
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Liu, Gao; Dong, Huidong; Yan, Zheng; Zhou, Xiaokang; Shimizu, Shohei
B4SDC: A Blockchain System for Security Data Collection in MANETs

Published in:
IEEE Transactions on Big Data

DOI:
10.1109/TBDATA.2020.2981438

Published: 01/06/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Liu, G., Dong, H., Yan, Z., Zhou, X., & Shimizu, S. (2022). B4SDC: A Blockchain System for Security Data
Collection in MANETs. IEEE Transactions on Big Data, 8(3), 739 - 752.
https://doi.org/10.1109/TBDATA.2020.2981438

https://doi.org/10.1109/TBDATA.2020.2981438
https://doi.org/10.1109/TBDATA.2020.2981438

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

B4SDC: A Blockchain System for Security Data
Collection in MANETs

Gao Liu, Huidong Dong, Zheng Yan, Senior Member, IEEE , Xiaokang Zhou, Shohei Shimizu

Abstract—Security-related data collection is an essential part for attack detection and security measurement in Mobile Ad Hoc
Networks (MANETs). A detection node (i.e., collector) should discover available routes to a collection node for data collection and
collect security-related data during route discovery for determining reliable routes. However, few studies provide incentives for
security-related data collection in MANETs. In this paper, we propose B4SDC, a blockchain system for security-related data collection
in MANETs. Through controlling the scale of Route REQuest (RREQ) forwarding in route discovery, the collector can constrain its
payment and simultaneously make each forwarder of control information (namely RREQs and Route REPlies, in short RREPs) obtain
rewards as much as possible to ensure fairness. At the same time, B4SDC avoids collusion attacks with cooperative receipt reporting,
and spoofing attacks by adopting a secure digital signature. Based on a novel Proof-of-Stake consensus mechanism by accumulating
stakes through message forwarding, B4SDC not only provides incentives for all participating nodes, but also avoids forking and
ensures high efficiency and real decentralization. We analyze B4SDC in terms of incentives and security, and evaluate its performance
through simulations. The thorough analysis and experimental results show the efficacy and effectiveness of B4SDC.

Index Terms—MANETs, security-related data collection, incentive mechanism, blockchain.

F

1 INTRODUCTION

MANET suffers from different attacks due to self-
organization [1]. In order to provide a secure and

high-quality networking service, security-related data col-
lection becomes essential for network attack detection and
security measurement. Security-related data, in short secu-
rity data, are the data that can be used to discover network
threats and measure its security. In data collection, after
receiving the request of a collector or detection node, collec-
tion nodes send it sensed security data [2]. Since there is no
fixed infrastructure in MANETs, nodes cooperate to forward
the request and security data. In order to ensure efficient
collection, a collector should discover available routes to
collection nodes through route discovery, so that the re-
quest and security data can be transmitted via these routes.
However, the route discovery suffers from various attacks,
e.g., wormhole and rushing attacks [1]. Existing detection
mechanisms can help a collector to detect these attacks and
select reliable routes [13], but the collector should analyze
security data provided by forwarders of control information
for making decisions, e.g., the timestamps of receiving and
sending a packet, the location of forwarders. Unfortunately,
few studies provide incentives for security data collection
in MANETs. Forwarders might not be willing to sense and
provide security data due to extra overload, selfishness, etc.,

• G. Liu and H.D. Dong are with the State Key Laboratory on Integrated
Services Networks and the School of Cyber Engineering, Xidian Univer-
sity, Xi’an, 710126 China.

• Z. Yan is with the State Key Laboratory on Integrated Services Networks
and the School of Cyber Engineering, Xidian University, Xi’an, 710126
China, and with the Department of Communications and Networking,
Aalto University, Espoo, Finland.

• X. Zhou and S. Shimizu are with the Faculty of Data Science, Shiga
University, Hikone, Japan and RIKEN Center for Advanced Intelligence
Project, Tokyo, Japan.
E-mail: zyan@xidian.edu.cn.

so that the collector could not collect sufficient security data
for detection. As a result, the accuracy of threat detection
and security measurement cannot be ensured.

Current methods to provide incentives mainly make use
of reputation and micropayment systems [3]. However, the
present studies in this field are still facing a number of
issues to be applied into security data collection in MANETs.
First, these mechanisms do not consider spoofing attacks
that an attacker launches for maximizing its profits due
to no identity management. Second, reputation systems
might not resist collusion attacks that selfish nodes raise
for improving their reputation, and do not specify the
type of incentive (e.g., what profit can be brought by high
reputation.) Furthermore, a highly reputable node might
suddenly have malicious behaviors. Third, micropayment
systems allow a collector to pay to collection nodes and
forwarders for their cooperation and contributions, but most
of them require a trusted third party to manage debiting
and crediting accounts. This kind of design is obviously
infeasible for MANETs since such a trusted third party
is hard to be deployed. Fourth, in some micropayment
systems for route discovery, a source node pays control
information forwarders, but cannot constrain its payment,
which is caused by an uncontrolled RREQ forwarding scale
[3]. In addition, some existing systems allow the source node
to only pay the forwarders in discovered routes, which is
unfair to the nodes that have participated in route discovery
but are not in the routes [5].

In order to solve the above issues, a distributed incen-
tive system for security data collection is highly expected,
which should resist spoofing, collusion and excessive for-
warding, and feature fairness, and should not rely on a
trusted third party. We found that blockchain [6], [7] is
a candidate technology to help achieving the above goals
due to its advantages, e.g., transparency, immutability, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

self-organization. In a blockchain system, a miner collects
transactions, generates a block and provides it to other
miners with a proof of work (e.g., the proof of computing
and storage) to gain the majority of acceptance, which is
called consensus. In general, the incentive for miners is
provided in a form of digital tokens, e.g., bitcoin [8]. At the
same time, the transaction can help incenting security data
collection.

However, the blockchain itself is still facing many tech-
nical challenges, namely forking, low efficiency and a trend
of centralization. Based on the current literature review
[9], [10], consensus mechanisms mainly include Proof of
Work (PoW), Byzantine Faulty Tolerant (BFT), Proof of
Sake (PoS), Proof of Useful Work (PoUW) and Trees and
Directed Acyclic Graphs (DAGs). PoW and PoUW take the
risk of temporary forking due to network latency. PoW
wastes a lot of resources since it is a meaningless task.
Its transaction confirmation time is long, thus negatively
impacting its throughput. PoW and PoUW take the risk of
centralization due to the outsourceability of tasks. Because
PoS consumes almost no resources, a miner might create
two blocks to cause forking. Many BFT based consensus
mechanisms focus on scalability, but they provide no in-
centives for miners. Trees and DAGs can replace the chain
structure of blockchain for ensuring a high throughput and
avoiding double spending, but some trees and DAGs based
consensus mechanisms [11], [12] also employ PoW, thus
suffering from the same problems of PoW, namely forking,
low efficiency and the risk of centralization.

In this paper, we propose B4SDC, a blockchain sys-
tem that provides incentives for security data collection
in a distributed way in MANETs. Through controlling the
scale of RREQ forwarding in route discovery, a collector
can constrain its payment and simultaneously make each
forwarder of control information obtain rewards as much
as possible to ensure fairness. At the same time, B4SDC
avoids collusion attacks with cooperative receipt reporting,
and spoofing attacks by adopting a secure digital signature.
Based on a novel Proof-of-Stake consensus mechanism by
accumulating stakes through message forwarding, B4SDC
not only provides incentives for all participating nodes,
but also avoids forking and ensures high efficiency and
real decentralization at the same time. With the above
ways, B4SDC successfully avoids collusion and spoofing at-
tacks, allows collectors to control their maximum payments,
and ensures fairness for collection participants as much as
possible. It also solves current blockchain systems’ main
problems, namely forking, low efficiency and centralization.
Specifically, the contributions of this paper can be summa-
rized as follows.

(1) B4SDC provides incentives for collection participants.
It encourages nodes to forward control information that
includes security data in route discovery. After routes are
discovered, the nodes in selected routes are incented to
forward the request of a collector and the security data of
collection nodes.

(2) B4SDC removes the need for a trusted third party
in many micropayment systems by adopting blockchain. It
adopts a secure digital signature for signing sent messages,
thus avoiding spoofing attacks. At the same time, B4SDC
allows collection participants to cooperatively report their

received receipts to miners for gaining rewards, thus resist-
ing collusion attacks and ensuring fairness for all collection
participants as much as possible. In addition, a collector can
constrain the scale of RREQ forwarding in route discovery,
thus it can balance its budget.

