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Abstract 

The accuracy of the state of health (SoH) estimation and prediction is of great 

importance to the operational effectiveness and safety of electric vehicles. Present 

approaches mostly employ data-driven analysis with laboratory measurements to 

determine these parameters. Here a novel method is proposed using discrete 

incremental capacity analysis based on real-life driving data, which enables to estimate 

the battery SoH without any prior detailed knowledge of battery internal specifics such 

as current capacity/resistance information. The method accounts for the battery 

characteristics. It is robust, highly compatible, and has a short computing time and low 

memory requirement. It’s capable to evaluate the SoH of various type of electric 

vehicles under different charging strategies. The short computing time and low memory 

needed for the SoH estimation also demonstrates its potential for practical use. 

Moreover, the clustering analysis is presented, which provides SoH comparison 

information of certain EV to that of EVs belonging to same type. 
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Nomenclature  Abbreviations 

c_stat Charging state  DVA Differential voltage analysis 

dq_time Data acquisition time  EMD Empirical Mode Decomposition 

General_alarm General fault level of automobile  EV Electric vehicle 

max_alarm_lvl Level of automobile failure  IC Incremental capacity curve 

max_cell_volt Maximum cell voltage in battery 

pack 

 ICA Incremental capacity analysis 

max_temp Maximum temperature of battery  IMF Intrinsic mode function 

min_cell_volt Minimum cell voltage in battery 

pack 

 NDANEV National Big Data Alliance of 

New Energy Vehicles 

min_temp Minimum temperature of battery  NEV New Energy Vehicle 

mileage Vehicle mileage  PDE Partial Differential Equation 

NaN Missing data point  RUL Remaining useful lifetime 

speed Vehicle speed  SoC State of charge 

status Vehicle state  SoH State of health 

t_current Battery pack current    

t_volt Battery pack voltage    

vid EV number    

 

 

1. Introduction 

Electric mobility is considered a promising option to address the environmental 

issues and emissions in the transportation sector [1-2]. Important indicators for the 

performance of electric vehicles include the state-of-health (SoH) and the remaining 



useful life-time (RUL) of the battery, which have great importance to the operational 

security of EVs [3-4]. Accurate SoH estimation is important to the timing of 

decommissioning the battery, typically set to 80% of the rated value (SoH=80%) [5]. 

The RUL provides direct indication of the remaining useful lifetime or mileage, i.e., 

how soon the EV battery will reach the 80% SoH limit [6].  

Estimation of the RUL is often based on analyzing the SoH trajectory and the 

historical EV driving data, for which reason estimation of the SoH plays a central role 

here. There are several approaches to evaluate the battery SoH, which can be divided 

into the following categories: Physical models, empirical models, differential 

voltage/incremental current analysis (DVA/ICA) and data-driven approaches [7-8]. The 

physical models are based on mathematical models describing the battery dynamics of 

internal reactions in the electrodes and on their surface yielding high accuracy [9], but 

often facing main challenges in practical applications due to model complexity and 

parameter identification [10]. Empirical models employ adaptive algorithms based on 

empirical battery models such as the equivalent circuit model [11-12] and reduced 

electrochemical model [8]. These models can easily be applied to online SoH 

monitoring, but the algorithm development often requires profound experimental 

validation and debugging to provide adequate accuracy [8]. Another type of empirical 

models includes using a predefined narrow set of experimental data for better model, 

but their accuracy is limited to similar conditions than the test data [13].  

 

In data-driven approaches, which is also the main theme of our work, pre-

knowledge of the battery chemistry or dynamics is not necessary, but just collecting 

aging data of the battery is required [14-16]. Deep learning methods such as the 

convolutional neural network for estimating the battery capacity could be used based 

on battery voltage, current and charge capacity during partial charge cycle [17]. In 

another approach, SoH was estimated based on charging voltage curves within a fixed 

range [18]. Gaussian process regression models have also been used for SoH evaluation 

[19-21]. Support vector machine and short-term current pulse have also been used for 

this purpose [22]. A common feature for above-described methods is building a 



relationship between the battery capacity information and extracted health features 

using machine learning or other data processing methods, which enable to determine 

the current battery capacity and hence also the SoH.  

