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ABSTRACT
Streaming 360° videos to a head-mounted display (HMD) client is
challenging due to their high network resource consumption and
computational load. This is due to the use of gaze point prediction
or image saliency features from the field of view (FoV) since, in
real-time scenarios, FoV extraction is computationally demanding.
We propose a functional gaze prediction system that addresses
these issues by relying on a tiling scheme for gaze prediction. We
condition gaze point prediction on virtual reality (VR) content and
long short-term memory (LSTM)-encoded eye movement history.
Further, we encode image flow and saliency maps of RGB images
via VGG16, using a convolutional neural network (CNN). Future
gaze points are then predicted using a novel sinusoidal encoding
technique. In experiments, our tile-based approach outperforms
state-of-the-art FoV-based schemes in terms of computational load
and predicted gaze position.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; Virtual reality; Mixed / augmented
reality;Mobile devices; •Computingmethodologies→ Prob-
abilistic reasoning; Mixed / augmented reality.
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Figure 1: HMD rotation in 360-degree video

1 INTRODUCTION
Driven by technical and algorithmic advances, Augmented Reality
(AR) and Virtual Reality (VR) are increasingly important in per-
vasive and ubiquitous computing domains. Particularly, the AR
market is expected to reach 70−75 billion by 2023 1 while the VR
market may exceed 120 billion by 2026 2. Many AR and VR applica-
tions involve the streaming of 360-degree videos, only part of which
is actually presented to an AR/VR user in her field of view (FoV) (cf.
Fig. 1). A person explores such scenes through a set of consecutive
fixations of the gaze, which indicate interest or attention in a scene.
Therefore, gaze point is considered as a key element in first-person
vision [1].

In computer vision, first-person view perspectives are promi-
nent. It can be found in applications, such as ubiquitous smart
space [2], human–robot interaction (HRI), e-health, social analysis,
group identification [3], handled objection recognition [4], video
summarizing [5] and editing [6], event recognition [7], augmented
reality [8], or virtual reality [9].

In these domains, predicting gaze information (Fig. 2) improves
the user experience through the pre-allocation of VR rendering
resources.

Recent advances in technology, in particular, head-mounted dis-
plays (HMDs), challenge the existing algorithms in the field.

Without knowledge about the field of view (FoV), 360◦ high-
definition video applications require streamed full panorama scenes
that contain both visible and invisible parts of the FoV, thus overly
1https://www.trendforce.com/presscenter/news/20151204-9123.html
2https://www.globenewswire.com/news-release/2020/06/15/2048254/0/en/Virtual-
Reality-VR-Market-to-Touch-120-5-Billion-by-2026-Rapid-Advancements-in-Deep-
Technology-Domain-to-Brighten-Market-Outlook-Fortune-Business-Insights.html
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Figure 2: Illustration of gaze points in a sequential scene of four time instances.

straining the bandwidth-limited network [10]. In addition, real-time
field of view (FoV) extraction, such as saliency maps, image flow,
and gaze history for gaze prediction, easily exceeds the process-
ing resources of mobile hardware, such as VR HMDs or mobile
phones [8, 11, 12].

Pre-processing the FoV into a vector of its features could signifi-
cantly reduce the computational load of extracting the FoV, salient
map, and image flow features. However, since the FoV is not known
during the encoding phase, we propose a tile-based approach that
divides frames into multiple tiles and pre-encodes them to feature
vectors. Only those predicted vectors that correlate with the FoV
are then utilized during real-time gaze prediction.

As a result, only tiles in the FoV are streamed at a high quality
and the bitrate is significantly reduced, without affecting the quality
of experience (QoE).

2 RELATEDWORK
The FoV of a person is guided by objects or stimuli of higher rele-
vance to the viewer. It is indirectly related to saliency, the aspect of
any stimulus that makes it stand out from its surroundings, such as
contrast, movement, or color. Objects of higher relevance further
draw the gaze of the viewer. Both saliency and gaze have been
predicted in the literature, and in particular, studies on egocentric
videos are related to our work.

