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1Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
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Abstract—This paper studies a novel way to estimate the
position of an object in an indoor environment, using the
Channel State Information (CSI) that a Visible Light Com-
munication (VLC) system collects to maintain the link-level
connectivity. First, supervised learning is applied to characterize,
the effect that an object in variable but known positions has on
the received optical wireless signal. Second, the trained classifier
is used to estimate the new unknown positions that the object may
take, making use of the instantaneous CSI that is used to equalize
the data-carrying signal samples in reception. The practical
validation of the proposed positioning approach was done with
the aid of a software-defined VLC link based on OFDM, in
which a copy of the intensity modulated signal coming from a
Phosphor-converted LED is captured by Photodetectors (PDs)
in different room locations. Then, the CSI of the VLC receiver
is used to train a Random Forest classifier, which will predict
the position of the object during the assessment phase. The
performance evaluation of our experimental setting shows that
the proposed VLC-based positioning approach can reach a few
centimeter accuracy, provided that a proper training is executed,
without the necessity of deploying a large number of PDs in the
room, or adding a VLC receiver on the object to be tracked.

Index Terms—Software-defined VLC, Indoor positioning, Op-
tical OFDM, Supervised Learning, Random Forest.

I. INTRODUCTION

Different technologies have been studied in the literature to
support the implementation of positioning systems, and most
of them are based on ultrasonic acoustic waves, as well as
electromagnetic waves on infrared and Radio Frequency (RF)
bands. From all these options, Global Navigation Satellite Sys-
tems (GNSS) such as GPS and Galileo have been mostly used
for outdoor applications, whereas positioning systems that
sense the RF signal coming from existing Wi-Fi, Bluetooth
and Radio Frequency Identification (RFID) devices have been
mainly proposed for indoors [1]. While the accuracy of the
RF-based positioning is limited the density of wireless indoor
nodes, the Visible Light Communication (VLC) infrastructure
can be built as an integral part of the illumination system, en-
abling a higher density of available VLC nodes. Furthermore,
VLC-based indoor positioning benefits from the rapid devel-
opment of low-cost, high-sensitivity photodetector technology
that can now detect very small signal variations [2].

VLC technology tackles most of the drawbacks that moni-
toring systems based on RF have, avoiding as well the privacy
concerns that surveillance cameras with image-recognition

processing create on citizens’ privacy. For example, since vis-
ible light beams cannot propagate through opaque obstacles,
they can be easily confined into the designated coverage area,
enabling a more secure communication link while complicat-
ing the work of an hypothetical eavesdropper [3]. In addition,
though VLC uses a portion of the electromagnetic spectrum
that is licence-free by definition, it has also potential to
establish low-interference optical wireless links when directive
spot light fixtures are used [4]. Thanks to this, the stability of
the communication link increases notably, and it is possible to
detect minor changes of the received optical power, which im-
plies much better positioning accuracy when compared to RF-
based solutions [5]. Last but not least, the same infrastructure
that is deployed for illumination and communication can be
also used for Visible Light-based Positioning (VLP). We also
note that this technology can be utilized in environments such
as hospitals, where the use of RF is banned because it may
create Electromagnetic Compatibility (EMC) problems [6].

Most of the VLP solutions reported so far in the literature
consider that the object to-be-tracked is equipped with a
sensor. Then, by measuring the optical power that reaches
the Photodetector (PD), it is possible to extract relevant
metrics that can be used to estimate the actual location
of the object. Examples of these metrics are the Angle-of-
Arrival (AoA), Received Signal Strength (RSS), Time-of-
Arrival (ToA), and Time-Difference-of-Arrival (TDoA) [7].
For instance, a TDoA-based positioning solution was pro-
posed in [8], where ceiling LED lamps were utilized as refer-
ence points. Similarly, the authors of [9] derived the Cramer-
Ratio bound for a ToA-based VLP system. Color-based lo-
calization was developed in [10] by combining TDoA and
RSS metrics, whereas a passive localization mechanism based
on the channel impulse response from the PD to different
LED light sources was presented in [11]. Lately, novel VLP
solutions based on machine learning algorithms have been
proposed to extract useful patterns from the complex optical
wireless channel that is configured indoors. For example, the
authors of [12] presented a localization mechanism using a
Weighted K-nearest neighbor (WKNN) classifier, whereas the
use of an Artificial Neural Network (ANN) was suggested
in [13] to make reliable position estimations using the RSS as
input features of the neural network. Finally, multiple classifier
fusion localization mechanism were studied in detail in [14].