 

The main problem with the data-driven models to estimate the SoH in practical 

conditions is the requirement of training data on battery capacity and health feature 

information, which is not available in EVs as the battery is seldom fully cycled and thus 

the capacity status is unknown. In the DVA/ICA method, the peak position, amplitude 

and envelope area of the incremental capacity (IC) curve well correlate with the battery 

capacity for different cycles [23-27]. In the traditional incremental capacity analysis 

(ICA) method, the voltage, current and charging time of the charging process vis-a-vis 

the corresponding battery capacity are used as the training data for building the peak-

capacity relationship [23-24]. Thus, the battery capacity and the SoH can be estimated 

as long as the latest peak information is available. However, in practice the EVs 

charging process is very discontinuous, and not following a 0 to 100% SoC pattern 

meaning that the battery current capacity is unavailable unlike the voltage, current and 

charging time. Moreover, as the sampling frequency is not constant this would lead to 

a discontinuous battery voltage. Therefore, the traditional ICA method is not applicable 

to real world EV driving data analysis. Our work strives to will this gap through a novel 

discrete incremental capacity analysis method. The physical meaning of this method is 

similar to that of the ICA, i.e., the voltage plateaus on the incremental capacity curves 

can be transformed into easily identifiable peaks, which reflects the electrochemical 

reaction of electrodes [7-8]. In the proposed method, the battery SoH is described by 

the ratio of the current charging capacity increment to that at the initial time, which 

would not be influenced by a discontinuous charging process and battery voltage. Also, 

the proposed method can evaluate the health status of various types of vehicles under 

different charging strategies. Moreover, a clustering analysis is presented, which 

provides a SoH comparison of the same type of EVs. 

The rest of this paper is organized as follows. Section 2 briefly describes the 

research method and data processing. The discrete incremental capacity analysis is 



presented in Section 3. Section 4 discusses the SoH estimation and prediction as well 

as the calculation time and memory usage. Section 5 presents the clustering results. 

Section 6 summarizes the main result and provides the concluding remarks. 

 

2. Data processing 

 

In this paper, discrete incremental capacity analysis is employed to analyze the 

state of health of the EV battery. The main steps of the proposed method are shown in 

Fig.1. To estimate and predict the SoH at given conditions (section 4), data processing 

will be necessary to select and split data at suitable charging stage (section 2). In the 

discrete incremental capacity analysis process (section 3), new blank data will be firstly 

created and then NaN data point will be filled for convenience of analyzing the 

incremental capacity information. Finally, clustering of EVs belonging to the same type 

is carried out (section 5).  

 

 

 

Fig.1. Flow chart of SoH estimation and prediction using discrete incremental capacity 

analysis. 



 

2.1 Data preprocessing 

The driving data is provided by the National Big Data Alliance of New Energy 

Vehicles (NDANEV) [28] and collected from the National Monitoring and 

Management Platform for New Energy Vehicles (NEVs). In this paper, we mainly use 

data from 9 electric vehicles (Car#1-Car#9) belonging to 4 EV types to illustrate how 

the discrete incremental capacity works. Table 1 shows a typical driving data sample 

(Car #1), i.e., raw data, some problems need to be mentioned as follows, making the 

implementation of traditional ICA unrealistic. 

• Data is unordered and switches between startup (‘status’=1), flameout (‘status’=2) 

and other stages (‘status’=3); 

• Some mileage, voltage and current data points are missing (NaN); 

• The time interval between time points varies;  

• The voltage is discontinuous with a minimum change of 0.1V due to the accuracy 

of the voltage measurement (0.1V). 



Table 1.  Driving data sample of Car #1. 