In pervasive and ubiquitous computing domains, gaze-point pre-
diction has been applied, for instance, in egocentric video [1] by
exploiting the implicit behavior cues observed from the wearer
of a camera system or for the automatic inference of relevance of
real-world objects [13]. To support the experience of head-mounted
displays, Gaze prediction was further utilized for the estimation of
gaze-estimation error [14] as well as for continuous self-calibration
in eye-gaze tracking in head-mounted VR-systems [15]. Recently,
Santini et al. presented a slippage-robust and glint-free gaze esti-
mation for pervasive head-mounted displays [16].

2.1 Saliency Prediction
Saliency detection has been extensively investigated in computer vi-
sion. It comprises bottom-up approaches that use low-level features
such as color and scene orientation [17–20], top-down approaches
based on high-level features such as scene context [21–24], and
hybrid approaches [25–28]. However, few studies address gaze pre-
diction for VR and, in particular, saliency in 360◦ video [11]. The
authors in [29] studied the relationship between salient objects
and the human brain and found that the first cortical visual area

(V1) interacts with the bottom-up saliency signals, the secondary
visual cortex (V2) interacts with top-down saliency signals, and the
fourth human visual field map (hV4) shows a convergence between
top-down and bottom-up signals. Hence, saliency maps are efficient
information for an accurate gaze prediction system. For instance,
for static VR images, [30] studied the viewing behavior and saliency
in a VR scene and predicted saliency based on head and gaze data as
well as on user behavior. In contrast, [31] exploited a shallow and a
deeper convolutional neural network (CNN) for saliency prediction
in a regression rather than a classification approach. The authors
employed a loss function to measure the distance between pre-
dicted and ground-truth saliency maps. The approach was further
improved in [32] by addressing the training of the network on an
adversarial loss function. The two employed networks predicted the
saliency map and identified whether the predicted map resembled
the ground truth.

Our approach follows this successful solution in our saliency
encoder component. An example for salient object extraction from
VR videos is [33]. An agent that follows the scene foreground and
viewing angle selects objects in a scene before a recurrent neural
network (RNN) predicts the main object and, finally, the FoV.

2.2 Gaze Prediction in Egocentric Videos
Despite the great advancement in image and video processing,
only a few authors have focused on gaze prediction in egocentric
videos [34].

The majority of existing work focuses on gaze prediction using
bottom-up models [35] (color, orientation, intensity, etc.) such as
in [36] [37] or top-down models (such as object context) such as
in [38] [39]. For instance, [1] proposed a gaze prediction scheme
using a random regression forest. This technique combines a user’s
head motion and hand location and evaluates it on gaze data from
eye-tracking glasses. Because the viewer’s hand is seldom involved
with objects in the FoV, this technique cannot be generalized to
HMD domains.

In [12] a novel CNN is proposed for gaze prediction based on
combining object position, head velocity, and saliency features. The
authors conducted their experimental dataset composed of 43 users
for dynamic scenes. However, their evaluation study remains lim-
ited in terms of objects considered in a scene. The collected data
from users consists of only free-viewing scenarios in a silent envi-
ronment, and as for moving objects, only animals were considered.
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Figure 3: Schematic view of the proposed system in a server architecture. The FoV is selected according to the gaze prediction

In [35], a temporal continuity for visual attention is presented.
Authors target accurate temporal continuity as an indicator of ac-
curate gaze prediction. An autocorrelation function is proposed
for temporal continuity evaluation. Their work was evaluated on
task-oriented conditions and a free-viewing scenario. However, this
technique can not be generalizable as it is only evaluated in VR
game scenes. In [40], a sparse coding-based saliency method was
employed for gaze prediction. The work targeted the noisiness and
computational complexity in saliency maps and used canonical cor-
relation analysis (CCA) to merge different image features. However,
the experiment is made based on the eye-tracking glasses dataset,
which is not enough to validate the effectiveness of this approach.

In addition, based on bottom-up visual saliency, the authors
in [41] extracted attention maps based on the camera’s rotation
velocity and how it moves. However, since the camera’s information
remains unknown, this approach cannot be applied in our case.