(3) B4SDC provides a novel consensus mechanism. Block
creation is proposed to ensure the distribution and efficiency
of blockchain by avoiding the simultaneous generation of
many valid blocks and reducing communication burdens.
Single block winner selection is performed to make B4SDC
free from forking when multiple valid blocks are created at
the same time.

The rest of this paper is organized as follows. Section 2
briefly overviews background and related work. Section 3
and Section 4 present problem statements and the design of
B4SDC, respectively, followed by analysis and performance
evaluation in Section 5. Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 An Overview of Route Discovery

Mainstream routing protocols adopt route discovery [13] for
data transmission, such as DSR and AODV protocols [29],
[30]. In the route discovery, a source node floods a RREQ
including its and destination node’s addresses. When a node
receives the RREQ and it is not the destination node and has
no routes to the destination node, it adds its address into the
RREQ and then forwards this RREQ. If the destination node
or an intermediate node having routes to the destination
node receives the RREQ, it creates a RREP including a whole
route path and sends the RREP to the source node in the
reverse of the path.

2.2 Incentive Systems

Current incentive systems mainly include reputation and
micropayment systems. Most of them rarely take spoofing
attacks [32], [33] into consideration, since no identity man-
agement is adopted for nodes.

Reputation Systems: Nodes monitor traffic from their
neighbors for determining whether these neighbors forward
packets. If a node finds its neighbor does not forward
packets, it considers the neighbor uncooperative and broad-
casts an uncooperative reputation into the network [3], [4].
However, reputation systems do not specify the type of
incentive, especially what profits a node can obtain with a
high reputation. In addition, selfish nodes could collude to
improve their reputation, and a highly reputable node could
suddenly have malicious behaviors [23].

Micropayment Systems: Many micropayment systems
allow nodes to forward packets for obtaining receipts. These
nodes can send the obtained receipts to a third party for
crediting and debiting accounts [3], [34]. However, it is
not feasible to deploy this third party in MANETs, since
MANETs have no fixed infrastructure and thus have no any
management center. In addition, the party might be hacked
or compromised. In some micropayment systems [3] for
route discovery, a source node encourages the cooperation
of control information forwarders for discovering routes to
destination nodes, thus it pays these forwarders for incent-
ing them. However, it cannot control the scale of RREQ

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Certificate and

task issuer

Collection participants

Miners

Consensus

layer

Receipt

collection

layer

Task BlockReceipt

Fig. 1. System model

forwarding, which suggests it cannot limit the amount of
payment. In some systems [5], when a route is discovered,
the source node only pays control information forwarders
in the route, but other nodes that have participated in
route discovery but are not located in the route cannot
obtain rewards. Thus, the fairness to all participants in route
discovery is not guaranteed.

2.3 Blockchain Technology
PoW Based Consensus Mechanisms: Bitcoin employs PoW
to make each node agree on some transactions. Due to tem-
porary forking caused by network latency, users wait at least
six blocks (i.e., expected 1 hour) for confirming a transaction
according to the longest chain principle. It also wastes many
resources for solving a puzzle. At the same time, bitcoin also
faces the risk of centralization due to the outsourceability of
mining tasks. Many consensus mechanisms that adopt PoW
have the limitations of bitcoin, such as Permacoin [22] that
repurposes the storage of bitcoin.

PoUW Based Consensus Mechanisms: PoUW is usually
a non-interactive proof of meaningful computation and
storage that can convince any miners. Many PoUW based
consensus mechanisms only construct the proof, but fail to
show how to achieve the consistency of blockchain. There-
fore, they suffer from temporary forking due to network la-
tency [22]. In addition, many PoUW consensus mechanisms
allow to split a task into subtasks, which might result in the
outsourceability of tasks [26]. As a consequence, they take
the risk of centralization.

BFT Based Consensus Mechanisms: BFT agreement pro-
tocols allow a set of servers to replicate a service. In
much work [24] on BFT, its performance and scalability
are emphasized as challenges. However, the set of servers
should be chosen and determined in advance, and these
servers might become attack targets. If everyone has the
right to be a server, Sybil attacks [25] are a potential risk.
BFT based consensus mechanisms inherit the limitations of
BFT. In addition, BFT based consensus mechanisms face the
challenge of lack of incentives for motivating determined
servers to be online and perform honestly [9].

PoS Based Consensus Mechanisms: In PoS, each user has
its weight, which represents the probability that it is chosen
as a leader to create the next block of blockchain. Because
creating a block costs almost no resources, a malicious miner
might create two blocks, thus causing forking. Meanwhile,
adversaries can divide their credits among some users that
might be chosen as leaders. Therefore, although a malicious
leader is discovered, the penalty that the adversaries take

is low. In some PoS based consensus mechanisms, a private
key is required for signing the correct branch of blockchain
in order to mitigate forking, but occasional forks have
appeared [27]. PoS based consensus mechanisms also have
the risk of centralization due to the outsourceability of tasks
[28].

Trees and DAGs Based Consensus Mechanisms: In order
to increase the throughput of bitcoin and solve conflicts (i.e.,
double spending), some consensus mechanisms [11], [12]
were proposed that adopt a tree or DAG structure as the
blockchain’s underlying ledger instead of chains. However,
these consensus mechanisms rely on PoW, thus having its
limitations.

3 PROBLEM STATEMENTS

3.1 System Model
As shown in Fig. 1, B4SDC involves three types of entities:
certificate and task issuer, collection participant and miner.

The certificate and task issuer is responsible for issuing
certificates and tasks, which can be a blockchain system for
key management, PKI or identity management to ensure
decentralization [14], [15], [16]. It does its work honestly for
rewards since the published certificates and tasks should
obtain the consensus of B4SDC blockchain.

In the receipt collection layer, collection participants
involve collectors, forwarders and collection nodes. The
collectors discover routes to collection nodes with route
discovery, and select some reliable routes to publish requests
and receive security data from collection nodes, since the
route discovery allows the collectors to collect security data
from each forwarder for detecting potential attacks and
obtaining reliable routes. The forwarders help forwarding
received messages including security data. Each collection
node and forwarder can use received messages as receipts
and share these receipts to miners. In this layer, each node
is not fully trusted since it might forge receipts for rewards.

In the consensus layer, after collecting sufficient receipts
and receiving a task, the miners create and publish blocks
for consensus. The majority of miners accept one block as
the next block of blockchain. It is hard to ensure each miner
is trusted since the miner might be hacked or compromised.

3.2 Assumption
Suppose an adversary can control a small number of miners,
but its control is limited. It is impossible that all the miners
are attacked and functionally down. The remaining miners
behave independently and are rational to maximize their
gains when investing resources into mining. The time of
all the miners is supposed to be synchronized, which can
be achieved with the help of public GPS signals [17] or a
public time blockchain [18]. Because time synchronization
can be achieved in the level of nanoseconds. Although
this assumption restricts B4SDC, it is justified compared to
secure incentive provisions for security data collection. In
addition, miners cannot forge timestamps, since miners in
the network are monitored by their neighbors and nodes can
employ some lightweight external methods (e.g., wormhole
attack detection [17]) to detect this kind of misbehavior.

Each node holds its own unique private/public keys in
Elliptic Eurve Cryptosystem (ECC) and uses the private key

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

h h h

Data Data Data Data

h h

Block K structure

Block header

-K 1

mr

T, h ,mt

pk, CE , t

Block body

=vTX ,v 0, ,L

=
qct

TX ,q 0, ,X

=
pcc

TX ,p 0, ,Y

mrTX

Fig. 2. Block structure

TABLE 1
Notations

Symbols Descriptions

CEmr The certificate of block creator issued by the certifi-
cate and task issuer.

TXmr The transaction that a miner uses to consume the
age of some tokens for competing for the creator of
the next block.

TXv The receipt of node Nv collected when it participates
in route discovery and security data item collection.