Note: vid represents the EV number (Car1~9 in this study); daq_time is the data acquisition time; status is the vehicle state (1:EV startup stage, 

2:EV flameout stage, 3:other stages); c_stat is the charging state (1:parking charging stage, 2:brake charging stage, 3:uncharged stage, 4:charging 

completed stage); t_volt is the battery pack voltage; t_current is the battery pack current; max/min_cell_volt is the maximum/minimum cell voltage 

in the battery pack; max/min_temp is the maximum/minimum temperature of the battery;  max_alarm_lvl and general_alarm represent the battery 

operational state, where 0 means everything is fine.

vid daq_time status c_stat Speed 
(km∙h!") 

Mileage 
(km) t_volt/V t_current 

(A) soc max_cell 
_volt (V) 

min_cell 
_volt (V) 

max_ 
temp 
(℃) 

min_ 
temp 
(℃) 

max_ 
alarm
_lvl 

general 
_alarm 

1 2018/04/29/15/34/57 1 4 1.7 8280 396.5 9.8 100 4.136 4.125 26 24 0 0 
1 2018/04/29/15/36/17 1 3 10.1 8280 395.2 15.6 99 4.123 4.112 26 25 0 0 
1 2018/04/29/15/38/16 1 3 44.6 8282 392.7 35.2 98 4.097 4.085 27 25 0 0 
1 2018/04/29/15/40/16 1 3 22.9 8283 392.2 31.5 97 4.091 4.08 26 25 0 0 
1 2018/04/29/15/40/46 1 3 45.6 8283 390 74.1 97 4.073 4.059 27 25 0 0 
1 2018/04/29/15/40/26 1 2 34.7 8283 393.7 -9.1 97 4.106 4.094 26 25 0 0 
1 2018/04/29/15/40/56 1 3 10.1 8283 393.2 4.4 97 4.1 4.089 27 25 0 0 
1 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 
1 2018/04/29/16/19/39 3 3 0 8289 389.7 0 94 4.065 4.054 28 26 0 0 
1 2018/04/29/16/20/19 3 3 0 8289 389.7 0 94 4.065 4.054 28 26 0 0 
1 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 
1 2018/04/30/13/28/18 1 3 0 8290 388.5 8.2 93 4.051 4.043 29 28 0 0 
1 2018/04/30/15/21/09 2 1 NaN NaN 388.5 -8.2 91 4.05 4.041 31 30 0 0 
1 2018/04/30/15/21/19 2 1 NaN NaN 388.5 -8.1 91 4.05 4.041 31 30 0 0 
1 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 



Therefore, discrete incremental capacity analysis is proposed, but this method will 

require preprocessing of the data to form an appropriate data set. First, the raw data is 

sorted in ascending order to time (daq_time). Then, the faulty data is deleted. The data 

recording shown in Table 1 includes three types of voltage data: battery pack, maximum 

cell, and minimum cell voltage.  To choose the appropriate voltage for the discrete 

incremental capacity analysis, a correlation analysis of the data was performed shown 

in Fig.2. The Pearson correlation coefficient of the three voltages is one, indicating that 

they are highly correlated and any of them can be used. Considering that the cell with 

maximum or minimum voltage change during the operational stage, the battery pack 

voltage was chosen for the analysis. 

 
Fig.2. Parameter correlation map of measured data. Voltage= battery pack 

voltage, Vmax/Vmin= maximum/minimum cell voltage. 
 

2.2. Selecting and splitting data 

In this part, the raw data is selected and split with the purpose of creating an 

appropriate data set. First, the following clarifications for definitions are provided: 



• ‘data’ represents the whole EV information recorded at a certain time, i.e., each row 

in Table 1; 

• ‘data point’ represents the specific information involved in data such as voltage, 

current and mileage; 

• ‘segment’ represents the continuous pieces of data formed after the selecting and 

splitting process; 

• ‘blank data’ represents the created new blank data appearing mainly in Section 3.1; 

• ‘block’ represents the continuous piece of data in the segment appearing mainly in 

Section 3.2. 

 

Selecting data  

After the data preprocessing, the raw data was selected according the ‘status’ value 

with aim of selecting the continuous charging segments, i.e., ‘status’=2, shown in Fig.3 

(a). If the amount of data in a segment is less than 10, which indicates the extracting 

valid information from this segment is limited, this charging segment will be discarded. 

