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Abstract—We consider a machine learning algorithm to predict
the Signal-to-Noise-Ratio (SNR) of a user transmission at a
neighboring base station in a massive MIMO (mMIMO) cellular
system. This information is needed for Handover (HO) decisions
for mobile users. For SNR prediction, only uplink channel
characteristics of users, measured in a serving cell, are used.
Measuring the signal quality from the downlink signals of neigh-
boring Base Stations (BSs) at the User Equipment (UE) becomes
increasingly problematic in forthcoming mMIMO Millimeter-
Wave (mmWave) 5G cellular systems, due to the high degree
of directivity required from transmissions, and vulnerability
of mmWave signals to blocking. Channel Charting (CC) is a
machine learning technique for creating a radio map based
on radio measurements only, which can be used for radio-
resource-management problems. A CC is a two-dimensional
representation of the space of received radio signals. Here, we
learn an annotation of the CC in terms of neighboring BS signal
qualities. Such an annotated CC can be used by a BS serving a
UE to first localize the UE in the CC, and then to predict the
signal quality from neighboring BSs. Each BS first constructs a
CC from a number of samples, determining similarity of radio
signals transmitted from different locations in the network based
on covariance matrices. Then, the BS learns a continuous function
for predicting the vector of neighboring BS SNRs as a function of
a 2D coordinate in the chart. The considered algorithm provides
information for handover decisions without UE assistance. UE-
power consuming neighbor measurements are not needed, and
the protocol overhead for HO is reduced.

Index Terms—massive MIMO, mmWave, channel charting,
handover, SNR prediction.

I. INTRODUCTION

Beyond Fifth-Generation (B5G) networks are expected
to offer important connectivity advantages: energy savings,
higher system capacity, reduced latency, and higher data
rates. Massive Multiple-Input-Multiple-Output (mMIMO),
Millimeter-Wave (mmWave) and Ultra Cell Densification
(UCD) are key technologies for successful development of
B5G networks, needed to meet unprecedented speeds, near-
wireline latencies and ubiquitous connectivity with diverse
Quality-of-Service (QoS) requirements [1]-[3].

Large amounts of spectrum are available at mmWave fre-
quencies above 30 GHz, which can be utilized to support
data rates of multiple Gb/s. A key challenge in developing
systems in mmWave bands is the potential for rapid channel
dynamics. Radio propagation in mmWave bands suffers from
high path loss, reduced scattering which in turns reduces the
available diversity, and increased effect of blockage. Diffrac-
tion is reduced in mmWave bands, and accordingly small
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changes in the position or orientation of the handset relative
to objects in the environment can cause large variations in
the channel quality [3]. MmWave Base Stations (BSs) have
to use directional antennas to increase the Signal-to-Noise
Ratio (SNR), even to reach a radius up to 200 meters. Hence,
hundreds of BSs will be needed to cover large spaces, and User
Equipment (UE) will have to frequently perform Handover
(HO) procedures. Successful deployment of mmWave cellular
systems thus requires effective HO procedures [1].

Modeling, measuring and predicting the radio channel char-
acteristics of mmWave systems are currently active research
areas [4]. Using physical location information is a promising
approach to decrease HO signaling overhead in mMIMO dense
networks [5], [6], subject to taking care of the user location
privacy.

B5G systems encounter fundamental challenges from hav-
ing to cope with resource-constrained devices to managing
the underlying heterogeneous networking and computing in-
frastructures. Network management and resource allocation of
B5G using traditional algorithms becomes complicated, inflex-
ible, and expensive. Motivated by the burgeoning progress
of Artificial Intelligence (AI) and its breakthroughs in a
variety of domains, the communication research community is
currently seeking solutions from Machine Learning (ML) for
intelligent controls on the Physical (PHY) and Medium Access
Control (MAC) layers of future networks. B5G networks are
expected to be intelligent enough to adapt to very dynamic
topologies, intensive computation and storage applications,
and diverse QoS requirements for ultra-high efficiency and
resiliency purposes [7], [8].