TXct The fresh deposit message for route discovery.
TXcc The fresh deposit message for security data item

collection.
ski The private key of node Ni.
pki The public key of node Ni.
CEi Ni’s certificate issued by the certificate and task

issuer.
sigsk(·) The signature with the private key sk.
NLi The public key list of Ni’s neighbors.
kh The number of neighbors that each node at hop h

selects as the receivers of RREQ.
PAdj A reliable route from the source node N0 to the

destination node Ndj .
nb The number of the latest referenced blocks of the

blockchain.
nbthr The threshold of the number of blocks that a miner

creates in the latest nb blocks of the blockchian.
nthr The threshold of the number of receipts that a miner

should insert into its created block.

for signing messages. This can be achieved by allowing each
node to register at the certificate and task issuer. Otherwise,
potential attacks might disturb security data and receipt
provision and detection mechanisms. Suppose that nodes
do not attempt to share their private keys to other nodes,
since such sharing suggests their tokens are shared.

4 B4SDC DESIGN

In this section, we describe the design of B4SDC, including
the block structure and receipt collection. A novel consensus
mechanism is introduced for the block creation and block
winner selection with an incentive mechanism. We discuss
how to balance the budget of collector for route discovery
and security data item collection finally. TABLE 1 summa-
rizes the notations used in this paper.

4.1 Block Structure
The block structure of B4SDC is shown in Fig. 2. In the
block K’s header, T is a task that the certificate and task

issuer publishes. hK−1 is the hash value of previous block
header (i.e., the header of block K − 1). pk is the ECC
public key of creator of block K , and CEmr is the certificate
corresponding to pk that is issued by the certificate and task
issuer. t represents the time when the block K is created.
In the block K’s body, TXmr is a transaction that a miner
uses to consume the age of some tokens for competing
for the block creator. TXv , v = 0, . . . , L is the receipt of
node Nv collected when it participates in route discovery
and security data item collection. TXctq , q = 0, . . . , X and
TXccp , p = 0, . . . , Y are fresh deposit messages for route
discovery and security data item collection, respectively. In
addition, mt in the header represents the root of Merkle
tree constructed with TXmr , TXv , v = 0, . . . , L, TXctq ,
q = 0, . . . , X and TXccp , p = 0, . . . , Y .

4.2 Receipt Collection

Before the consensus, receipt collection should be per-
formed. It consists of Node Registration, Receipt Generation,
and Receipt Sharing.

1) Node Registration
Each node provides its public key to and obtain its

certificate from the certificate and task issuer.
1. Each node Ni generates a pair of private/public keys

(ski, pki) based on ECC, and uses pki to register at the
certificate and task issuer NTI .

2. NTI equipped with a pair of public/private
keys (skTI , pkTI) generates the certificate CEi =
{pkTI , sigskTI

(pki)} with Elliptic Curve Digital Signature
Algorithm (ECDSA) [35] and issues it to Ni.

2) Receipt Generation
A collector discovers routes to some collection node with

route discovery, which involves security data collection for
detection since potential attacks might exist in the route
discovery. The collector adopts reliable discovered routes
to send a request and collect security data from collection
nodes. Each of collection participants (except the collector)
considers its received messages as receipts.

Route Discovery
A collector discovers routes to a collection node by

broadcasting a RREQ and receiving RREPs. Each partici-
pant of route discovery (except the collector) considers its
received control messages as receipts.

1. Through neighbor discovery, each node Ni records
the public key list NLi of its neighbors, and periodically
publishes SNLi = {CEi, pki, NLi, ti, sigski(NLi, ti)}.

2. Based on collection strategies, the collector N0 at-
tempts to discover routes to the selected collection node Nd
for security data collection. In order to avoid the collector’s
unreliable payment (e.g., double spending), N0 should send
a blockchain (i.e., B4SDC blockchain, not NTI) the deposit
message TXct = {CE0, pk0, UID,NU0} to deposit NU0

tokens for the unique identity UID of RREQ in advance.
If N0 makes sure that its message TXct is inserted into
blockchain, it can use NU0 tokens as the budget for route
discovery. Then it determines appropriate Time To Live
(TTL) and k = {kh : h = 0, . . . , TTL−1} due to its budget,
which is discussed in Section 4.4 later on. kh is the number
of neighbors that each node at hop h selects as the receivers
of RREQ.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

N

N

N

0
N

01
N

11
N

22
N dN

02
N

vN
(

)
0

1

0

1

1

0

,

,

Q
pk
pk

s

(

)
0

1

0

1

1

0

,

,

Q
pk
pk

s

12
N

0
2k =

1
2k =

(

)

0

0

1

0

1

2

2

1

,

,

Q
pk
pk

s

(

)

0

0

1

0

1

2

2

1

,

,

Q
pk
pk

s (

)

1

2

1

1

2

1

,

,
d

Q
pk
pk

s

(
)

1

2

1

1

2

1

,

,
d

Q
pk
pk

s
,d

d

P
d

1

1

1

1

,
P
d

1

1

2

2
,

P
d

0

0

1

1
,
P
d

0 01 1
,P d

1 11 1
,P d

Fig. 3. An example of route discovery

3. N0 randomly selects its k0 neighbors N01 , . . . , N0k0

as the receivers of its RREQ, whose public keys are
pk01 , . . . , pk0k0

respectively. Then it computes BI = {CE0,
pk0, UID, pkd, TTL, k, sigsk0(UID, pk0, pkd, TTL, k)},
and obtains its RREQ Q0 = {BI, h = 0, RL, pk01 , . . .,
pk0k0

, SD, t
′

0} with the signature σ0 = sigsk0(Q0), where
pkd is the public key of destination node Nd, RL the route
list, SD the security data list including N0’s security data,
and t

′

0 the time of sending Q0. If |NL0| < k0, N0 selects its
all neighbors as RREQ receivers.

4. After receiving Qi = {BI,CEi, pki, h,RL, pki1 , . . . ,
pkiki

, SD, t
′

i} and σi = sigski(Qi) from Ni for the first
time, Ni+1 can check that the collector does not make an
unreliable payment by accessing the blockchain, its public
key pki+1 belongs to {pki1 , . . . , pkiki

} and h < TTL, and
then verifies CE0 in BI , CEi and σi. If all verifications
hold, Ni+1 saves Qi and σi as receipts, then increases h
by 1, inserts its public key into RL, selects ki+1 neigh-
bors whose public keys are pki+11 , . . . , pki+1ki+1

, adds
its sensed security data into SD, and generates Qi+1 =
{BI,CEi+1, pki+1, h,RL, pki+11 , . . . , pki+1ki+1

, SD, t
′

i+1}
and σi+1 = sigski+1

(Qi+1) . Finally, it broadcasts Qi+1 and
σi+1.

In order to prevent Ni from selecting few receivers by
deliberately inserting less than ki public keys in the RREQ
for saving resources, each node Nv can serve as an observer
for monitoring the behaviors of its neighbor. If Nv finds that
the neighbor list NLi of its neighbor Ni satisfies |NLi| ≥ ki
andNi forwardsQi to less than ki neighbors, it can send the
blockchain the report TXv = {CEv , pkv , RPv = (SNLi,
Qi, σi), SIGv = sigskv (RPv)}, thus obtaining rewards by
deducting Ni’s rewards. Therefore, nodes are incented to
provide security data and forward the RREQ.

5. When the destination node Nd or the intermediate
node Nw having a route to the destination node receives
the RREQ with a signature, it can check that the collector
makes a reliable payment by accessing the blockchain, its
public key belongs to the public key list in the RREQ and
h < TTL. If all verifications hold, Nd or Nw saves the re-
ceived RREQ and corresponding signature as receipts. Then
Nd inserts its sensed security data into SD, and generates
the RREP Pd = {BI,CEd, pkd, RL, SD, sigskd(BI,RL)}
with the signature δd = sigskd(Pd). Nw adds its

sensed security data into SD, and creates the RREP
Pw = {BI,CEw, pkw, RL, SD, sigskw(BI,RL)} with δw =
sigskw(Pw). Note that RREP’s RL is a whole route path
from N0 to Nd, and SD has all security data recorded in
the received RREQ. Finally, Nd or Nw forwards its RREP
with the signature in the reverse direction of route from N0

to Nd.
6. When Ni en route (derived from RL) receives

a RREP and a signature from Ni+1, namely Pi+1 =
{BI,CEw, CEi+1, pkw, pki+1, RL, SD, sigskw(BI,RL)}
or Pi+1 = {BI,CEd, CEi+1, pkd, pki+1, RL, SD, sigskd
(BI,RL)} with δi+1 = sigski+1

(Pi+1), it verifies the
involved signatures. If all verifications hold, Ni saves Pi+1

and δi+1 as receipts, then inserts its sensed security data
into SD, and generates and sends Pi and δi to Ni−1 en
route. When N0 receives valid P1 and δ1, the common
neighbor Nv of N0 and N1 can collect P1 and δ1, and
share TXv = {CEv, pkv, RPv = (SNL0, SNL1, P1, δ1),
SIGv = sigskv (RPv)} to the blockchain for rewards.