Fig. 1. Overview of VLC-based indoor positioning system. The Channel
State Information that is collected at Channel Estimator output in reception is
used for training the classifier. S/P: Serial-to-Parallel. P/S: Parallel-to-Serial.
(I)FFT: (Inverse) Fast Fourier Transform. TIA: Transimpedance Amplifier.

Most of the VLP research reported so far in the literature
uses the visible light signal only for positioning purposes,
enabling to design an ad hoc waveform that is just suitable
for this purpose. Yet, it would be more cost-effective to reuse
the existing VLC infrastructure for positioning, rather than
to build a separate VLP system in parallel. This is a key
difference of the approach that is proposed in this paper,
which falls under a sub-category that we named Visible Light
Communication-based Positioning (VLCP). For the practical
validation of our positioning approach, we implemented a
software-defined VLC link based on OFDM, using Univer-
sal Software Radio Peripherals (USRPs), low-cost phosphor-
converted LEDs [15], and commercial Photodetectors [16].
It is important to notice that the numerology of the Optical
OFDM frame used in the experimental setting was designed
to optimize the data rate of the VLCP system, rather than the
positioning accuracy. Therefore, the Random Forest classifier
was trained by employing Channel State Information (CSI)
used to detect the transmitted data stream, and the perfor-
mance of the VLC link is not impacted due the positioning
feature that is added.

The rest of the paper is organized as follows: Section II
describes the implemented software-defined VLC link, includ-
ing the details of the signal processing that was utilized to
obtain the CSI for indoor positioning. Section III addresses the
key concepts behind the proposed Random Forest algorithm,
and adapts it to the positioning task that is needed. Then,
Section IV explains the experimental setting that was used to
validate the VLCP concept, and carries out the performance
evaluation when a sample object took different positions on a
service area. Finally, conclusions are drawn in Section V.

II. IMPLEMENTATION DETAILS OF THE VLC LINK

The block diagram of the software-defined VLC link that
used to collect the CSI to train the supervised learning
classifier is shown in Fig. 1. The transmitter side of the
VLC link consists of an Optical OFDM transmitter, which

Fig. 2. Structure of the Optical OFDM frame used to acquire the CSI for
indoor positioning, composed by two synchronization words, a frame header,
M payload OFDM symbols, and a frame CRC. Note that CSI is estimated on
a frame-by-frame basis, using the QAM training symbols on Sync.Word #2.

uses the input sequence of bytes to generate a unipolar real-
valued signal that modulates the intensity of the LED light
beam. At the receiver side, a PD is used to transform the
time-varying optical signal into an electrical current, whose
samples are then processed by the Optical OFDM receiver to
estimate the original sequence of bytes that was transmitted.
In the following subsections, further details are provided on
the signal processing that is performed in transmission and
reception.
A. Signal processing in the VLC transmitter

The input stream of bytes is divided into packets and, after
that, a packet header is inserted and a Cyclic Redundancy
Check (CRC) is appended. Then, bytes are divided into bits,
and groups of bits are mapped onto N/2 − 1 constellation
points. (i.e., BPSK for the header and QPSK for the pay-
load). After Serial-to-Parallel (S/P) conversion, the Hermitian
Symmetric feature is introduced on the vector of size N that
feeds the Inverse Fast Fourier Transform (IFFT), i.e.,

X = [XN/2−1 · · · X1 X0 X−1 · · · X−N/2]
T, (1)

verifying

Xk =

{
X∗

−k k = 1, . . . , N/2− 1,
0 k = 0,−N/2.

(2)

This way, the time domain signal at the IFFT output, i.e.,

x[n]=
1√
N

N/2−1∑
k=−N/2

Xk exp
(
j
2πkn

N

)
, n = 0, . . . , N − 1,

(3)
becomes real-valued (i.e., imaginary part is always zero). Note
that zero-padding can be used on the subcarriers with highest
and lowest indexes, such that the bandwidth of the OFDM
signal is adjusted to the one that the LED can support.

Pilot signals are also inserted, as well as two synchro-
nization words that are utilized by the OFDM receiver for
frame synchronization and channel estimation purposes. More
precisely, Sync.Word #1 is used to synchronize in time the
received signal samples and to perform a coarse frequency
correction that is common to all subcarriers. In time domain,
this synchronization word consists of two repeated parts, and
is obtained by allocating random BPSK training symbols on
the subcarriers with even indexes in (2), while leaving unused
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Fig. 3. The construction of the decision trees in the Random Forest algorithm takes advantage of the labeled data during the training phase (supervised
learning), whereas the decision-making phase identifies the most likely location that collects most votes at the output of each decision tree.

the remaining subcarriers with odd indexes. On the other hand,
Sync.Word #2 contains random QPSK training symbols, which
are known a priori in reception to estimate the channel gains
per subcarrier on a frame-by-frame basis.