To efficiently manage an mMIMO network, and to per-
form cognitive networking tasks, the network state which
includes the spatial distribution and trajectories of the UEs,
neighborhood relationships among the UEs, and handover
boundaries among neighboring cells needs to be estimated.
A novel Channel Charting (CC) framework is proposed for
mMIMO systems in [9], exploiting the massive amounts of
Channel State Information (CSI) available at the BSs. In CC
unsupervised machine learning techniques are used to create
a radio map of the cell served by a BS, which preserves the
neighborhood relations of UEs, using features that characterize
the large scale fading effects of the channel. The obtained CC
can be used for local Radio Resource Management (RRM)
in the cell. In [10], an extension to Multi-Point CC (MPCC)
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Fig. 1: Multipoint mMIMO system.

framework was discussed, to support advanced multi-cell
RRM and to accurately map cell edge UEs. For improved
charting performance, features are extracted and clustered
based on advanced signal processing and ML techniques.
In [11], the MPCC framework was generalized to incorporate
new data points related to UEs at new locations, to an existing
CC/MPCC, and to estimate the radio features related to a new
location in the chart.

The level of channel variability in mmWave frequencies has
widespread implications for virtually every aspect of cellular
system design. In this paper, we consider Network Centric
Handover (NCH) based on CC in a mmWave mMIMO system.
To understand whether it is time to handover a user to a
neighboring cell, the serving BS predicts the average SNR
at neighboring BSs, based on radio signals received at the
serving BS.

To the best of our knowledge, this is the first time that
SNR prediction of neighboring BSs is exploited based on
relative locations, such as CC. SNR prediction based on CC
is an attractive approach since neither the physical location
information nor the downlink channel measurement at the
UE terminal are needed to predict the SNR of a neighboring
BS. HO algorithms can be designed based on the predicted
neighboring BS SNR, reducing power consumed at the UE,
and signaling overhead.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. In Section III and
Section IV, the CC based NCH approach and SNR prediction
of neighboring cells are presented, respectively. Numerical
results are discussed in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

The mMIMO mmWave cellular system under consideration
is schematically shown in Figure 1. Each BS b = 1,...,B
has M antenna elements and each UE k£ = 1,... K has a
single antenna element. For simplicity, we assume that BSs are
equipped with Uniform Linear Arrays (ULAs). The channel
vector of UE k received at BS b in one coherence bandwidth
can then be modeled as [12]
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Fig. 2: The principle of channel charting.

where Ly is the number of multi-path components for the
wireless channel, qﬁél;c is the direction of arrival of the /th path
and Bél,)c the complex valued channel gain of the [th path, and
a is BS array steering vector. For ULA, it can be modeled as

a(¢) _ [1’ei27”dsin(¢)’ - .’eiZT"(Mﬂ)dsin(@}T’ 2)

where y is the carrier wavelength, and d is the antenna spacing.
The average uplink SNR 3, 5, at BS b is computed as:
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where P is the transmit power of UE k, 02 is the noise power
at BS b and E is the expectation operator.

The covariance matrix of UE £ at BS b is computed as:

Ry, = Elhy khily] = Ay 1Sy AL, )

where the array steering vectors are collected to the ma-
trix Apj = {a( élll),...,a( l(ijk’b))}, and the multi-path
expected power components to the diagonal matrix Sy =

. L.k
diag (B [|3(12] ... E 1802 7]).
A. Channel Charting Principle

Channel charting is based on the assumption that there is a
continuous mapping from the spatial location p;, of UE k to
the covariance matrix Ry, i, given as [9], [10]:

Hb R — (CJWXJW;Hb(pk) = Rb,k . (5)

Here s is the spatial dimension, which is either 2 or 3. A
block diagram representing CC at BS b is shown in Figure 2.
Using the estimated covariance CSI {R; ;}5 | collected at
BS b form K unknown UE spatial locations {p, }~_,, the CC
finds a low dimension channel chart {zj}%_,, such that

||Zk_zm||za||pk_pm”vf0r kame{la"'aK}a (6)

where « is a scaling factor. Note that neither the UEs spatial
locations p,, nor the locations of the BSs are needed; the CC
is constructed in a fully unsupervised manner, solely based on
the covariance CSI {Ry 1} | at BS b.