An example of route discovery is shown in Fig. 3. The
collector N0 sets TTL = 2, k0 = k1 = 2. N0 selects
two receivers N10 and N11 , and broadcasts the RREQ
Q0(pk10 , pk11) with its signature σ0, where pk10 and pk11
represent the public key of N10 and N11 , respectively.
N10 and N11 verify {Q0(pk10 , pk11), σ0}. If all verifications
hold, N10 and N11 broadcast {Q10(pk20 , pk21), σ10} and
{Q11(pk22 , pkd), σ11}, respectively. At hop h = 2, Nd and
N21 that has a route to Nd receive RREQs, and they verify
their received RREQs. If all verifications hold, Nd generates
the RREP with its signature, {Pd, δd}, and N21 creates
{P21 , δ21}. Nd and N21 send their generated RREPs and
corresponding signatures to N0 through the reversed path.
N0 discovers two routes, N0 → N10 → N21 → . . . → Nd
and N0 → N11 → Nd. Each node (except N0) stores
its received messages as receipts, and shares them to the
blockchain for rewards.

Security Data Item Collection
A collector sends a request to collection nodes, and then

receives security data items from these nodes. Each partic-
ipant of security data item collection (except the collector)
regards its received messages as receipts.

1. When the collector N0 has discovered routes to col-
lection nodes, it can determine the reliable route PAdj
to each collection node Ndj for security data collection
(e.g., by adopting wormhole attack detection). These col-
lection nodes and corresponding routes are denoted as
{Nd0 , . . . , Ndc} and PA = {PAd0 , . . . , PAdc} respec-
tively. The collector also deposits some tokens in ad-
vance in order to avoid unreliable payments. In detail,
it sends the blockchain the deposit message TXcc =
{CE0, pk0, DI,NU1} to deposit NU1 tokens, where DI is
the unique identity of request. If the collector knows TXcc

has been added into the blockchain, it can start to generate
and broadcast the request with the unique identity DI .

2. N0 generates and broadcasts the request DT0 =
{CE0, pk0, DI, PA, sigsk0(DI, PA)} with the signature
ϕ0 = sigsk0(DT0).

3. After receiving DTi = {DT0, CEi, pki} and ϕi =
sigski(DTi) from the neighbor Ni, the node Ni+1 can
check that the collector makes a reliable payment by ac-
cessing the blockchain, uses DTi’s PA to check it is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

N

N

N

0
N

01
N

11
N

0

0

,

D
T

j

1d
N

2d
N

0d
N

0

0

1

1

,

D
T

j

0

0

,
d

d

S
D
I

f

0

0

1

1

,

S
D
I

f 1

1

1

1

,

SD
I
f

v
N

0

0
,

D
T
j

1

1

1

1

,

D
T

j

1

1

1

1
,

D
T
j

1

1

,
d

d

S
D
I

f

2

2
,d
d

S
D
I

f

0 01 1
,SDI f

1 11 1
,SDI f

N

N

N

N

2

2

Fig. 4. An example of security data item collection

a legitimate receiver, and verifies involved signatures.
If all verifications hold, Ni+1 considers DTi and ϕi as
receipts, then creates and broadcasts the new request
DTi+1 = {DT0, CEi+1, pki+1} with the signature ϕi+1 =
sigski+1(DTi+1).

4. When the destination node Ndj receives the request
from N0, it checks the payment of collector is reliable
by accessing blockchain, then checks it is a legitimate
receiver and verifies the validity of request through in-
volved signatures. If all verifications hold, Ndj consid-
ers the received request and signature as receipts, then
creates the security data item SDIdj = {DT0, CEdj ,
pkdj , SDdj , sigskdj (DT0, SDdj)} with the signature φdj =

sigskdj (SDIdj), and then forwards SDIdj and φdj to N0 in
the reverse of route from N0 to Ndj .

5. If Ni receives SDIi+1 = {SDIdj , CEi+1, pki+1} and
φi+1 = sigski+1

(SDIi+1) from Ni+1, it verifies the validity
of SDIi+1 and φi+1. If all verifications hold, Ni saves
SDIi+1 and φi+1 as receipts, then generates and forwards
SDIi = {SDIdj , CEi, pki} with φi = sigski(SDIi) in the
reverse of route from N0 to Ndj . As a result, N0 can obtain
the security data SDdj from Ndj . When N0 receives valid
SDI1 and φ1, the common neighbor Nv of N0 and N1 can
collect SDI1 and φ1, and send TXv = {CEv, pkv, RPv =
(SNL0, SNL1, SDI1, φ1), SIGv = sigskv (RPv)} to the
blockchain for rewards.

We show an example of security data item collection
in Fig. 4. N0 has an idea about routes to Nd0 , Nd1 and
Nd2 in advance. After receiving a request that includes the
routes and verifying its validity, Nd0 , Nd1 and Nd2 generate
security data items with signatures, and send them to N0

via the reversed path of the route. Each node (except N0)
stores received messages as receipts, and send them to the
blockchain for rewards.

Receipt Sharing
1. Each node Nv broadcasts TXv = {CEv, pkv, RPv,

SIGv}, where RPv = {Qiv , σiv}, {Piv , δiv}, {DTiv , ϕiv},
{SDIiv , φiv} or {SNLi, Qi, σi}, and SIGv = sigskv (RPv)
is Nv’s signature on RPv .

2. Miners collect and verify TXct with new UID, TXcc

with new DI and TXv , since a miner will obtain rewards
in the case that it successfully adds these messages into the

Input: T = {pkTI , T ID, nb, nbthr , nthr , TAG, θ, sigskTI
(TID, nb, nbthr, nthr , TAG, θ)}, the hash value hK−1 of the
header of block K − 1, TXv, v = 0, . . . , L, TXctq , q = 0, . . .,
X , TXccp , p = 0, . . ., Y , the ECC public key and corresponding
certificate of a miner (i.e., pk and CEmr), the timestamp t

Output: block K
1 if the miner has created npk(npk < nbthr < nb) blocks within the latest nb

blocks of blockchain then
2 Generate a transaction TXmr = {pk,AM};
3 Obtain mt, i.e., the root of Merkle tree generated with

TXv, v = 0, . . . , L, TXctq , q = 0, . . . , X and TXccp ,
p = 0, . . . , Y , where L ≥ nthr ;

4 Compute the hash value
Hpk = h(TID‖hK−1‖mt‖pk‖CEmr‖t);

5 if Hpk ≤ TAG ∗ w(AM) then
6 Insert T, hK−1, TXmr , TXv, v = 0, · · · , L, TXctq , q = 0,

. . ., X , TXccp , p = 0, . . ., Y , mt, pk, CEmr and t into
block K;

7 end
8 end
9 return block K;

Algorithm 1: Creation of block K

blockchain.

4.3 Consensus Mechanism

We propose a novel consensus mechanism for B4SDC,
which aims to solve three main technical challenges of
blockchain, i.e., forking, low efficiency, and centralization.
Based on the last block of blockchain, miners in different
locations compete to create the next block, and only one
of published valid blocks is accepted as the next block.
The consensus mechanism consists of block creation, block
winner selection and an incentive mechanism.

Block Creation
NTI publishes the task T = {pkTI , T ID, nb, nbthr , nthr ,

TAG, θ, sigskTI
(TID, nb, nbthr, nthr , TAG, θ)} periodi-

cally, which triggers the block creation. TID is the unique
identity of T . nb is the number of the latest referenced
blocks of the blockchain. nbthr represents the threshold of
the number of blocks that a miner creates in the latest nb
blocks of blockchain. nb and nbthr prevent a powerful miner
from generating the majority of blocks of blockchain for
controlling the blockchain, thus ensuring the decentraliza-
tion. nthr is the threshold of the number of receipts that a
miner should insert into its created block, which ensures
sufficient receipts can be inserted into the blockchain. TAG
is a difficulty value, which is set to avoid the simultaneous
creation of many valid blocks and thus helps reducing
communication burdens. θ represents the time window that
a miner waits for more valid blocks after receiving the first
valid block.

