN4, and SLC6A8), protein

sumoylation (SUMO2 and HDAC4) and neuron projection (SNCA, RTN4, DICER1

and MYC). Down-regulated genes are known to affect functions such as mitochondrial

ATP synthase-coupled proton transport and cytolysis (e.g., ATP5J, ATP5L, GZMH, and

GZMA). Several of the genes, including the dopamine secretion-related genes (SNCA,

RTN4) up-regulated in listeners of edu classes 3–4, were also found to be up-regulated in

listeners with high COMB scores. Here, we should note that the COMB scores are strongly

correlated with music edu classes (Spearman’s rho 0.5644; p-value 2.931e–05). In listeners

with high COMB scores, gene ontology classification revealed that the up-regulated genes

are involved in functions such as long-term synaptic potentiation (NPTN and SNCA),

dephosphorylation and regulation of cell communication. Down-regulated genes are

known to be involved in functions such as positive regulation of caspase, peptidase and

endopeptidase activities (Table S3).

We further performed Entrez gene annotation and an extensive literature survey for all

the genes that are differentially expressed after listening to music (in listeners of both edu
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Table 2 Putative biological functions of the differentially expressed genes after listening to music.

Biological function Gene Direction of
regulation

Dopamine secretion, transport, signaling SNCA, RTN4, RGS2, SLC6A8 Up

Synaptic neurotransmission (Vesicular exocytosis, endocytosis) SNCA, STXBP2, FKBP8, SYNJ1, LYST, SUMO2, HDAC4, DUSP6 Up

Synaptic function SNCA, NPTN, FKBP8, NRGN, HDAC4 Up

Learning and memory, cognitive performance SNCA, NRGN, NPTN, FKBP8, RTN4, SLC6A8, NEDD9 Up

Song learning and singing in songbirds SNCA, NRGN, RGS2, MYC, UBE2B Up

Auditory cortical activation HDAC4, LRRFIP1 Up

Absolute pitch FAM49B, HDAC4 Up

Neuroprotection SNCA, RTN4, FKBP8, SLC6A8, KLF4 Up

Neurogenesis KLF4, SMNDC1, S100A12 Up

Neuronal apoptosis CASP8, GZMH, GZMA, IFI6, PYCARD, TNFRSF10B, HSPE1 Down

ATP synthase coupled proton transport ATP5J, ATP5L Down

classes 3–4 and high COMB scores). This revealed that the up-regulated genes are known

to be associated with dopamine signaling, synaptic neurotransmission, synaptic function,

learning, memory and cognitive performance, song learning and singing in songbirds,

auditory cortical activation, absolute pitch, neuroprotection and neurogenesis (Tables

2 and S4). On the other hand, down-regulated genes are known to cause mammalian

neuronal apoptosis, immoderate oxidative phoshorylation and deficits in dopaminergic

neurotransmission, which are the characteristics of neurodegeneration (Tables 2 and S4).

Detailed information about the putative biological functions of the differentially expressed

genes is provided in Table S4.

Upstream regulator analysis
To obtain insight into the molecules that might mediate the observed differences in

gene expression, we performed an upstream transcription regulator analysis using

IPA (Table S5). This analysis revealed that the up-regulated genes in listeners of edu

classes 3–4 significantly overlap the known target genes of the glucocorticoid receptor

NR3C1 (p-value 0.001), and progesterone receptor PGR (p-value 0.0008), whereas

the down-regulated genes did not display any significant overlap. In listeners with

high COMB scores, upstream regulator analysis again identified the up-regulation of

target genes of the glucocorticoid receptor gene (NR3C1) and also the target genes of

several other transcription regulators such as TP53, MYC, HOXA9, CD24 and chorionic

gonadotropins. Down-regulated genes significantly overlapped the known target genes of

pro-inflammatory transcription regulators such as tumor necrosis factor (TNF), a member

of its superfamily (TNFSF10), interferon gamma (IFNG), a member of its gene cluster

(IFNA2), the microtubule-associated protein tau (MAPT)and the nuclear factor kappa B

family gene (NFKB1A; Table S5).
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Transcriptional responses of participants with no significant experience
Furthermore, we repeated similar analyses to compare the magnitude of pre-post

fold-changes over time in listeners of edu classes 1–2 vs controls and listeners with low

COMB scores vs controls. Using the same analysis methods and selection criteria to identify

the differentially expressed genes, we identified 8 and 22 differentially expressed genes,

respectively in the comparisons. However, functional characterization of those genes did

not reveal any significant findings.