A feature vector for UE k at BS b is constructed from the
multi-path components of the mmWave channel as [10]:
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where )\&c =E Uﬁéll)cﬂ is the I/th multi-path component

power, and Qﬁél;c its angle of arrival. The multipath component
parameters are estimated from the covariance matrix R j



using, e.g., the Multiple Signal Classification (MUSIC) algo-
rithm [13].

Next, multipath components are clustered. For this, the
Density-Based-Spatial-Clustering-of-Applications-with-Noise
(DBSCAN) algorithm [14] can be used. The dissimilarity
between two UEs (k,m) is based on identifying multi-path
components in their feature vectors that are similar. In [10],
carefully crafted radio features are used, and a data-driven
CSI dissimilarity measure is developed, which are suitable
for mm-Wave channels. The dissimilarity matrix has the
elements [Dy]y.m = do(fp i, fo.m) for k,m=1,... K.

The channel chart is then obtained by applying a manifold
learning algorithm to the pairwise dissimilarity matrix of the
covariance CSI samples. The feature space is dimensionally
reduced to a s-dimensional charting space;

Cs:fr—zk ®)

where z; € R® represents the location of UE k in the chart,
at the time of measuring the channel. Note that z; may not
have anything to do with a true location, the charting princi-
ple attempts to recover relative distances, and neighborhood
information of UEs.

Different techniques such as principle component analy-
sis, Sammon’s Mapping, Laplacian eigenmaps, t-Distributed
Stochastic Neighbor Embedding (t-SNE) and autoencoders are
considered for channel charting in [9], [10], [15]. The quality
of the generated CC is evaluated by measuring how well the
points in the CC preserve the characteristics of the spatial
geometry of the true UE locations using the Continuity (CT),
Trustworthiness (TW) and Kruskal-Stress (KS) measures.

To use a channel chart for RRM functionalities, new UEs
can be added to an existing CC based on their radio frequency
CSI (i.e., covariance matrix) as in [11]. Then, from a CSI mea-
surement of a new UE, possible CSI states can be predicted,
by comparing to the CSI of nearby positions in the chart.

B. Handover Procedure

The HO process is a core element of cellular networks
to support user mobility (see [16] for HO in GSM/CDMA
and [3], [17], [18] in LTE/NR systems). Modeling the HO
performance for 5G/ B5G is an active research area [19]-[22].
Novel techniques are needed to reduce signaling overhead,
link failure probability and unnecessary HOs in mmWave and
heterogeneous dense future networks.

HO is the process of changing the BS serving a mobile
UE such that service continuity is guaranteed. Ideally, a UE
is always served by the best BS. A simple rule for selecting
the best BS is based on the average Received Signal Strength
(RSS) level, i.e., the UE changes its association if another BS
provides a higher RSS than the serving BS, which may happen
when the user moves away from the serving BS towards
another BS.

In general, HO is described by three phases: initiation,
preparation, and execution. In the initiation phase, the UE
reports reference signals measurements from neighboring BSs
to the serving BS. For instance, the signal measurement report

in 4G-LTE includes Reference Signal Received Power (RSRP)
and Reference Signal Received Quality (RSRQ) measurements
(see [17]). In the preparation phase, signaling is exchanged
between the serving BS and the target BS, and the target cell
admission control procedures are ran. Once certain HO criteria
are met, the user releases the serving BS channels and attempts
to access the target BS using the Random Access Channel
(RACH). After successful reception of an acknowledgment,
the UE sends a confirmation message to notify the network that
HO is executed. A HO procedure involves signaling overhead
for both the UE, serving BS, target BS, and the core network.
This is overhead from the perspective of payload data, which
interrupts the data flow and decreases user plane throughput.
The frequency at which such interruptions happen is a function
of the relative values of the BS density and user velocity.
The HO delay, measured from the beginning of the initiation
phase to the end of the execution phase, can be significant.
Mobility has a direct impact on user experience, since data
transmission may subject to interruption due to high signaling
overhead and the change of the serving BS [17], [23], or a
radio link failure may interrupt the whole session. Therefore,
at high velocities and/or dense cellular environments, it is de-
sirable to decrease the frequency of handovers. This motivates
investigating network-centric handover approaches to reduce
HO delay, and signaling overhead.