Algorithm 1 shows the creation of block K . TXmr

means that the miner uses the age of AM tokens for making
it become the creator of the next block. We denote the age of
one token as the blockchain length from the block involving
this token to the block K , and the miner uses tokens whose
ages are the biggest. If TXv is inserted into blockchain, this
suggests that a collector gives rewards to others and thus
the age of related tokens goes to 0. w(AM) represents the
weight of age of AM tokens for adjusting the difficulty of
the miner to create a valid block. The bigger the age of
used AM tokens is, the easier the miner generates a valid
block, since it is applied to control the difficulty of block
generation. If a miner generates a valid block successfully

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Input: Bca 0, Bca 1

Output: block winner
1 if tca 0 6= tca 1 then
2 Set the block whose timestamp is earlier as the winner;
3 end
4 else if tca 0 = tca 1 then
5 if npkca 0

6= npkca 1
then

6 Set the block whose creator has created the fewer blocks within
the latest nb blocks of blockchain as the winner;

7 end
8 else if npkca 0

= npkca 1
then

9 if Lca 0 6= Lca 1 then
10 Set the block that includes more receipts as the winner;
11 end
12 else if Lca 0 = Lca 1 then
13 Set the block whose related hash value is smaller as the

winner;
14 end
15 end
16 end
17 return block winner;

Algorithm 2: Block Winner Selection

and has not received valid blocks from others, it publishes
its created block. When another miner receives this block, it
can verify the validity of block by running Algorithm 1.

Block Winner Selection
Multiple valid blocks might be created at the same time.

We design how to choose one of them as the block winner
(i.e., the next block).

Aiming to summarize selection rules, Algorithm 2
shows determining the winner from two valid block candi-
dates Bca 0 and Bca 1. They have two timestamps tca 0 and
tca 1, and Lca 0 and Lca 1 receipts, respectively. In addition,
both blocks’ creators have created npkca 0

and npkca 1
blocks

within the latest nb blocks of blockchain. If tca 0 6= tca 1,
the block whose timestamp is earlier is considered as the
winner for ensuring the efficiency of block creation. When
tca 0 = tca 1 and npkca 0

6= npkca 1
, the block whose creator

has generated fewer blocks within the latest nb blocks of
blockchain is regarded as the winner for preventing a miner
from controlling the blockchain by generating the majority
of blocks of blockchain. If tca 0 = tca 1, npkca 0

= npkca 1

and Lca 0 6= Lca 1, the block including more receipts is
the winner. When tca 0 = tca 1, npkca 0

= npkca 1
and

Lca 0 = Lca 1, the block whose relative hash value Hpk is
smaller is regarded as the winner.

The valid blocks received by each miner might be differ-
ent due to network latency. Thus, we show how to mitigate
the inconsistency of block reception in order to avoid fork-
ing. If a miner receives the first valid block, it stops mining
and sets the time window θ for receiving valid blocks from
other miners. When a miner succeeds in generating a valid
block but has not received valid blocks from other miners, it
publishes its created block, waits θ for other valid blocks,
and considers its block as the first received valid block.
Because creating a valid block successfully before receiving
other valid blocks can be considered as receiving the block
ahead of the other blocks. θ can be adjusted and published
by NTI due to network variations. The miner refuses to
receive future blocks once θ expires. Finally, the miner
performs block winner selection on all received valid blocks
for determining the winner.

Incentive Mechanism
B4SDC should not only provide incentives for security

data collection in route discovery and security data item

collection, but also encourage the certificate and task issuer
to periodically publish a task and miners to insert receipts
and deposit messages into the blockchain.

In order to resist the collusion attacks of collector and
intermediate nodes (i.e., intermediate nodes do not report
their receipts deliberately,) Nv’s public key and TXv’s Qiv
recorded in blockchain can be used to construct a virtual
tree [3]. Except the tree root, each non-leaf and leaf node
obtains α and β (α > β) tokens from pk0, respectively. As
for each isolated node outside of the tree, the public address
pa gets α − β tokens, where pa can be recorded in the
genesis block. Piv , DTiv and SDIiv can help constructing
continuous virtual route paths originating from the first
forwarding node in real routes. In the path, each node
obtains α tokens from pk0, but the last one only obtains
β tokens. Except all the nodes in the path, if there are l re-
maining nodes in the real route that have reported involved
receipts, pa obtains l ∗ (α − β) tokens from pk0 in order
to avoid the collusion of intermediate nodes and collector
[3]. In Fig. 3, if all the participants share their receipts and
these receipts are inserted into the blockchain, a miner can
construct a virtual tree with blue solid arrows based on
RREQ forwarding, and two continuous virtual route paths
based on RREP forwarding, namely N21 → N10 → N0 and
Nd → N11 → N0. Therefore, N10 and N11 obtain 2α tokens,
respectively. N21 and Nd obtain α tokens respectively. Nv
can consider the two received RREPs as receipts, and thus
obtains 2β tokens.N20 andN22 obtain β tokens respectively.
Thus, N0 should pay 6α + 4β tokens for route discovery.
In Fig. 4, when the receipts of all the participants are
inserted into the blockchain, N10 and N11 obtain 2α and 3α
tokens respectively, since N11 separately forwards security
data items from Nd1 and Nd2 . Nd0 , Nd1 and Nd2 obtain
α tokens respectively. Nv can use received {SDI10 , φ10}
and {SDI11 , φ11} as receipts, thus obtaining 3β tokens. As
a consequence, N0 should pay 8α + 3β tokens for security
data item collection.

When the first receipt with UID or DI is inserted
in one block of blockchain, miners will not collect and
insert receipts with the same UID or DI after lasting nr
blocks from the block, thus redeeming the unexpended
tokens of collector. pa might have some tokens, which can
be distributed to nodes whose receipts are inserted into
blockchain in a specific distribution.

If the new TXv , TXct or TXcc is inserted into the next
block successfully, the sender of receipt or deposit message
gives the relative miner a fixed ratio (ω, 0 < ω < 1) of its
obtained rewards. The miner gives ξ tokens to NTI .

4.4 Budget Balance of Collector

In this part, we show the collector’s budget for route dis-
covery and security data item collection.

Budget for Route Discovery
RREQ forwarding helps constructing a virtual tree. Since

a budget is reserved in the whole route discovery, a collector
can set the depth of the tree and the out-degree of each node
at each hop for discovering a collection node.

Nv’s public key and Qiv received in route discovery can
help constructing a virtual tree, and thus the collector can
control the maximum depth TTL of tree and the out-degree

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

kh of each node at each hop for balancing its budget in
the whole route discovery. Conversely, it can determine the
depth and out-degree due to a preset budget. Intuitively, the
larger the out-degree and depth are, the higher the proba-
bility of discovering a collection node is. At the same time,
this suggests a bigger budget. A tree with the largest RREQ
forwarding scale is generated in route discovery when the
receivers of all the nodes at each hop are different. The
number of nodes at hop h + 1 in the tree can be computed
as mh+1 = mhkh. Given TTL, kh, h = 0, . . . , TTL − 1,
and m0 = 1, the collector can obtain mTTL =

∏TTL−1
h=0 kh.

When all the nodes at hop TTL have routes to a collection
node, the payment of collector is the largest. We can com-
pute the maximum payment in the whole route discovery
as CS0 = mTTLα +

∑TTL−1
h=1 mhα +mTTL(TTL − 1)α

+mTTLβ =
∏TTL−1
h=0 kh(TTLα+ β) +

∑TTL−1
h=1

∏h−1
i=0 kiα.

Conversely, the collector can adjust the depth TTL and out-
degree kh for controlling the forwarding scale due to a given
budget.

Budget for Security Data Item Collection
A collector can compute its maximum payment based on

all discovered routes.
Nv’s public key, DTiv and SDIiv can be adopted to

construct continuous virtual route paths. When the collector
succeeds in collecting security data from Nd0 , . . . , Ndc by
using the route paths PAd0 , . . . , PAdc , the virtual route
paths are PAd0 , . . . , PAdc . If these route paths have only
one point of intersection (namely the public key of collector),
the collector’s payment for security data item collection
is the largest. The collector can compute the maximum
payment as CS1 =

∑c
j=0 [(2hdj − 1)α+ β], where hdj is

the hop count of PAdj . This budget can help the collector to
deposit appropriate tokens for collection.