Recently, [8] proposed a generative adversarial neural network-
based model (GAN). Their approach consisted of deep future gaze
(DFG) to generate future frames based on a single frame, then
predicted temporal saliency maps for the upcoming seconds. The
GAN network was composed of a generator network (GN) and a
discriminator network (D). The GN constructed N frames from the
latent representation of the current frame, and N saliency maps.
The DN determined fake frames from real frames based on scene
semantic and foreground/background coherence.

Another recent work by [11] proposed to predict viewer behavior
using a long short-termmemory (LSTM) network in the current FoV.
Then, they fed saliencymaps in the current FoV to a CNN for feature
extraction. The authors merged the features of gaze information
and saliency maps to estimate the gaze displacement between two
consecutive moments. However, due to long processing times and
latency, it is not practical for deployment in real-world cases.

We propose a lightweight tile-based gaze prediction method us-
ing video content features and gaze history to predict gaze displace-
ment. Our system can be utilized for any gaze prediction scheme.
We aim to significantly reduce the processing time from FoV ex-
traction. We also propose a novel sinusoidal encoding that shows
a significant improvement over angle normalization-based encod-
ing. To make our system realistic and more challenging, we ensure
the diversity of scene content in our benchmark dataset (indoor,
outdoor, moving objects, etc.).

This is the first work that targets tile-based gaze prediction along
with saliency maps. In contrast to other schemes, our system can
be deployed on the client side. Experiments show the efficiency of
our system in terms of prediction accuracy, computational load,
and time cost.

3 FUNCTIONAL GAZE PREDICTION
Extracting the FoV in real time for gaze location anticipation suffers
from high processing load. To address this challenge, we propose
a tile-based approach exploiting saliency maps and gaze sequence
history. Our system is composed of a video content encoder, a gaze
sequence encoder, and a gaze displacement module (cf. Fig. 4).

First, we split the 360◦ video into tiles before extracting saliency
maps from each tile where 𝜈 = {𝜏1, 𝜏2, ..., 𝜏𝑛}. Each FoV is composed
of set of tiles (𝜏𝑖 ) from 𝜈 .

The image flow is then derived for each pair of consecutive
tiles. Different frame representations are further encoded in the
video content encoder using a VGG16 [42] CNN. On the obtained
feature vectors, we perform the element-wise product, while the
gaze history points are encoded separately using an LSTM.

Finally, features from the CNN and LSTM (gazemodule and video
content module) are concatenated and fed into a fully connected
layer for gaze prediction. From these gaze points, the tiles that cover
the FoV are extracted.

When a viewer is watching a 360◦ video, we assume that videos
are uploaded to the server and have been pre-converted to tiles
based on equirectangular projection (Fig. 3). Meta-information
(video ID and gaze movement) is sent to the server. Based on this
information, at time 𝑡 , the decision engine predicts the gaze at time
𝑡 +1. Only those tiles that cover the field of view (FoV) are streamed
with high quality, while tiles outside the FoV will be of low quality.

3.1 Gaze History Encoder
We encode viewer gaze history points by computing the horizontal
viewing direction, the yaw (0◦ to 360◦) and the vertical viewing
direction, the pitch (0◦ to 180◦) as

𝑌𝑎𝑤 =
𝑌𝑎𝑤 (𝑟 ) + 𝑌𝑎𝑤 (𝑙)

2
(1)

𝑃𝑖𝑡𝑐ℎ =
𝑃𝑖𝑡𝑐ℎ (𝑟 ) + 𝑃𝑖𝑡𝑐ℎ (𝑙)

2
, (2)
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Figure 4: The proposed tile-based gaze prediction architecture. The output of the Gaze sequence encoder and the video content
encoder is combined as input for the Gaze displacement module

where r is the right eye and l is the left eye coordinate.
We select 10 frames as the length of our sequence and encode

the history of yaw [𝑌𝑎𝑤𝑡−𝑁+1, ..., 𝑌𝑎𝑤𝑡 ] and, likewise, of pitch
[𝑃𝑖𝑡𝑐ℎ𝑡−𝑁+1, ..., 𝑃𝑖𝑡𝑐ℎ𝑡 ] using two LSTM layers with 128 neurons
each. The length of the sequence is selected by experiments.