C. Handover Procedure in mmWave Systems

Path loss at mmWave bands can be overcome by the use of
massive MIMO systems. In mmWave cellular systems, the BS
transmits multiple narrow beams towards the UE. Beamformed
transmissions over up to 64 beams are allowed in 5G-NR
for mmWave frequencies. In this architecture, in addition
to inter-cellular handovers, beam switching handovers have
to be considered [24]. Intra-cellular beam switching occurs
when the target beam is selected among beams belong to
the serving BS. Inter-cellular beam switching happens when
the target beam is selected from a different BS [3], [17].
Hierarchical beamforming over multiple phases is assumed in
5G-NR where the initial beam acquisition is performed with
wide beams [25].

When a UE moves around, it may experience frequent
switching between neighboring beams although it stays in the
same BS. Each beam acts like a small cell BS, which has its
own physical and logical channels. The beams within the cell
share the cell identity which is unique within the network,
while each beam has a beam identity unique within the BS.

In the literature, two types of beam handover policies are
considered; network controlled UE assisted beam switching,
and UE controlled beam switching. In the former, beam
switching is decided and initiated by the BS based on mea-
surement reports provided by the UE. In the latter, the UE
selects the target beam based on measurements and performs
a beam switching procedure [24].

In this work, we consider fully network controlled handover.
The UE uplink pilot signal is received at the serving BS
and used to predict SNRs at neighboring BSs for handover



Offline phases

Channel charting CC locations Annotation SNR mapping
K UEs SNR

transmitting

Bss —> BSs neighborn

Wireless RS<CC ‘ L grouping —>

. Channel and > 2
s ® SNR annotation
] L —> BSs, neighbor N,
3 // g | Control
0 BSNCC = Protocol
- = 2
ol . SNR
ssg > BSB neighborn
K locations BSBCC | sroteing. —>
X and >
annotation _, g5 p neighbor Nj
Online phase
Serving BS s
UEm
SNR prediction HO decision
_—7=" | Outof sample predicti i

@ e ofest

Fig. 3: The principle of Channel Charting based Network Controlled
handover.

management. For simplicity, we assume that the UE has one
transmit antenna, and we do not consider beam management.
Inter-beam and intra-beam handover based on CC will be
considered in future work.

III. CC BASED NETWORK CENTRIC HANDOVER

CC-based-Network-Centric-Handover (CCNCH) is based
on the large scale radio features of a UE, measured at the
serving BS. The serving BS has a CC, constructed offline,
where the CC locations are annotated with measured SNR
values of the neighboring BSs, and a prediction algorithm to
predict the SNR of a neighboring BS. During online operation,
the annotated CC, and the SNR prediction algorithm are used
for making HO decisions for the current population of users.
CCNCH is a distributed algorithm that is implemented at each
BS. It is illustrated in Figure 3.

The input of CCNCH training is a set of measurements
from UEs, collected in a short enough time scale such that
the UE is in one location from the point of view of large
scale channel characteristics. All BSs in the network that are
able to detect the UE, measure the UE channels, and construct
a received SNR from the UE. These measurements represent
samples from the continuous function of radio signals from
the s-dimensional spatial coverage area of the network to radio
feature space.

Offline training consists of three phases: channel charting,
annotation, and training of SNR prediction model.