There is no definite limitation on the amount of data above, but 10 was found 

appropriate as the larger the number, the more segment will be discarded. On the other 

hand, the smaller the number the less data is involved in a segment meaning that limited 

information could be extracted in the future. Taking Car #9 as an example, the charging 

segments formed after selecting is 118. 

 

Splitting data for first time 

In the splitting step, if the time intervals of data in the segment formed after the 

selecting process are less than 300s, the segment remains the same. Otherwise, the 

segment will be split for data with time intervals greater than 300s shown in Fig.3 (b). 

This time interval threshold was set to avoid the following situations: 1) the EV has 

physically gone through the parking charging stage-startup-parking charging stage 

during this time interval and without recording data of the short startup process in which 

case the data in this segment is all charging data, but within two charging period; 2) the 

data in the segment is actually recorded during the same charging period, but the larger 



time interval (>300s) results in data discontinuity. After the splitting process, segments 

with amount of data less than 10 will be discarded. Taking Car#9 again as an example, 

the charging segments formed after the splitting has grown from 118 to 130. 

 

Splitting data for second time 

In the second splitting, the mode of time interval in each segment formed after first 

splitting is calculated. Taking the 1st and 2nd segment as an example, the modes of time 

interval for the 1st and 2nd segment are 10s and 2s, respectively, marked with a red circle 

in Fig.3(b), then each segment will be split for second time according to the algorithm 

given in Table 2. The reason for splitting data according this method is to ensure the 

amount of blank data needed to be created is less than 10, which will be discussed 

detailly in the section 3. Taking Car#9 for example, the charging segments formed after 

second splitting has grown to 150 from 130. 

 

Table 2. Pseudocode of the second splitting of data. 

Calculating the mode of time intervals in each segment: 

If mode ≥  10: each charging segment will be split further for data with time 

interval > 100s; 

If mode < 10 : each charging segment will be split further for data with time interval 

≥ 10s; 

 

After selecting and splitting the data, a series of successive charging segments has 

been forced satisfying the following criteria: 

• Each segment is charging stage data, indicating status=2 and c-stat=1/4. 

• The time interval between daq_time in each segment is < 10s or <100s. 

• All data in the same segment has the same mileage belonging to the same charging 

period.  



Fig.3 An example of data processing. (a) Selecting data, (b) first splitting of data, (c) 

second splitting of data. 

 

3. Discrete incremental capacity analysis 

3.1 Creating new blank data 

After processing the raw data, a series of segments were formed. To ensure that 

the time intervals between the data in a segment are the same (equal to 1s or 10s), new 

blank data are added into these segments with the algorithm given in Table 3 and also 

shown in Fig.4. 

Table 3. Pseudocode of creating new blank data. 

Calculating the mode of time intervals in each segment: 

If mode ≥ 10: Creating blank data with time interval equal to 10s and keeping the 

first and last data unchanged; 

If mode < 10: Creating blank data with time interval equal to 1s and keeping the first 

and last data unchanged; 

Add the segment data into the created blank data based on time proximity; 



 
Figure 4. An example of creating new blank data with time interval = 10s. (a) Data 

segment achieved after data processing; (b) creating new blank data. 

 

3.2 Filling NaN data point 

In this part, the NaN data points required for the discrete incremental capacity 

calculation are filled, especially the mileage, current and voltage information. 

Filling mileage data point 

As mentioned before, some mileage, voltage and current data points are missing 

in the raw data. Also, the mileage of new blank data must be NaN. Therefore, it’s 

necessary to fill the mileage with an algorithm shown in Table 4. 

Filling current data point 

Considering that the charging process of EVs is basically continuous and smooth, 

the NaN current data point follows the previous current value shown in Fig. 5. 

Filling voltage data point 

The voltage filling is mainly divided into two steps. The first part is the locking 

voltage, indicating that if the voltage before and after the NaN block is the same, the 



voltage of the NaN block keeps the same. The second part is the average distribution, 

meaning that filling the half of the NaN block with the previous voltage value and the 

remaining NaN with the latter voltage shown in Fig.5. 