3.2 Video Content Encoder
The prediction error experiencedwhen only gaze history is used can
be reduced by exploiting other features from the scene. Motivated
by the results obtained in [11], we consider image saliency, image
flow, and RGB to be image features.

Image Saliency: The most salient objects correlate with gaze
points [11] [43]. We calculate saliency maps with SalGan [32].
Image Optical Flow: Moving objects usually correlate with gaze

points. We compute the image flow and include the use of FlowNet
2.0 [44] on pairs of consecutive frames.

RGB Images: Viewers can freely move their heads to different
parts of the scene, results in FoV changing. It is therefore important
to maintain whole scene information.

We divide frames into tiles and feed them into the VGG16 [42]
network for feature extraction. VGG16 is known for its ability to
extract robust image features.

3.3 Sinusoidal Gaze Displacement Module
Provided with the predicted gaze direction, bandwidth consumption
can be reduced by using high-quality streaming for only those
parts of a scene that are in the FoV. We propose a novel sinusoidal
encoding for gaze prediction. The displacement module takes as
input the encoded features of video content and gaze sequence
history.

Yaw and pitch angles are converted to radian, then encoded to
Sin(Yaw), Cos(Yaw), Sin(Pitch), Cos(Pitch). A benefit of this encod-
ing is the reduced angle periodicity (e.g. -90 and 90 refer to the
same direction) (cf. Fig. 5), which eases the learning.

Since arctan expects angles from quadrants I or IV, we use atan2 3

to obtain the original angles in the radian:

Δ(𝑎𝑛𝑔𝑙𝑒𝑡+1, 𝑎𝑛𝑔𝑙𝑒𝑡 ) = atan2
[
𝑠𝑖𝑛(Δ𝑎𝑛𝑔𝑙𝑒 ), 𝑐𝑜𝑠 (Δ𝑎𝑛𝑔𝑙𝑒 )

]
(3)

3https://en.wikipedia.org/wiki/Atan2

Figure 5: Illustration of gazemovement on yaw direction. Ef-
fect of sinusoidal encoding on the angles.

with

atan2(y,x) =



2𝑎𝑟𝑐𝑡𝑎𝑛( 𝑦√
𝑥2+𝑦2+𝑥

) IF 𝑥 > 0

2𝑎𝑟𝑐𝑡𝑎𝑛(
√
𝑥2+𝑦2−𝑥

𝑦 ) IF 𝑥 ≤ 0, 𝑦 ≠ 0

𝜋 IF 𝑥 < 0, 𝑦 = 0

Not defined IF 𝑥 = 0, 𝑦 = 0.

(4)

We then obtain the predicted angles using

𝑎𝑛𝑔𝑙𝑒𝑡+1 = 𝑎𝑛𝑔𝑙𝑒𝑡 + Δ(𝑎𝑛𝑔𝑙𝑒𝑡+1, 𝑎𝑛𝑔𝑙𝑒𝑡+1). (5)

The video content features and gaze sequence encoding are trans-
formed as

Δ (𝑎𝑛𝑔𝑙𝑒𝑡+1, 𝑎𝑛𝑔𝑙𝑒𝑡 ) = 𝜉 (
{
𝑉 𝑒
𝑡+1, 𝑎𝑛𝑔𝑙𝑒

𝑒
𝑡+1

}
) . (6)

The function 𝜉 () represents two fully connected layers with 128
and 50 neurons, and mean square error(mse) as the loss function.
We predict for 1 second; however, the duration can be increased by
feeding the output of this module as input.

4 EVALUATION
We performed an experiment to validate the effectiveness of our
system where we used the MSE of the predicted gaze to ground
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(a) Tile-based and FoV-based approaches (b) w/o saliecy maps, image flow, RGB images (c) Sinusoidal and normalized encoding

Figure 6: Comparison of errors in the predicted gaze (mean squared error) for various configurations.

truth as our evaluation metric. Our system was implemented and
tested with an NVIDIA Tesla V100 Volta GPU Accelerator 32GB
Graphics Card and 128GB of RAM.