Finally, after Parallel-to-Serial (P/S) conversion, a Cyclic
Prefix (CP) is added, and the resulting signal is DC-biased
and Clipped to obtain

s[n] =

{
x[n] + xdc for x[n] + xdc ≥ 0
0 for x[n] + xdc < 0

, (4)

which is used to modulate the Intensity of the LED light beam.
Without loss of generality, we assume that the IFFT size is

N = 64, that pilot symbols are placed on subcarriers indexes
±7 and ±21, and that zero-padded is used on the five upper-
and lower-most subcarriers (i.e., with indexes ±27, . . . ,±31).
This enables us to accommodate up to 24 QAM symbols per
payload OFDM symbol, as it can be appreciated in the Optical
OFDM frame structure that is illustrated in Fig. 2.

B. Signal processing in the VLC receiver

The optical signal that reaches the VLC receiver is trans-
formed into an electrical current by the Photodetector (PD)
and then, it is converted into an analogous voltage by the
Transimpedance Amplifier (TIA). The digitalized samples of
this signal are fed into the time synchronization block, which
is responsible for identifying the location of Sync.,Word,#1
that marks the beginning of the OFDM frame. Then, the
CP from each OFDM symbol is removed, S/P conversion is
performed, and an N -point FFT processing is applied, i.e.,

Yk=
1√
N

N−1∑
n=0

y[n] exp
(
−j

2πkn

N

)
, k =±1, . . . ,±N

2
− 1. (5)

Then, received samples associated to Sync.Word #2 are fed
into the Channel Estimation block to obtain the CSI associated
to the different subcarrier indexes. This information, which is
used to perform the equalization of the OFDM symbols for the
Header, Payload and CRC parts of the frame, will be also used
by the supervised learning classifier to estimate the position

of the obstacle that lies between the LED and the PD. Finally,
Equal Gain Combining is applied, i.e.,

Ỹk =
(
Yk + Y ∗

−k

)
/
√
2, k = 1, . . . , N/2− 1, (6)

to exploit the Hermitian Symmetric structure of the vector
of transmitted QAM symbols, before P/S conversion, QAM
demodulation, and CRC verification are performed.

III. RANDOM FOREST ALGORITHM

Random Forest [17] is a supervised learning algorithm
in which a collective learning process is carried out in a
group of decision trees. Each decision tree is trained by a
different segment of complete labeled training data, which
takes into account a random feature subset in a process that is
known as Random Feature Selection. To do so, each decision
tree uses a different feature subset during the training phase,
aiming at reducing the correlation among individual decision
trees during the assessment phase. During assessment, the
final decision is determined by the plurality voting, and the
alternative with highest number of votes becomes a final
decision. An overview of this process is illustrated in Fig. 3.

During the training phase, each decision tree is constructed
using the assigned labeled data and the corresponding random
feature subset. Entries in this situation are the CSI amplitude
and the tag that identifies its associated event. For each
measurement with a given event tag, the feature set consists of
a 2N -length feature vector when two PDs are used for VLCP.
A decision tree contains a root node, multiple decision nodes,
and multiple leaf nodes. The categorization of these nodes is
defined by the splitting rule, which stems from the Shannon
entropy formula, i.e.,

H = −
∑
i

pi log2(pi), (7)

where pi is the probability of i-th discrete event that is being
considered during the experiment. This entropy is calculated
each time, before and after tree splitting, and the difference
between the two entropies yield to the expected Information
Gain (IG) from that split.

The feature that brings the largest IG is chosen by the root
node and, for the remaining features, a similar splitting is



Algorithm 1: Pseudo-code for constructing D different deci-
sion trees in the Random Forest classifier training phase.
Input: Number of decision trees: D

Total training data with labels:
B = [B1,B2, . . . ,BD]
Feature set (with random subsets):
F = {F1,F2, . . . ,FD}
Event tags:
Ω = {no object, position 1, . . . , position L}
The number of total event tags (|Ω|): L+ 1.

1 for d = 1 : D do
2 Select randomly a subset of labeled training data-Bd

3 (a) Use a subset of the feature subset-Fd

4 (b) Find the best splitting rule and root node based on Bd,
by using Fd and (7)

5 (c) Split a node using the best split features and values
6 (d) Repeat (b) and (c) until all leaf nodes are reached

7 return D individual decision trees, trained for L+ 1 event
tags, and ready for the assessment phase;

done until the correct decision is reached, which takes place
when the correct event labelling of the leaf node is found.
This processes is summarized in Algorithm 1.