 

Table 4. Pseudocode of filling mileage data point 

Check the mileage data point in each segment: 

If at least one mileage data point is existing for the segment:  

Filling the entire segment with this mileage value; 

If mileage data is NOT existing for the segment:  

Return to raw data, find the time point closest to the first count time of this 

segment, and fill the entire segment with the mileage of that moment in the raw 

data  

 

 

Fig 5. The filling strategy of NaN current and voltage data point. 

 



3.3 Calculating discrete incremental capacity 

In this part, the incremental capacity of each voltage in the segment is analyzed, 

before which the charging capacity is calculated according to Eq. (1) and shown in Fig. 

6 (Table A): 

Charging	capacity(.) = 	Charging	capacity(. − 1) + ∆capacity     (1) 

∆capacity	=	 − 	(t_current(.)	+	t_current(.-1)	)	/	2	 

																																																							×	(Charging	time(.) − Charging	time(. − 1))   (2) 

where i represents the ith of daq_time, ∆capacity	is the charging capacity increase 

calculated using the average current of the i-1 and i multiplied by the time interval 

between i-1 and i. In the project, the charging current is negative so that the minus sign 

is adapted in Eq. (2) to represent the current value. 

Then, the voltage is adjusted to enhance the compatibility of this method. For 

example, if the EV is dominated by fast charging, i.e., the voltage varies much, the 

voltage precision can be set to 1V. On the contrary, if the EV is dominated by slow 

charging, i.e., the voltage varies slowly, the voltage precision can remain unchanged 

(0.1V). The selection of the voltage precision has downward compatibility, i.e., the 

voltage precision adjustment of fast charging can also solve the problem of slow 

charging. Figure 6 (Table B) shows how the voltage precision is adjusted under the fast-

charging condition. The charging capacity must be positive as long as the t_current is 

negative, i.e., the EV is charging and not discharging. The initial subtraction of 12 As 

in Fig. 6 (Table B) is due to the positive current of 2.4A (the third data row in t_current 

column in Table A). The positive current in the initial charging process is somewhat 

strange and could be explained by a delay or an error in the current sensor during the 

initial charging process when the EV is switching from the discharge state to the 

charging state leading to a positive current at the initial charging process. This error 

only occurs sporadically at the initial charging moment. Moreover, the initial 

subtraction capacity will be compensated in the following normal charging process, 

resulting in negligible calculation error in the incremental charging capacity of each 

voltage. 

After adjusting the voltage precision, the discrete incremental capacity of each 



independent voltage can be analyzed by calculating the capacity difference between the 

first and the last capacity value in the segment with the same voltage shown in Fig.6 

(Table C). Moreover, the discrete incremental capacity information of the first and last 

voltage in each segment is discarded because of the incomplete charging process, e.g., 

incremental capacity information of 322V and 328V in Fig.6 Table C. 

 
Fig 6. Discrete incremental capacity calculation. Sample segment (Table A), segment 

after voltage precision adjustment (Table B), discrete incremental capacity information 

of the segment (Table C). 

 
3.4 Integration of discrete incremental capacity information 

 

In the previous sections, the raw data was processed into many charging segments 

and the discrete incremental capacity information of each segment was obtained. The 

voltage span of the discrete incremental capacity information in each segment is 

different because of the different charging time, which makes it difficult to form a 

completed discrete incremental capacity curve. As a result, the discrete incremental 

capacity information of the five segments is put together to increase the voltage span.  



Henceforth, the discrete incremental capacity curves of each Car are formed. Each 

curve represents the incremental capacity variation of each voltage during the charging 

process under a certain mileage condition. These curves are not smooth and also 

includes some sensor and data processing errors, for which reason a Gaussian filter is 

applied. Taking Car #9 as an example shown in Fig. 7, Fig. 7 (a) is the discrete 

incremental capacity curves and Fig. 7 (b) shows the Gaussian filtering result.  

 

 
Fig 7. Discrete incremental capacity curves of Car#9. (a) The discrete incremental 

capacity curve; (b) the discrete incremental capacity curve after Gaussian filtering, (c) 

the discrete incremental capacity curve after deleting process. 