4.1 Datasets
We employed the dataset presented in [45], which comprised 57
participants (32 males, aged 19–44 yrs) watching 19 360◦ videos
with an unconstrained viewing experience where the videos were
displayed in a VR headset. All participants had a normal or corrected
vision, checked with the Ishihara test. Each participant watched
4k videos (categories indoor, outdoor, urban, people, water, rural,
nature) for a duration of 20 seconds.

4.2 Experimental Setup
We selected 11 videos for training and eight for testing, with no
overlap between videos. Videos were processed to equirectangular
projection, converted to frames using the FFmpeg software tool,
and tiled as 8x4. Flows were converted using Flownet 2.0 [44]4. We
implemented our system using the TensorFlow 2.0 framework. The
model, with sigmoid activation in the last dense layer, was trained
with stochastic gradient descent (SGD) at a learning rate of 0.01
and batch size 32.

4.3 Evaluation Metric
We computed the prediction error as the MSE of the ground truth
displacement angle (Δ𝑖 (𝑌𝑡+1, 𝑌𝑡 )) and the predicted gaze position
(Δ𝑖 (𝑌𝑡+1, 𝑌𝑡 )) (where smaller is better).

For 𝑁 frames, the prediction error was calculated as

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑒𝑟𝑟 =
1
𝑁

𝑁∑
𝑖=0

[Δ𝑖 (𝑌𝑡+1, 𝑌𝑡 ) − Δ𝑖 (𝑌𝑡+1, 𝑌𝑡 )]2 (7)

4.4 Comparison of System Components
We compare image flow, saliency maps, RGB images, and gaze
sequence encoder with their impact on the mean squared prediction
error on the yaw direction. Moreover, we compared the tile-based

4Flowiz. Available from https://github.com/georgegach/flowiz

scheme with real-time FoV extraction. For this purpose, we re-
implemented an algorithm proposed in [11]. Fig. 6a shows that our
system performed better than the FoV-based approach. Similarly,
in Table 1, the required preprocessing time of our approach was
about 3 ms, while the FoV-based approach required 47 ms for gaze
prediction.

Fig. 7a shows the benefit of combining video content features
and gaze sequence history by comparing the saliency encoder, gaze
sequence encoder, and our system.We further analyzed the saliency
encoder, gaze sequence encoder, and RGB frames, with the results
shown in Fig. 6b. Eliminating any element from our system raised
the prediction error. The saliency encoder performed better than
the saliency map and image flow alone (cf. Fig. 7b). In Fig. 7c we
show the proof that the encoding of full frames results in large
prediction errors.

4.5 Prediction Accuracy
In pose estimation [46], and image classification [47], the prediction
of displacement achieved better results than direct values. Gaze
prediction in [11] confirmed the effectiveness of the displacement
approach. We proposed a novel technique based on sinusoidal en-
coding, and Fig. 6c indicates the efficiency of our displacement
encoding scheme.

4.6 Computational Load
We investigated the computational load of a server-based deploy-
ment (cf. Fig. 3). The reported prepossessing time included the
retrieval of future tiles. Table 1 presents the preprocessing time on
the server, showing that our scheme required approximately 15x
less time than the FoV scheme proposed in [11].

We obtained this figure by running this experiment multiple
times and taking the average preprocessing time. These results
prove the effectiveness of our system when deployed on the server,
and it smoothes the transition of tiles and improves the user expe-
rience.

We further evaluated the RAM and CPU usage rates to compare
our approach with the FoV in real-time. To realize this experiment,
we ran both approaches for simulation of one video that lasts for
66 seconds, then we reported measurements every 3 seconds. Note
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(a) Gaze prediction error (b) Different components of the model (MSE) (c) Tile-based vs. full frame based

Figure 7: Error in the predicted gaze (mean squared error) for various configurations.