DISCUSSION
The findings of this study suggest that listening to classical music has an effect on human

transcriptome. The up-regulation of genes related to dopamine secretion and signaling is

in agreement with the previous neuroimaging-based evidences (Salimpoor et al., 2011).

Particularly, alpha-synuclein (α-synuclein; SNCA), one of the most up-regulated genes, is

involved in dopamine (DA) neuronal homeostasis (Murphy et al., 2000; Oczkowska et al.,

2013). Interestingly, SNCA is located on chromosome 4q22.1, the most significant region

of linkage for musical aptitude (Pulli et al., 2008; Oikkonen et al., 2014) and regulated

by GATA2 (Scherzer et al., 2008), which is associated with musical aptitude (Oikkonen

et al., 2014) (Fig. 2). These data provide convergent evidence about the molecular basis

of musical traits from both DNA and RNA studies. Another finding from the upstream

regulator analysis suggests that listening to music primarily increased the expression of the

target genes of the glucocorticoid receptor (NR3C1). Notably, dopaminoceptive neuronal

glucocorticoid receptor has been described as a key molecule in the regulation of addictive

behavior. By reducing dopamine re-uptake, NR3C1 increases the synaptic concentration

of dopamine, which leads to rewarding and reinforcing properties (Ambroggi et al., 2009)

that have previously been linked to listening to music (Blood & Zatorre, 2001; Koelsch,

2011; Koelsch, 2014; Salimpoor et al., 2011; Salimpoor et al., 2013).

The up-regulation of genes related to synaptic vesicular exocytosis, endocytosis,

neurotransmission and plasticity seems perfectly rational here because the majority of

these biological processes are essential for the secretion and signaling of neurotransmitters

(Südhof & Rizo, 2011; Saheki & De Camilli, 2012). As listening to music has been known

to induce the secretion and signaling of a neurotransmitter, dopamine (Sutoo & Akiyama,

2004; Salimpoor et al., 2011), we can speculate the role of these up-regulated genes in

facilitating dopaminergic neurotransmission after listening to music. Moreover, some of

the up-regulated genes have evident roles in enhancing cognitive functions like long-term

potentiation (LTP) and memory. In previous behavioral studies, music education and

training have proven to have beneficial effects on cognitive development, cognitive

performance, verbal and long-term memories (Rammsayer & Brandler, 2003; Schlaug et

al., 2005; Sluming et al., 2007; Wong et al., 2007; Roden, Kreutz & Bongard, 2012; Rodrigues,

Loureiro & Caramelli, 2013).

Several of the differentially expressed genes have been demonstrated to be responsible

for song learning and singing in songbirds (Wada et al., 2006), which suggests a possible

evolutionary conservation in biological processes related to sound perception. Further-
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Figure 2 Schematic representation of chromosome 4. The α-synuclein gene (SNCA) that was found
to be up-regulated after music perception in this study is located in the best linkage region of musical
aptitude as shown by Pulli et al. (2008), Park et al. (2012) and Oikkonen et al. (2014). GATA2, which
is located in the best genome-wide association region of musical aptitude (Oikkonen et al., 2014) and
regulates the SNCA, is also shown.

more, the up-regulation of genes associated with human auditory cortical activation

(Renvall et al., 2012) and absolute pitch (Theusch, Basu & Gitschier, 2009; Gervain et al.,

2013) are logical, because listening to music involves both of those auditory phenomena.