¢ Channel charting phase: Each BS s considers the large
scale radio features {Rsyk}szsl of the set of UEs K,
which have a sufficient received signal quality at BS s.
From this information, the BS constructs a single-cell
channel chart C, as explained in Section II-A. Note that
K does not only have UEs for which s is the serving cell.
The coverage area of K; extends to cells neighboring s.
« Annotation phase: BS s gets the SNRs ~y; ;, measured at

neighboring BS ¢ for UEs k € K in the subset

K =K (K )

of UEs that both BS s and ¢ have information about. BS
s collects this information from each neighboring BS ¢ in
the set 75 of neighbors of s, which consists of possible
target cells for handovers initiated in s. The channel chart
of BS s is then divided to groups, using knowledge of
the own received SNR ~; j, in addition to the received
SNR from neighboring BSs. There is a group gé” for
each target BS ¢ € T, as well as group géo). If k € gé”,
it indicates that if £ were served by s, knowing the SNR
as received at ¢ would be needed for handover decisions.
Ifk e ng), HO would not be actual for the user, i.e., the
SNR at BS s is much stronger than at any neighboring
BS. Note that the groups gs“) for two different neighbors
may overlap. For each group gs“), an annotated channel
chart Cgt) is created, where the charting coordinates zj
for k € Qgt) are annotated with ~y; 5 and -y, .

« SNR mapping: BS s uses the annotated CC Cgt) and
a supervised learning algorithm to develop a function
ggt) (z,vs) to predict the SNR ~; of the target BS ¢ in this
group of UE locations. The SNR prediction algorithm is
explained in the next section.

In the online phase, the developed SNR mapping functions
will be used by BS s to predict the neighbor-cell SNRs of a
mobile user m that it serves. The prediction is solely based on
received signal measurements at BS s. First, the BS estimates
the large scale radio features R, ,, based on transmissions of
the user. Using out-of-sample extension of CC [11], UE m is
mapped to a CC location z,,. Given the CC location z,, and
received SNR v, .,,, BS s determines which groups the user
belongs to. For each possible target cell ¢, the BS estimates
the SNR by applying ggt) (Zm, Ys,m). A HO procedure can
then be implemented based on the difference between SNRs
Y¢,m and -ys ,, of the target and serving BSs. Other handover
parameters such as the Time-to-Trigger (TTT) can be applied
to avoid ping-pong events or early/late handover events.

IV. NEIGHBOR CELL SNR PREDICTION

Based on the annotated channel chart Cgt), source cell BS
s should find the function g§f>(.) that predicts the SNR 4, at
target cell ¢ for a transmission at any CC location z,, and
received SNR +, ,,, in the source cell.

We shall use machine learning methods to find this function.
The training set contains information of UEs k € gé”.
The inputs are channel chart coordinates z; and serving cell
SNRs ~s 1, while the target cell SNRs 4, ;, are outputs. We
consider dB-valued SNRs both at input and output, to have
the dynamic range of the variables under control, and take the
prediction Mean Squared Error (MSE) as the cost function to
be minimized.

We consider three learning algorithms for prediction; Gaus-
sian Process Regression (GPR), a Support Vector Machine
(SVM), and Neural Networks (NN).

The use of Gaussian processes in machine learning has been
comprehensively discussed in [26]. A Gaussian process is a
stochastic process with a finite number of random variables
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Fig. 4: Channel charting for a 10 BS network. Left: CC. Right: Ground truth spatial location in Manhattan Grid. Each color is associated
to UEs that are served by a BS. BS locations indicated by numeric labeled circles.

following a joint Gaussian distribution. Given a training sam-
ple set, a Gaussian process generalizes these samples to a
continuous function where each sample is considered to have
a normal distribution. The key idea is that the correlation
between the function values at different points depends on the
input values, and this dependency can be determined through
a covariance function, or a kernel. Taking the most probable
value for each possible input value, one gets a GPR.

SVM is another well known kernel method for regression,
which is able to learn the function between input and output by
using kernel functions to maximize the margin between classes
when transforming them to a higher dimensional space [27].