IV. VLCP SYSTEM

The signature that the object that is placed between the
LED and PD creates on the CSI amplitudes is used to train the
decision trees of the Random Forest algorithm. To illustrate
this concept, Fig. 4 shows the CSI amplitudes that were
collected during a given 10-sec measurement, assuming that
the object is placed on two different locations: a) Position A1,
which is far away from the Line-of-Sight (LoS) link between
LED and PD1 and PD2, respectively. b) Position I4, which
is far away from the LoS link between LED and PD1, but
close enough to the LoS link between LED and PD2.

Each of these CSI plots can be sub-divided into two
5-sec. parts described as follows: In the first part, there is
no object and the CSI accounts the combined effect that
the LoS link and the flat surface of the table have on the

I4

A1

PD1 PD2

Fig. 4. Signatures that the object introduces on the CSI amplitudes acquired
from pilot symbols placed on subcarriers k = ±21 (green lines) and k = ±7
(red lines) at PD 1 (left panel) and PD2 (right panel). Upper plots: Object is
placed on position A1. Lower plots: Object is placed on position I4.
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Fig. 5. Block diagram of the process used to evaluate the accuracy
of proposed VLCP solution. The input CSI samples with labels (known
positions) are used to train offline the Random Forest classifier, whereas the
unlabeled CSI inputs are used in the online assessment phase to estimate the
position of the object.

received VLC signal. On the other hand, in the second part,
the object is placed at the labeled position on the table, and
the CSI also accounts the impact of the object on the VLC
channel. As it can be also appreciated in Fig. 4, different
subcarriers experience different CSI amplitudes for the same
object, and CSI amplitudes vary from object to object in the
same subcarrier, creating a hidden signature that the Random
Forest algorithm aim at modeling. The overall process of the
VLCP proposal is shown in Fig. 5, where the offline training
phase and the online assessment phase of the Random Forest
classifier are identified.

The practical validation of the VLCP proposal was done
on a controlled experimental setting, which resembles the one
found in realistic indoor environments when doing a proper
dimension-scaling. In this experimental setup, one Phosphor-
Converted (PC)-LED and two PDs are placed on the opposite
sides of a meeting-room table of size 240 cm × 120 cm, as
illustrated in Fig. 6 and Fig. 7. In the central part of the table, a
grid with 5×4 square elements of size 30 cm×30 cm is marked
(solid blue lines in the figure), creating 30 equal-separated
positions that are used to train the Random Forest classifiers
(solid black points in the figure). Finally, the center of each of
these square elements are used to assess the performance of
the classifier after the training phase is over (red crosses in the
figure). It is important to highlight the boresight direction of
the PC-LED points to position K3, whereas the boresight di-
rections of the PDs are pointing directly towards the PC-LED.
Finally, it is important to highlight that the sampling rate and
size of the payload (M ) of the software-defined VLC link
was selected such that the electrical bandwidth of the OFDM
signal becomes 1MHz, and 1000 CSI samples are collected
per sec.

A. Offline training phase
In the process of creating the dataset to train the Random

Forest classifier, 30000 CSI samples are collected when the
object is placed on the positions of Fig. 6 marked with a solid
black point. Each of these samples consists of 128 different
CSI amplitudes (64 CSI values per PD), which are obtained
from the N subcarriers of the Optical OFDM signal.
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Fig. 6. Experimental setting used in the evaluation of the VLCP performance.
PC-LED and the two PDs are placed on the opposite sides of a meeting-room
table of size 240 cm× 120 cm. A square grid with 30 cm× 30 cm elements
is marked in the center of the table to collect the CSI data with labels for
training (solid black points), whereas the unlabeled CSI for assessment is
collected on the center of each of these blue squares elements (red crosses).

To mitigate the impact of measurement noise in the training
data, a Moving Average (MA) time-filtering was applied to
the CSI amplitudes per subcarrier using a window length
of 100. In the labeled input for training phase, each time in-
stant/snapshot was associated with an event tag taken from set
Ω = {no object, position A1, position A2, . . . , position K5}.
Moreover, part of the collected CSI was also reserved to be
used as unlabeled data for the performance assessment of
the classifier during the decision-making phase. The training
ratio is the fraction of the whole available data that is used
exclusively for training; the remaining data is used for assess-
ment. During the training phase, the Random Forest classifier
identifies hidden patterns on the collected CSI sequences for
the different objects, taking advantage of the labels that were
included while doing the measurements. To do so, 64 different
amplitude values are introduced as total feature set of the
Random Forest Classifier, along with corresponding position
labels. In order to utilize the statistical ability of the Random
Forest classifier, which can assign optimal weights for the 64
features, all features are initialized with equal weights. During
the training phase, 200 decision trees are constructed in total.