5 ANALYSIS AND PERFORMANCE EVALUATION

In this section, we analyze B4SDC, evaluate its performance,
and compare it with mainstream blockchain and incentive
systems.

5.1 Analysis

In this part, we discuss that B4SDC provides incentives
for all participants, and resists spoofing attacks, collusion
attacks, and excessive forwarding and guarantees the fair-
ness to all forwarders in receipt collection. In addition,
we analyze B4SDC in terms of the liveness, safety, fault
tolerance, and decentralization of blockchain.

1) Incentive: B4SDC not only incents security data col-
lection, but also encourages the certificate and task issuer
to publish tasks and miners to insert more receipts or
deposit messages into blockchain. In route discovery, each
forwarder considers the received control information as
receipts, adds sensed security data into the information,
and then forwards this information. Each collection node
generates and forwards a RREP after receiving a RREQ as a
receipt. In security data item collection, each forwarder can
also use the received information as receipts. After receiving
a request as a receipt, each collection node generates and
forwards a security data item. The forwarder and collection
node can share received receipts to blockchain, and they

obtain rewards if these receipts are inserted into blockchain.
Miners are encouraged to insert more receipts and deposit
messages into their created blocks, since they obtain more
rewards from the reporters of receipt and deposit message
when these receipts and deposit messages are added into
blockchain successfully. The certificate and task issuer also
obtains rewards from the miner of the next block since a
block can be created only when a task is issued.

We analyze the acceptance of B4SDC by employing game
theoretical analysis. The certificate and task issuer, collector,
forwarders, collection nodes and miners are encouraged to
cooperatively finish their works. The acceptance of B4SDC is
analyzed based on a static game theory model. The players
of game are the issuer, collector, forwarders and miners. We
do not consider the situation of collection node, since it is the
same as the forwarder’s. Suppose that these players know
the information of each other and treat each other with the
same priority. They adopt their own strategies in order to
maximize their profits. We denote the strategy Sx of issuer,
collector, forwarder and miner as STI , SCO , SFO and SM ,
respectively. Sx = 1 suggests that the entity x cooperates
with others and finishes its work honestly, and Sx = 0
means that x refuses to cooperate.

First, we take into consideration SCO = 0. The utility of
collector is utCO = 0. If the issuer cooperatively publishes
a task, its utility is utTI = −cTI since blocks cannot be
created. cTI is the cost of issuer to generate a task. The
utility of forwarder is utFO = 0, since no messages should
be forwarded. The utility of miner is utM = 0, because
no receipts and deposit messages are generated for block
creation. If the issuer refuses to cooperate, the utility of
issuer, forwarder and miner is utTI = utFO = utM = 0.

Second, we consider SCO = 1. If STI = 0 and
SFO = 0, the utility of collector, issuer, forwarder and miner
is utCO = −cCO , utTI = 0, utFO = 0 and utM = 0,
respectively, because blocks cannot be created. cCO is the
cost of collector to generate a RREQ and a valid deposit
message. When STI = 0, SFO = 1 and SM = 0 or
1, the utility of collector, issuer, forwarder and miner is
utCO = bCO − cCO , utTI = 0, utFO = −cFO , and utM = 0
or −nW cM , respectively. bCO is the collector’s utility from
route discovery or security data item collection, cFO is the
cost of forwarder to forward a message and share a receipt.
nW is the number of receipts collected by the collector, and
cM represents the cost of collector to process a receipt. If
STI = 1 and SFO = 0, the utility of collector, issuer, for-
warder and miner is utCO = −cCO , utTI = −cTI , utFO = 0
and utM = 0. Because the forwarder refuses to forward
messages and share receipts, and blocks cannot be generated
successfully. When STI = 1, SFO = 1 and SM = 0, we can
obtain the utility of collector, issuer, forwarder and miner,
utCO = bCO − cCO , utTI = −cTI , utFO = −cFO and
utM = 0, since the miner does not create a block and thus
the issuer and forwarder obtain no rewards. If STI = 1,
SFO = 1 and SM = 1, the utility of collector, issuer,
forwarder and miner is utCO = bCO − cCO − CS ∗ PCO ,
utTI = ξ ∗ PLI − cTI , utFO = β ∗ (1 − ω) ∗ PFO − cFO ,
utM = (ω ∗ CS − ξ) ∗ PM − nW ∗ cM . CS is the budget
for route discovery or security data item collection, PCO
represents the probability that all the receipts of involved
nodes en route are inserted into the next block, ξ is the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

reward of issuer, PLI is the probability of miners to create
at least one block, PFO is the probability that the receipt of
forwarder is inserted into the next block, and PM means the
probability that the block created by the miner is the next
block.

Based on the above analysis, we can obtain an optimal
solution. Nash Equilibrium is achieved if those four entities
can conduct their work cooperatively (i.e., SCO = STI =
SFO = SM = 1) and their utility exceeds 0. This conclusion
can help setting CS, ω and ξ and distributing rewards
among issuer, forwarders, collection nodes and the block
creator.

2) Resisting Spoofing Attacks: Each node cannot forge the
message of other nodes for profits. To be specific, if Ni
broadcasts a signed message and a neighbor receives this
message, the neighbor attempts to forge another message
signed by Ni for profits. However, it cannot forge the
message successfully since we adopt the secure ECDSA for
signatures and it cannot obtain the private key of Ni by
solving a discrete logarithm problem.

3) Resisting Collusion Attacks: We discuss a route path
constructed with RREQ forwarding. Due to the literature
[3], if the last node colludes with the corresponding collector
and does not report its receipt to blockchain, it obtains the
behind-the-scene rewards β + ε (ε > 0) tokens from the
collector. Thus, the collector is uncharged by α − (β + ε)
tokens. In order to resist the collusion attack, the collector
is required to transfer α − β tokens to the public address
pa when one receipt reporter is isolated from the route
path. This suggests the collector pays extra ε tokens, which
refrains the collector from launching the collusion attack.
Similarly, if one receipt reporter is isolated from the virtual
tree that is constructed with RREQ forwarding and whose
root is the collector’s public key, the collector pays α − β
tokens to pa, which eliminates the collusion attack.

We consider a route path generated with RREP, DTi or
SDIi forwarding. For simplicity, we take the route path
constructed with RREP forwarding as an instance. Except
receipt reporters in the continuous route path originating
from the collection node or an intermediate node having
routes to this collection node, if there are l remaining receipt
reporters in the real route (i.e., the route list RL in RREP),
the collector is required to transfer l ∗ (α − β) tokens to the
public address. Similarly, this can avoid the collusion attack
since the tokens that the collector transfers to pa for the
attack are larger than its attack cost.

When the collector N0 receives a valid RREP or security
data item en route,N0 is not allowed to consider its received
messages as receipts. Because it is not willing to share its
receipt to the blockchain for saving the cost of reporting a
receipt and reducing the payment to N1 by α−β tokens. N1

can obtain at most β tokens. In order to guarantee the benefit
of N1, a common neighbor of N0 and N1 collects the RREP
or security data item as a receipt, and shares its receipt to
the blockchain. Therefore, N1 might obtain at most α tokens
from N0, and its profits can be guaranteed.

4) Resisting Excessive Forwarding: Due to a budget (i.e.,
the maximum payment) in the whole route discovery, a col-
lector can set the maximum depth TTL of virtual tree and
the out-degree kh of each node at each hop for discovering
a collection node. In route discovery, a collector constrains

the scale of RREQ forwarding by adding TTL and kh
into this RREQ. After receiving the RREQ, each forwarder
should select a fixed number of RREQ receivers, otherwise,
it obtains no rewards since its neighbor shares a report to
blockchain for rewards when discovering its misbehaviors.
Even if a node that is not specified as a receiver or whose
hop count exceeds TTL can obtain the RREQ, it cannot
use the received RREQ as a receipt for getting rewards
from the collector since each receipt should be verified and
accepted by a majority of all miners. Therefore, B4SDC
resists excessive forwarding.

5) Fairness: As long as a node (except collector) partic-
ipates in receipt generation, it can save its received mes-
sages as receipts, and is willing to share these receipts
to blockchain for rewards. The issuer is encouraged to
publish a task for rewards. Miners are incented to insert
more receipts into their created blocks for rewards. Thus,
more receipts are inserted into the next block. As a result,
as long as a node (except collector) participates in receipt
generation, it can obtain rewards with a high probability,
which ensures the fairness for each forwarder and collection
node.