Table 1: Comparison of Processing Time and File Sizes Be-
tween Proposed Tile-Based and FoV-Based Approaches

Approach Tile-based scheme FoV-based scheme [11]
Time (ms) 3.25 47
Size (kB) 25 666

that our approach retrieves only correspond tiles while the FoV-
based approach requires a loading phase of saliency and image
flow frameworks. The results of this experiment are summarized in
Fig. 8b and Fig. 8c where our approach showed a less computation
load (RAM and CPU) compared to the FoV approach. The RAM
usage for the FoV-based approach is approximately 6% while our
scheme uses only 2% of the RAM. Similarly, for the CPU usage,
our scheme remains stable and uses less than 2% of CPU while
the FoV-based approach loads the frameworks which explain the
increase in CPU usage until it reaches 39%. As a conclusion, the
low computational load that is justified by the needless of loading
of saliency and image flow frameworks during the gaze prediction
process, which makes the proposed scheme practical for real-world
deployments.

To reduce the size of image files, we compressed the obtained tiles
that were originally in PNG format and converted them into low
image resolution (cf. Fig 8a). Our system remains superior even with
low image quality; therefore, it optimizes resource consumption
and can be easily deployed on the client user equipment (UE).

5 EYE-TRACKING AND VR/AR
APPLICATIONS

The rapid development in AR/VR technologies and wearable de-
vices makes their involvement in different sectors accompanied
by huge market investments. In particular, applying VR in ubiqui-
tous environments has attracted a lot of attention, with the role of
expanding human capabilities [2] in a space surrounded by smart
objects and smart interactive tools.

During COVID-19 pandemic, AR and VR are increasingly becom-
ing emerging solutions to satisfy user expectation [48] such as in
e-learning, virtual shopping, remote socialization for the objective

of minimizing physical contact thus minimizing possible infections.
With advanced sensing of audio, video, interaction in VR scenes,
an immersive experience is provided.

The eye-tracking has gained a lot of attention in VR systems. The
gaze information plays a pivotal role in the success of many of its
applications. For instance, Hartholt et al. in[49] presented a platform
for the development of virtual humans that includes VR and AR
technologies. The proposed framework leverages the technologies
inside a room for audio-visual sensing. Instead of showing an avatar,
the framework produces an animated human being personified by
the real user. The framework receives feedback from the user such
as eye position through a mobile sensor in the headset. Berton et
al. [50] studied the gaze behavior in collision avoidance for the
VR environment between a real human and VR character. The
authors compared the user’s gaze and mobility behavior in both
the real scenario and VR setup. The study finds that the collision
avoidance patterns are similar in real and virtual environments
regardless of VR setup conditions. To investigate the behavior of a
pedestrian in a crowded environment, MeerhoffL et al. [51] and in
a virtual environment, studied the gaze points captured from HMD
along with trajectory and found a relationship of gaze points with
movement adjustments between neighbor walkers. Mardanbegi et
al. in[52] presented a novel technique to interact with an object in
a VR environment based on gaze tracking. Their technique relies
on choosing an action, and then apply it to an object at the line-
of-sight. Salehin et al. [53] proposed a novel technique for video
summarization. At first smooth pursuit is identified, then during
smooth pursuit, distance gaze is calculated, finally, keyframes are
selected according to a probability score.

6 CONCLUSION
We proposed a solution for gaze prediction in dynamic scenes, often
encountered in ubiquitous and pervasive applications using head-
worn displays. In particular, we addressed the long processing time
on pervasive and mobile displays, which is caused by extracting
the Field of View (FoV) in real time by segmenting the video into
smaller tiles before conducting the gaze prediction. Our tile-based
gaze prediction converts image saliency, image flow, and full scene
images to tiles before encoding them using VGGnet. We further
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(a) Comparison between the size of the original
and the compressed image

(b) RAM usage percentage (c) CPU usage percentage

Figure 8: Computational load comparison between tile-based and FoV-based approaches

proposed a sinusoidal encoding that results in a more accurate gaze
prediction. We implemented and compared our proposal to the
FoV-based scheme proposed in [11].

Our approach showed superior performance in terms of gaze
prediction accuracy, time cost, and computational load, all of which
are of particular practical relevance inMobile, ubiquitous and perva-
sive domains. Summarizing, our proposed scheme can be effectively
deployed jointly on a server and in collaboration with a pervasive,
ubiquitous or wearable client user equipment of limited resources.
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