 

In order to improve the accuracy of the SoH estimation, the curves with a voltage 

span less than 50% of the maximum value are deleted. The discrete incremental 

capacity curve after the deleting process is shown in Fig. 8. The 9 Cars are belonging 

to 4 different EV types, i.e., type 1-type 4. The types (1-4) indicate different features, 

mainly the curve peaks and scope of voltage variation, i.e., Cars with the same type 

have similar curves, which makes a clustering analysis possible. 

 



 
Fig 8. Discrete incremental capacity curves of Car#1-#9.  

 

4. SoH estimation and prediction 

 

In this section, the SoH index will firstly be determined based on the discrete 

incremental capacity curves formed in previous Section. Then, the SoH will be 

estimated based on the given data. Moreover, the SoH after six and twelve months will 

be predicted, indirectly representing a RUL assessment. The computational resource 

assessment is also presented to demonstrate the superiority and feasibility of this 

method. 

 
4.1 Determining the SoH index 
 

In the previous section, the discrete incremental capacity curves of each Car were 

formed. By adding the incremental capacity of each voltage points to a curve form, the 



battery capacity of the EV under the corresponding mileage conditions, i.e. health state, 

could be estimated. Taking Car # 9 as example, the 1st and 2nd curve shown in Fig. 9 (a) 

stand for the incremental capacity variation of voltage point during charging process 

with mileage of 91501 km and 92342 km, respectively. The shape of the two curves is 

somewhat different, i.e., the incremental capacity versus voltage and the voltage span 

have changed because of the mileage increase and capacity fade leading to a difference 

in the cumulative incremental charging capacity of each voltage point on the curve. 

Here, this cumulative incremental capacity difference of the EV during the charging 

process under different mileage conditions is used to represent the SoH variation. The 

SoH is determined by summing up the incremental capacity of the overlap voltages (Fig. 

9b) as follows: 

 
SoH(%&')
SoH(%) = Capacity(%&')

Capacity(%)                                           (3) 

 

where Capacity = sum of incremental capacity of overlap voltage points in each curve. 

 

 
Fig 9. Overlap voltages of discrete incremental capacity curves. (a) The 1st and 2nd curve 

of Car#9, (b) overlap voltage of two curves. 

 



4.2 SoH estimation 
 

Once the discrete incremental capacity curves are formed, the relationship between 

the SoH and mileage can be formed through Eq. (3). Taking Car #9 as example, the 

SoH variation with the increase of mileage is shown in Fig. 10 (a). The SoH curve 

doesn’t continue to fade as the mileage increases, but shows some stagnation. This 

phenomenon is, however, consistent with prior knowledge as the EV battery capacity 

must decrease with the mileage increase, which is a long-term trend, but some seasonal 

or cyclical factors such as seasonal temperature and driving habits will also inevitably 

cause small short-term fluctuations in the EV capacity. Therefore, the Empirical Mode 

Decomposition (EMD) method [29], which can be used for decomposing nonlinear, 

multicomponent signals, is employed here to decompose the SoH curve to extract the 

long-term trend part (Fig. 10 (b)) and short-term fluctuation part (Fig. 10 (c)). Also, the 

temperature variation is shown in Fig. 10 (d). The trend of the temperature curve and 

short-term fluctuation curve exhibit certain similarities, i.e., the temperature change 

may be considered as one of the main factors causing short-term fluctuation in the SoH 

of this Car. However, the temperature changes don’t necessarily lead to the fluctuation 

of the SoH if the long-term trend part is strong enough.  



 
Fig 10. SoH and its decomposition for Car#9. (a) SoH curve of Car#9, (b) long-term 

trend part of SoH, (c) short-term fluctuation part of SoH, (d) temperature variation. 

 

4.3 SoH prediction 

Here, the SOH for the next 6 and 12 months will be predicted based on the SoH 

estimation results. First, the average daily mileage increase is calculated using the given 

data, and then the mileage after 6 and 12 months is estimated. The prediction of the 

SoH is based on building the SoH curve from the end mileage at 6 and 12 months. 