Auditory perception processes have been known to exhibit convergent evolution across

species. Notably, the human auditory center is identical to those of the first primates who

inhabited the planet millions of years ago (Langner , 1992; Montealegre-Z et al., 2012). In

addition, widespread adaptive convergent sequence evolution has been found recently in

hearing-related genes in echolocating bats and dolphins (Parker et al., 2013). Similarly,

convergent sequence evolution has also been identified in vocal-learning birds and

mammals (Zhang et al., 2014). More recently, convergent gene expression specializations

have been detected in songbirds and humans in the regions of brain that are essential

for auditory perception and speech production (Pfenning et al., 2014). Thus, the genes

detected by Pfenning et al. (2014), in general, represent the genes belonging to auditory

perception pathway in both songbirds and humans. Here, genes belonging to the auditory

perception pathway (∼2-fold enrichment; p-value: 0.028; two-sided Fisher’s exact test)

were found to be enriched among the genes that are differentially expressed after listening

to music. This suggests that our results serve as a relevant molecular background for music

perception in humans.

The widely-documented neuroprotective role of some of the up-regulated genes and

the down-regulation of several neurodegeneration-inducing genes support the notion of a

neuroprotective role for music and may provide a working mechanism for the use of music

therapy, especially in treating neurodegenerative diseases (AMTA, 2014; Conrad, 2010;

Holmes, 2012).
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In this study, significant transcriptional responses were observed only in individuals

who either have substantial periods of music education/training or have relatively

higher musical aptitude scores. This suggests that certain musical abilities (either innate

or acquired through music education) may influence the transcriptional responses of

listening to music. Previous works have shown that the familiarity of music attained

through music education or repeated music exposure is known to largely influence the

rewarding aspects of listening to music (Sarkamo et al., 2008; Salimpoor et al., 2009;

Van den Bosch, Salimpoor & Zatorre, 2013; Schubert, Hargreaves & North, 2014). Here,

we acknowledge that the effect of music exposure on human gene expression could be very

subjective and may vary depending on several factors such as age, sex, culture, previous

listening habits, music education and training and personal liking of music, as recently

discussed (Wong et al., 2007; Salimpoor et al., 2009; Van den Bosch, Salimpoor & Zatorre,

2013; Mikutta et al., 2014). To be able to comprehensively characterize the transcriptomic

alterations of music-listening, further studies are required to assess the effect of listening to

different genres of music, at different ages, in different ethnicities and in individuals with

varying music education levels and listening habits, with varying durations of listening.

The participants, who listened to music in this study, were unaware of the type of music

that was intended for the listening session. Similarly, without further details about the

intended activity, the participants were invited to attend a ‘music-free’ control session.

Here, it is crucial to discuss the association between ‘anticipation’ and ‘listening to

music.’ Anticipation is always involved in listening to music (Salimpoor et al., 2011). The

unveiling of series of tones with time evokes anticipatory responses because of the cognitive

expectations and prediction cues (Huron, 2006; Meyer, 2008). Functional neuroimaging

studies have successfully distinguished the anatomical regions that respond to anticipation

and consumption of music (Salimpoor et al., 2011). However, distinguishing the human

gene expression signatures of anticipatory and consummatory responses of music is not yet

feasible. Therefore, even if we perform a blinded experiment here, we might not be able to

exclude the effect of anticipation or expectation.

As brain samples are inacesssibile in this type of study, we used peripheral blood as a

window to the study the effects of listening to music. Peripheral blood is known to share

more than 80% of the transciptome and significant gene expression similarities with

other tissues including multiple regions of brain (Liew et al., 2006; Sullivan, Fan & Perou,

2006; Tylee, Kawaguchi & Glatt, 2013). Thus, peripheral blood could certainly provide

surrogate information concerning gene expression in brain tissue for a subset of genes

(Davies et al., 2009). For instance, the molecular alterations in dopamine metabolism and

mitochondrial function, which are the potential hallmarks of Parkinson’s disease, have

been detected in peripheral blood (Scherzer et al., 2007). Notably, genes that are responsive

to physiological stimuli (which are earlier thought to be tissue-specific) and genes involved

in neuroendocrine pathways (e.g., hormone receptors, neurotransmitter receptors) are

expressed in the peripheral blood. Because of these characteristics, peripheral blood has

been used as a proxy in several studies when a specific tissue is not available (e.g., human

brain), especially in behavioral and neurodegenerative studies (Mohr & Liew, 2007). In

Kanduri et al. (2015), PeerJ, DOI 10.7717/peerj.830 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.830


the wake of all these findings, a subset of the molecular mechanisms identified here may

legitimately reflect the transcriptomic alterations in brain after listening to music.
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