We compare GP and SVM to a NN based regression
function [28]. For this, we consider a fully connected neural
network, with three real-valued inputs, a number of hid-
den layers, and one real-valued output, providing the SNR
prediction. For the learning process, forward and backward
propagation phases are applied. First, weights are initialized
randomly. In the forward phase, the input is fed to the network
through input neurons, and is propagated across the hidden
layers until the output layer. The error between the predicted
output and the given output from the input data is calculated.
Then, in the backward phase, based on the error, we use the
Levenberg-Marquardt method to adjust the weights and biases
so that the output MSE is minimized. We split the data set
randomly into three sets; 80% is used for training, 10% for
validation and 10% for testing. To avoid overfitting, during
training, the performance is tested against the validation set.
Once the validation error is larger than the training error for
six consecutive iterations, we backtrack to the weights that
provided the smallest validation error. Prediction results are
then provided for the testing set.

The prediction accuracy of a NN depends on the weight
initialization; depending on initialization, the NN may con-
verge to different local optima. To mitigate this, we use several
random initializations to generate multiple NN predictors. The
NN that provides the best performance on the validation set
is selected.

To investigate the role of initialization we adopt a systematic

approach to determine the average performance as a function
of the number of random initializations. We set the maximum
number of initializations Ny,.x, generate the corresponding
NNs and evaluate the performance using the MSE of the
validation set. The average performance of a set Z,, consisting
of n random initializations for 1 < n < Nyax/2 is evaluated
by considering GG sets each of size n. For each set the NN
with best performance is selected, then averaged over G sets.

V. SIMULATION

An urban outdoor multi-cell mmWave scenario is consid-
ered as discussed in [10]. The system parameters are shown
in Table I. A ray tracing channel model is used to generate
multi-path channels. The UE locations are randomly generated
on the streets of a Manhattan grid. The CSI of the UEs are
estimated at multiple BSs.

First, to get a gist of CCNCH in a multicellular environment,
we consider a scenario with 10 BSs, 6 streets and 5000 UEs.
A channel chart based on Laplacian eigenmaps is generated
as shown in Figure 4. Each UE in this figure is colored based
on its best BS. For comparison, the ground truth location of
UEs and BSs are also shown.

For each of the BSs s =1, ..., 10, we construct CC groups
gs“) for handover target cells ¢ € 7T so that gé“ consists of
the UEs for which the two best BSs are s and ¢ in any order.
The SNR mapping function to predict the target BS ¢ in each
group gﬁ“ s=1,...,10 and t € T, is then created. NN, GPR
and SVM predictors are used.

For GPR, we select the exponential kernel, since it has the
best performance compared to other kernels functions for the
data set. A NN with three hidden layers with 10 neurons each
is used.

TABLE I: Simulation parameters [10].

Parameter Value Parameter Value
Carrier frequency  28GHz Bandwidth 256MHz
UE Tx power 23dBm  BS noise power —86dBm
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The Root Mean Squared Error (RMSE) of the predictors
are measured. The standard deviation of the RMSEs of the
predictors generated for different (s, t) pairs is also measured.
Both of these are measured in dBs. In Table II, a comparison
of the best NN to GPR and SVM is shown. NN outperforms
the other regression methods in terms of RMSE.

In the full network simulation, the data set for learning the
SNR prediction function was rather limited. For an ordered
pair (s,t) on average some 550 UE locations are sampled.
Already with this limited training set, NN outperforms the
other predictors. To further clarify the merits of the considered
predictors, we construct a larger data set for a pair of cells.
We drop a large number of UEs in the street where BSs 1 and
2 are located, and select at random a set of 7000 UE positions
that belong to g§2). Channel charting is performed based on
the CSI of these UEs, as measured at BS 1, and the CC is
annotated with the SNRs of BSs 1 and 2.

TABLE II: Performance comparison for the whole network; a data
set of 5000 users in the 10 cells.

Algorithm NN GPR SVM
RMSE 1.41 1.53 1.68
std (RMSE) 0.26 0.16 0.20

The effect of the number of initializations on NN per-
formance is investigated in Figure 7. The average RMSE
performance (with standard deviation error bars) for a NN with
[20, 20] hidden layers is plotted as a function of the number
of initializations n. Performance improves considerably when
increasing the number of initializations from n = 1 to n = 50.
Increasing the number of initializations to n > 150, only
marginal performance gain can be achieved as compared to
n = 150, which is used to create the results below.
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TABLE III: Performance of different NN structures & algorithms; a
data set of 7000 users in 952).