Each measurement took 10 sec. and consisted of two parts:
No object (5 sec.) and object at given position (5 sec.). During
the first part., the CSI in absence of object was collected by
the VLC receiver. Then, the selected object was located at
a training position marked with a capital-letter-plus-number
in Fig. 6, and the CSI in presence of object was obtained.
In order to assess the performance of the Random Forest
classifier, each measurement was repeated three times for
each training location. Note that during the whole 10-sec.
measurement window, the data transmission over the VLC
link is maintained without interruption, as the object does not
block completely the reception of the VLC signal.
B. Performance assessment

The performance assessment of our proposed VLCP solu-
tion considers two situations: On one hand Case-1, where the

Fig. 7. Picture of the actual setting used in the experimental evaluation.
The object that was used to identify its position on the table was a stuffed
toy (brown hedgehog), whose shape can be approximated as a cylinder of
diameter 8 cm and height of 22 cm. The points labeled with letters and
numbers are the positions used in the training phase (here, hedgehog is on
position G3).
CSI collected from the 30 training positions - marked with
solid black points in Fig. 6 - are used in the construction
(training) and evaluation (assessment) of the Random Forest
classifier. On the other hand Case-2, where the trained Ran-
dom Forest classifier is evaluated when feeding its input with
the CSI that is collected when the object takes any of the 20
new positions for assessment - marked with red crosses in
Fig. 6.

In order to assess the performance of the Random Forest
classifier, confusion matrices and Root Mean Square (RMS)
positioning errors are considered. Confusion matrices are
widely used to indicate the accuracy of a given classifier. In
a confusion matrix, the values stored in the main diagonal
corresponds to probability of making good predictions (hitting
probability), whereas the off-diagonal values identify the prob-
ability of making wrong predictions (confusion probability).
Since it is not practical to visualize the 30 × 30 confusion
matrix that corresponds to all possible values in Case-1, a
subset of them has been selected for visualization in Fig 8.
Based on the confusion values when assessing the trained
classifier with the CSI collected when object was placed on
points in column 3 (upper table) and row E (lower table), it is
possible to see that the Random Forest classifier can identify
the presence of the object and estimate its position correctly
in more than 98% of the cases. Similar hitting probabilities
were observed in the remaining rows and columns of Fig. 6.

Finally, the RMS positioning error when the object is placed
on the new assessment points - marked with red crosses in
Fig. 6 - is calculated from the Euclidean distances that exists
between the actual coordinates (xl,0; yl,0) for the object when
placed in assessment locations l, and the estimated coordinates
(x̂l,i; ŷl,i) that the trained classifier provides for the object in
position l during measurement snapshot i = 1, . . . , I , i.e.,

RMSE (xl,0; y0,l)=

√∑
i

(
xl,0 − x̂l,i

)2
+
(
yl,0 − ŷl,i

)2
I

.

(8)



(a)

(b)

Fig. 8. Confusion matrices obtained by the Random Forest classifier of the
proposed VLCP solution when using a 70% training ratio. Upper table: Object
takes positions on column 3. Lower table: Object takes position on row E.
In total, I = 5000 CSI measurements were used to compute
the RMS positioning error that corresponds for each of these
assessment positions, which were not used in the training
phase. According to the RMS errors reported in Fig. 9 for
assessment positions, we conclude that the Random Forest
classifier can estimate the position of the object with an
accuracy that is similar to the separation between points used
in the training phase (i.e., less than 30 cm on average). If better
positioning accuracy is desired, the Random Forest classifier
should be trained with more densely packed training points.
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Fig. 9. RMS error of proposed VLCP solution when the object (brown
hedgehog) takes different positions between the training points. As expected,
the accuracy varies slightly with the position that the object takes, and is in
most cases lower than the separation between training points (30 cm).

V. CONCLUSION

This paper validated the VLCP concept, in which the
presence of an object was identified with the aid of a Random
Forest classifier trained with the CSI that was collected
from an ongoing VLC data transmission. More precisely, a
software-defined Optical OFDM link was implemented, using
commercial phosphor-converted LED and Photodetectors, and
defining an OFDM frame structure that focused solely on
the data rate requirements of the VLC system. The Random

Forest classifier was trained using the CSI that was collected
when a sample object was placed in 30 different positions
between the LED and PD. VLCP system was able to identify
the location of the object correctly in more than 98% of the
cases. Moreover, when placing the object in new positions that
were not used during the training phase, the RMS positioning
error did not increase notably. The good accuracy that VLCP
showed paves the way for its implementation in cases where
RF-based positioning systems cannot be used.
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