The SoH curve was decomposed into long-term trend and short-term fluctuation 

part using the EMD. The numerical characteristics of these two parts are different, i.e., 

the long-term trend part is actually a nonstationary series with a linear trend while the 

short-term fluctuation part is a nonstationary series with periodic fluctuation 

characteristics. Therefore, the Third Exponential Smoothing Method (Holt-Winters) 

[30] and the Second Exponential Smoothing Method [30] are employed to predict the 

short-term fluctuation and long-term trend part of the SoH for the next 6 and 12 months. 



Figure 11 shows the long-term and short-term part prediction result of Car#9. The 

prediction results of the long-term trend (Fig. 11a) and the short-term fluctuation part 

(Fig. 11b) show linearity and volatility, which is consistent with their own data 

characteristics. By adding these two parts together, the SoH estimation and prediction 

of Car#9 could be realized shown in Fig. 11(c). Figure 12 shows the SoH estimation 

and prediction results for all 9 Cars. On one hand, the SoH of all the 9 Cars shows a 

decreasing trend with increasing of driving mileage. On the other hand, these SoH 

curves show a varying degree of volatility indicating the effects of temperature, driving 

habits and charging habits on the SoH drop rate. 

 

 
Fig 11. The SoH prediction of long-term and short-term part of Car #9. (a) Prediction 

of long-term trend part, (b) prediction of short-term fluctuation part, (c) prediction of 

SoH for Car#9. 

 



 

Fig 12. The SoH prediction results for Cars #1-9. 

 

4.4 Computational resources and time  

The method used in this work was built with explicit physical significance, i.e., 

the incremental capacity of the voltage actually reflects the electrochemical behavior of 

the electrode materials during the charging process yielding a high computational 

efficiency as complex algorithms typical for black-box modelling could be avoided. 

The computational time and peak memory needed for each car is given in Table 5. 

Matlab 2019b © was used in the calculations running on Intel(R) Core (TM)i7-9700 

CPU @ 3.00GHz with RAM 16.0GB.  

The SoH curve is formed by successively analyzing the sum of the charging 

capacity of overlap voltage of discrete incremental capacity curves. As listed in Table 

5, taking Car #9 as an example, the number of discrete incremental capacity curves is 

90, indicating that the SoH curve of Car#9 is formed with 90 SoH values. The total 



computer time was 31s and the peak memory used was 207Mb. Therefore, the time and 

peak memory needed for each curve, i.e., for each SoH update is 0.3s and 2.3Mb.  

Taking all 9 Cars into consideration, the average time and memory for the SoH 

update was 1.3s and 4.3Mb. Considering the nearly 5 million EVs in China as an 

example, and the SoH of these EVs were updated 100 times, the total computer time 

and memory needed would be 130s and 208 Gb only, demonstrating the great potential 

of this method. 

 

Table 5. Computational time and peak memory needed for each car. 

ID 
Number of 

data points 

Number 

of IC 

curves 

Computer 

time (s) 

Peak 

memory 

(Mb) 

Time for 

per curve 

(s) 

Peak memory 

for each 

curve (Mb) 

Car1 450596 65 30.0 55.1 0.5  0.8 

Car2 374026 48 25.4 45.8 0.5  1.0 

Car3 408461 20 41.1 128.3 2.1 6.4 

Car4 560297 82 35.5 68.5 0.4 0.8 

Car5 1644545 115 55.1 201.7 0.5 1.8 

Car6 8430173 53 265.7 1031.1 5.0 19.5 

Car7 605488 37 49.1 128.3 1.3 3.5 

Car8 1235292 65 62.9 152.6 1.0 2.3 

Car9 1688715 90 31.0 206.5 0.3 2.3 

    Average 1.3 4.3 

 

 

5. Clustering analysis 

A clustering analysis is performed to compare the SoH of the EV to that of other 

EVs with same type under certain mileage conditions. The clustering result can help the 

driver to know if the Car is performing better or worse than the other Cars for the same 

mileage.  