Hidden layer structure / Algorithm RMSE

10 0.95
20 0.93
30 0.91
[10 10] 0.89
[20 20] 0.87
30 30] 0.88
[10 10 10] 0.86
[20 20 20] 0.88
30 30 30] 0.88
[10 10 10 10] 0.88
[20 20 20 20] 0.88
GPR 101
SVM 1.55

We examine different NN structures in this setting. Results
for neural networks with different number of neurons and
hidden layers are shown in Table III. The results show the
benefit of a deeper network for the prediction task at hand.
Adding more layers to the NN we can better capture the
non-linearity of the predicted SNR. Based on RMSE, a NN
with three hidden layers and 10 neurons in each hidden layer
outperforms other structures. Growing the network beyond this
seems counterproductive. When choosing the best of n = 150
initializations, the standard deviation between different initial-
izations is ~ 0.03 for all of these NN structures. GPR also
benefits from the larger data set, but not as much as NN.

A sample of BS s = 1 predicting the SNR of ¢ = 2 is
depicted in Figures 5 and Figure 6. Figure 5 shows the ground
truth and predicted BS 2 SNR values in dB, plotted against the
ground truth locations. Figure 6, in contrast, shows the same
ground truth and predicted SNR values, plotted against the
CC locations z € Cgt), which are used as input for predictor
training. In addition, an approximate cell boundary is drawn,
to sketch the place where BS 2 becomes better than BS 1.

For HO, between cells s and t, the crucial variable to
control is the ratio of the SNRs ~, and -y, or their dB-domain
difference vy, —~y;. Figure 8 plots the predicted SNR difference
against the ground truth for s = 1,¢ = 2, with prediction
based on GPR. Similarly, Figure 9 shows the predicted SNR
difference based on a NN with structure [10 10 10], against the
ground truth. In addition, the 95% confidence interval for the
SNR difference prediction using GPR is plotted in Figure 10.

Interestingly, the edge of NN against GPR seems to arise in
the domain where y; is comparable or larger than o, while
for 9 much larger than -y;, the algorithms perform similarly.
This is encouraging for the prospect of using an NN-based
SNR predictor for CCNCH, as the ideal handover location
would be v = 1, and this border would be approached from
a direction where y; > s.

VI. CONCLUSION

We have considered an algorithm for learning the SNR of
a user in a neighboring cell from the signal received in a

Predicted value (dB)

L L L L L L
-20 -15 -10 -5 0 5 10 15
True value (dB)

Fig. 8: Predicted v1,x —2,x value vs ground truth for GPR predictor.

Predicted value (dB)
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-20 -15 -10 -5 0 5 10 15
True value (dB)

Fig. 9: Predicted v1,x — 72,1 value vs ground truth for NN predictor.
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Fig. 10: Upper and lower bounds of the 95% confidence intervals for
predicted value of v1,x — 42, vs. ground truth using GPR predictor.



serving cell. The learning is based on a channel chart, which
is a dimensional reduction of multiuser radio channel state
information measured at the serving BS. A handover algorithm
can be designed based on the predicted SNR of the target BS.
We apply a network centric handover model, based on uplink
CSI measurements at the serving cell. In online operation,
when SNRs of users are predicted for handover management
purposes, neither downlink channel measurements at the UE
terminal nor measurements performed at neighboring base
stations, nor physical location information is needed to predict
the SNR of a user at a neighboring BS. Three different
regression learners have been considered for SNR prediction;
Gaussian Process Regression, Support Vector Machines, and
Neural Networks. Performance of each learner is evaluated
based on RMSE. Simulation results show that NN outperforms
other methods. In future work, the NN structure will to be
refined in order to reduce the prediction error. Refined cost
functions which target the prediction capability towards the
region most important for handovers, will be considered, and
beam handover, pertinent for 5G networks, will be investi-
gated.
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