6) Liveness: The liveness of B4SDC can be ensured,
namely the probability of successfully creating a valid block
for the next block tends to 1 when a task is published. If the
blockchain is comprised of N blocks and the certificate and
task issuer publishes the (N + 1)-th task, we compute the
probability that at least one valid is generated for the next
block until the reference time TSre.

After the issuer publishes the task, the miner Mi, i =
1, . . . , CN starts to create valid blocks at the time TSi until
TSre. We suppose TS1 ≤ . . . ≤ TSCN ≤ TSre due to the
existing network latency. The block creation is a random
event, thus the time that Mi spends creating a valid block
successfully follows an exponential distribution [20]. The
probability of Mi to successfully create a valid block from
TSi to TSre can be computed as 1−e−(TSre−TSi)/µi , where
µi is the average time that Mi spends creating a valid
block successfully. Note that w(AM) is used to adjust the
difficulty value TAG, thus µi of some miners is short. The
probability of these CN miners to succeed in creating at
least one valid block is

PLI = 1−
CN∏
i=1

{1− [1− e−(TSre−TSi)/µi]}

= 1− e−
∑CN

i=1 (TSre−TSi)/µi .

If
∑CN
i=1 (TSre − TSi)/µi is increased, PLI tends to 1.

In order to increase
∑CN
i=1 (TSre − TSi)/µi, we can grow

the number CN of participating miners or TSre − TSi by
growing TSre. As long as a miner with short µi participates,
PLI tends to 1 rapidly with TSre increasing, thus at least
one valid block can be generated within short time.

7) Safety: B4SDC ensures the safety of blockchain, namely
the block winner consistency can be achieved among honest
miners for avoiding the forks of blockchain. Due to the
literature [19], we can compute the probability of a miner
in the network to receive the valid block with the earliest
timestamp as at least 1 − e−θ/λ, where λ is the average
network latency. Therefore, at least 1 − e−θ/λ of all the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

miners in the network receive the block during their preset
time window θ. When θ is large enough, 1− e−θ/λ approxi-
mates to 1, which suggests almost all the miners can receive
the block with the earliest timestamp. Therefore, the block
winner consistency among honest miners can be ensured.
The detail process refers to the literature [19].

8) Fault Tolerance: Although an attacker controls η ≤ 50%
miners, it cannot destroy the consensus that honest miners
have reached and ongoing consensus.

Except the miners controlled by the attacker (i.e., ma-
licious miners), other miners are assumed to behave inde-
pendently and maximize their profits rationally, which are
called honest miners.

If the block BK has got the consensus of honest miners,
another blockB

′

K is stored by the malicious miners. The ma-
licious miners generate a new block based on B

′

K . It is pos-
sible that B

′

K is superior to BK , since the malicious miner
might not publish B

′

K . Suppose BK and B
′

K are generated
based on the block BK−1 of blockchain. If a new miner
participates in the blockchain system, it requests blocks from
miners in order to maintain blockchain. The miner could
receive BK and B

′

K since the honest and malicious miners
exist in the system. Therefore, it should determine which
block should be stored as the valid block of blockchain. In
order to solve this problem, the miner can request blocks
from a number of miners, and get the number of received
BK and B

′

K that is denoted as nBK
and nB′K

, respectively.
If nBK

≥ nB′K
, the miner stores BK . Otherwise, it stores

B
′

K . When nBK
+ nB′K

is large enough, nB′K/(nBK
+ nB′K

)

approximates to η, thus nB′K
/(nBK

+ nB′K
) ≤ 50%. As

long as the miner requests blocks from a large enough
number of miners, it stores BK with the probability 1 − η
≥ 50%. Therefore, the number of honest miners storing BK
is always larger than the number of malicious miners storing
B
′

K , thus the attacker cannot destroy the consensus that the
honest miners have reached.

When a malicious miner generates a valid block earlier
than honest miners, it could not immediately publish the
block, but waits some time and then publishes the block
in order to cause the forks of blockchain and perturb the
ongoing consensus. However, the malicious miner cannot
succeed in perturbing the consensus. It is noted that the
time of miners is synchronized, each block includes the
timestamp of its creation, and all the miners are monitored
by their neighbors. If the malicious miner publishes the
malicious block, its neighbors could refuse to forward the
block due to its invalid timestamp. Even if the honest miners
could receive the block within their time period θ, they
can use light weight external methods to detect the invalid
timestamp and reject the block. For instance, wormhole
attack detection might help estimating the real time of
block creation. In order to guarantee the accuracy of esti-
mation, multiple routes that include the different neighbors
of malicious miner can be adopted for block propagation,
thus solving the low trust problem of estimation of one
route. Therefore, the attacker cannot perturb the ongoing
consensus when it controls η ≤ 50% of all the miners.

In summary, B4SDC resists the misbehaviors of 50% of
all the miners.

9) Decentralization: B4SDC prevents a powerful miner

from creating the majority of blocks of blockchain for con-
trolling the blockchain, thus ensuring the decentralization.
That is, even if the miner creates a valid block more effi-
ciently than others, we can reduce its probability of suc-
ceeding in creating the next block to a low degree.

Due to the literature [19], we can model B4SDC includ-
ing a powerful miner as a state machine, and then define
system states. Additionally, we can derive the probability
of system state transition and the probability of the sys-
tem to reach each state. When nbthr = 1, the probability
of the powerful miner to generate the next block can be
computed as ρ/(1+ρnb), where ρ represents the probability
that the powerful miner creates a valid block earlier than
others. When the powerful miner always generates a valid
block earlier than others, ρ approximates to 1, and the
probability of this miner to succeed in generating the next
block is 1/(1 + nb), which decreases with nb increasing.
As a consequence, we can fix nbthr , and then select the
appropriate nb for reducing the probability of the powerful
miner to successfully create the next block to a low degree,
thus ensuring the decentralization of blockchain. The detail
process refers to the literature [19].

5.2 Performance Evaluation

In this part, we evaluated B4SDC through simulations.
Metrics: (1) Message forwarding time: The average mes-

sage forwarding time of node at each hop; (2) Message
size: The average size of message that a node at each hop
forwards; (3) Transaction confirmation time: The average
time of B4SDC to confirm a receipt or deposit message; (4)
Throughput: The average number of receipts and deposit
messages that are successfully recorded in blockchain per
second; (5) Block size; (6) Memory usage: The average
memory usage of node to forward a message and create
and verify a block.

Experimental Settings: With respect to experimental envi-
ronments, we simulated B4SDC using NS3 and C++ in a
laptop that runs ubuntu 18.04 with Intel Core i5-6300HQ
CPU @2.3Ghz and 12GB memory. We simulated a node
as the certificate and task issuer, 1000 nodes for security
data collection, and 4 miners. In terms of network setting,
the propagation time of bitcoin block between two miners
follows an exponential distribution [20]. Thus, we simulated
a real network by introducing the network delay between
two miners that follows the exponential distribution with
the rate parameter λ = 12.6s. With respect to receipt
generation, we adopted the DSR route discovery and used
discovered routes to transmit the request of collector and the
security data of collection nodes. In route discovery, a node
at each hop adds its local timestamp (i.e., a kind of security
data) into received RREQs and RREPs. In security data item
collection, each collection node uses a row of feature values
in the NSL-KDD database as security data.

Experimental Results: Message Forwarding Time: As shown
in Fig. 5(a), we can observe the average message forwarding
time of a node at each hop. The time does not change with
the increase of hops. The forwarding time of RREQ, RREP,
request, and security data item of the node is approximately
20ms, 15ms, 25m and 35ms, respectively. In receipt sharing,
we tested the time token by the node to share a receipt.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 2 4 6 8 10

20

30

M
e
s
s
a
g
e
fo
rw
a
rd
in
g
ti
m
e
(m
s
)

Hop

RREQ

RREP

Request

Security data item

(a) Message forwarding time
with different hops

0 2 4 6 8 10

1.2

1.6

2.0

2.4

M
e
s
s
a
g
e
s
iz
e
(K
B
)

Hop

RREQ

RREP

Request

Security data item

(b) Message size with different hops

0 500 1000

20

30

40

T
ra
n
s
a
c
ti
o
n
c
o
n
fi
rm
a
ti
o
n
ti
m
e
(s
)

n

(c) Transaction confirmation
time with 4 tasks/min, nb = 0
and different n

1.0 1.2 1.4 1.6 1.8 2.0

40

50

T
ra
n
s
a
c
ti
o
n
c
o
n
fi
rm
a
ti
o
n
ti
m
e
(s
)

Task frequency (tasks/min)

(d) Transaction confirmation time
with nb = 0, n = 1000 and different
task frequencies

0 500 1000

10

20

30

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

n

(e) Throughput with 4
tasks/min, nb = 0 and different
n

1.0 1.2 1.4 1.6 1.8 2.0

20

25

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

Task frequency (tasks/min)

(f) Throughput with nb = 0, n =
1000 and different task frequencies

200 400 600 800 1000
0

500

1000

B
lo
c
k
s
iz
e
(K
B
)

n

(g) Block size with different n

Fig. 5. Experimental results

When the receipt is a RREQ, RREP, request or security data
item, the time cost of the node to share the receipt is equal
to the time cost of the node to forward it.