The 9 Cars represent 4 different types of EVs (Type 1-4), i.e., different EV 

manufacturers, different battery systems and different endurance. In the following, Type 

1 (including Car#3, Car#5, Car#7, Car#9) is taken as an example to demonstrate the 

clustering process aiming at analyzing the SoH level of Car#3 relative to Car#5, Car#7 

and Car#9 under the same mileage condition. The discrete incremental capacity curves 

of Car#5, Car#7 and Car#9 are shown in Fig. 13(a). Each curve represents the 

incremental capacity variation of voltage during the charging process at a certain 

mileage. It may happen that three curves in Fig. 13(a) corresponds to one certain 

mileage. Therefore, the average of these three curves is taken to represent the 

incremental capacity level of the voltage at that mileage situation regarding this type of 

EVs. The discrete incremental capacity curves of Car#5, Car#7 and Car#9 after the 

averaging process is shown in Fig. 13(b).  

Taking the first curve of Car#3 as an example and considering it as the target curve 

with 110492 km. Then the curve with mileage closest to 110492 km is selected from 

Fig. 13(b) as the average curve representing the incremental capacity level of Car#5, 

Car#7 and Car#9 under same mileage situation. The SoH calculation is done by 

analyzing the target curve and average curve using Eq. (2). Then, the SoH change of 

Car#3 is compared with Car#5, Car#7 and Car#9 at 110492 km expressed in Eq. (4), 

and shown by the red dot in Fig. 13(c). The SoH change of Car#3 at 110492 km is about 

0% indicating that the SoH level of Car#3 is actually similar to that of the other Cars at 

current mileage. 

 

=>?	@ℎBCDE		BF	@GHHECF	I.JEBDE = 	
!"#(%&'()%	+,'+)).!"#(&+)'&()	/,'+))

!"#(&+)'&()	/,'+))     (4) 

 

With increasing mileage, the SoH change of Car#3 for different mileage fluctuates 

around 0%, e.g., -5% at ca. 112000 km, +5% at 113000 km etc., indicating that on long 

term the SoH of Car#3 is close to the average SoH level of this type of Cars. 

After the clustering analysis, the discrete incremental capacity curves of Car#3 are 

added into that of the Car#5, Car#7 and Car#9 to update the discrete incremental 



capacity curves of Type 1 shown in Fig. 13(d, e). The implication of Figs. 13(d, e) is 

similar to that of Figs. 13(a, b). The only difference is that Figs. 13(d, e) include the 

discrete incremental capacity information of Car#3, which can be considered as an 

update of Figs. 13(a, b). If more Cars of Type 1 were available, e.g., Car#10, the 

clustering analysis of Car#10 could easily be performed by comparing it with Car#3, 

Car#5, Car#7 and Car#9 based on Figs. 13(d, e). 

 

 

Fig 13. The clustering analysis of Car#3, #5, #7 and #9. (a) Discrete incremental 

capacity curves of Car#5, Car#7 and Car#9, (b) discrete incremental capacity curves of 

Car#5, Car#7 and Car#9 after averaging process, (c) clustering analysis result of Car#3 



to Car#5, Car#7 and Car#9, (d) discrete incremental capacity curves of Car#3, Car#5, 

Car#7 and Car#9, (e) discrete incremental capacity curves of Car#3, Car#5, Car#7 and 

Car#9 after averaging process. 

 

6. Conclusions 

In this paper, a novel state of health estimation method for EV batteries is proposed 

based on the discrete incremental capacity analysis. This method provides a new 

direction for estimating the battery health with great robustness, high compatibility, 

short computing time requirement and low memory need. 

Taking the 9 Cars in this paper as an example, it’s clear that the SoH of EVs doesn’t 

continue to fade linearly as the driving mileage increases, but shows varying degrees of 

stagnation and fluctuation, which could be considered as an effect from the seasonal 

temperature variation, driving habits and charging strategy. The computer time and 

memory needed for SoH estimation of 5 million EVs in China would be 130s and 

208Gb only, also demonstrating the potential of commercialization of this method in 

the future. The clustering process presented here provides useful information to the EV 

driver on the SoH situation compared to other EVs with the same mileage. 
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