Message Size: We show the average size of a message
that a node at each hop forwards in Fig. 5(b). When the
number of hops increases, the size of RREQ increases but
the size of RREP decreases, because the node at hop h adds
its sensed security data into the RREQ received from the
node at hop h − 1 and the RREP received from the node
at hop h + 1. The size of request and security data item
remains unchanged around 0.8KB and 1.4KB, respectively.
When a node considers a received RREQ as a receipt, the
size of its shared receipt equals that of received RREQ. If
a node regards a received RREP as the receipt, the size of

TABLE 2
Transaction confirmation time and throughput with 4 tasks/min,

nbthr = 1, n = 1000 and different nb

nb 0 1 2 3
TC (s) 36.9 37.2 37.5 38.1

TH (tx/s) 27.1 26.88 26.67 26.25

TC: transaction confirmation time; TH: throughput.

TABLE 3
Memory usage

Operations Memory usage

Forwarding a RREQ or sharing a receipt
(i.e., received RREQ)

18.63MB

Forwarding a RREP or sharing a receipt
(i.e., received RREP)

18.75MB

Forwarding a request or sharing a re-
ceipt (i.e., received request)

18.59MB

Forwarding a security data item or shar-
ing a receipt (i.e., received security data
item)

18.71MB

Creating a block 421.98MB
Verifying a block 421.98MB

receipt is equal to that of received RREP. When the receipt
is a received request and security data item, the size of each
node’s shared receipt is 0.8KB and 1.4KB, respectively.

Transaction Confirmation Time: As shown in Fig. 5(c), we
observe the transaction confirmation time when the task
frequency is set to 4 tasks per minute, nb = 0, and we
change the number n = L+X + Y of receipts and deposit
messages that should be inserted into the next block. The
time increases linearly with n increasing. The bigger n sug-
gests a miner verifies more receipts and deposit messages of
a received block, which takes more time.

If nb = 0 and n = 1000, we show the transaction
confirmation time by changing the task frequency in Fig.
5(d). When the task frequency is less than 1.7 tasks per
minute, the time decreases sharply with the task frequency
increasing. Because the task interval is longer than the
average consensus time and is regarded as the transac-
tion confirmation time, and the task interval is inversely
proportional to the task frequency. If the task frequency
exceeds 1.7 tasks per minute, the transaction confirmation
time remains invariable since the task interval is shorter
than the consensus time.

When we set the task frequency to 4 tasks per minute,
nbthr = 1 and n = 1000, TABLE 2 shows the transaction
confirmation time by changing nb. The time grows with the
increase of nb, since fewer miners participate in mining.

Throughput: When the task frequency is set to 4 tasks per
minute and nb = 0, we observe the throughput by changing
n. As shown in Fig. 5(e), the throughput increases linearly
when n increases. Because more receipts and deposit mes-
sages are inserted into the next block.

If nb = 0 and n = 1000, we show the throughput by
changing the task frequency. As depicted in Fig. 5(f), if the
task frequency increases from 1.1 to 1.7 tasks per minute, the
throughput grows linearly, since the task interval is longer
than the consensus time and thus inversely proportional to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

the task frequency. If the task frequency exceeds 1.7 tasks
per minute, the throughput is almost invariable. Because
the task interval is shorter than the consensus time.

When nbthr = 1, n = 1000 and the task frequency is 4
tasks per minute, we observe the throughput with different
nb. As shown in TABLE 2, when nb increases, the through-
put decreases due to the longer transaction confirmation
time.

Block Size: Fig. 5(g) shows the block size with different
n. The block size increases linearly with the increasing of
n, since the larger n suggests more receipts and deposit
messages are added into blockchain.

Memory Usage: We observe the memory usage of node
when some operations are performed, as shown in TABLE
3. In route discovery and security data item collection, the
memory usage of the node to forward a RREQ and RREP is
18.63MB and 18.75MB, respectively. In receipt sharing, the
memory usage of the node to share a receipt (i.e., RREQ,
RREP, request and security data item) is also 18.63MB,
18.75MB, 18.59MB and 18.71MB, respectively. The memory
size of current routers is 64MB or 128MB, even as large as
518MB. Thus, many smart devices have a sufficient memory
space to forward a RREQ, RREP, request and security data
item and share a receipt. On the other hand, the memory size
of a miner should be at least 421.98MB. Since the memory
size of current smart phones reaches 8GB, running B4SDC
is not heavy in mobile phone organized MANETs.

Comparison: In TABLE 4, we compare B4SDC with main-
stream blockchain and incentive systems in terms of incen-
tive, security and performance.

Some blockchain systems do not consider incentives,
e.g., Algorand using BFT. The liveness and safety of PoW,
PoUW, BFT, PoS, and trees and DAGs based blockchain
systems are analyzed [12], [36]. PoW, PoUW and PoS suffer
from the outsourceability of task [37], thus not ensuring the
decentralization. However, B4SDC guarantees the decen-
tralization, since it can prevent a powerful miner from creat-
ing the majority of blocks of blockchain by setting appropri-
ate nb and nbthr . In the simulation, if the task frequency is
4 tasks/min and nb = 0, the transaction confirmation time
and throughput are TC = 36.9s and TH = 27.1tx/s. They
are rational since a miner consumes almost no computing
resources for solving a puzzle. Suppose there exist M min-
ers. In PoW, BFT, PoS, PoUW and trees and DAGs based
blockchian systems and B4SDC, a message should be shared
to all miners for making them insert this message into
blockchain, thus the communication complexity is O(M).
In PoW, PoUW, PoS, and trees and DAGs based blockchain
systems and B4SDC, the next block should be sent to all
the miners. Therefore, their communication complexity is
O(M). BFT requires information exchange between any two
miners, thus its communication complexity is O(M2).

The scalability of blockchain is its ability to maintain
a high throughput when more miners participate [38]. We
assume that there are M miners in blockchain systems.
In B4SDC, each miner can collect receipts and deposit
messages before the certificate and task issuer publishes a
task. Some miner receives the task, and quickly creates the
next block with a negligible difficulty based on collected n
receipts and deposit messages. The time of task propagation
between the issuer and each miner is negligible since the

size of task is small. The miner publishes the next block.
For simplicity, we consider the network composed of the M
miners. The average network delay of a receipt or deposit
message between any two miners increases logarithmically
with M increasing [39]. Thus, the average time of block
propagation between any two miners can be estimated as
nlogτM , where τ is a parameter related to network band-
width. Signature verifications are the most time-consuming
operations in verifying the validity of a block, and the veri-
fication time of each signature is denoted as Tve. When the
task interval is shorter than the consensus time, we estimate
the throughput of B4SDC as TH0 = n/(nlogτM + nTve)
= 1/(logτM + Tve). When M increases, TH0 decreases.
When the task interval is longer than the consensus time,
we can obtain the throughput of B4SDC as TH1 = n/TN ,
where TN represents the task interval. BFT requires 3-
round information exchanges. When there are M miners
in a BFT based blockchain system, the average time of 3-
round information exchanges is estimated as (n+2)logτM

2.
The throughput of BFT based blockchain system can be
estimated as TH2 = n/[(n + 2)logτM

2 + nTve]. Therefore,
if the task interval is shorter than the consensus time in
B4SDC, the throughput of the BFT based blockchain system
is lower compared to the B4SDC’s throughput. When the
task interval is longer than the consensus time in B4SDC
and M > τ (TN−nTve)/2(n+2), the throughput of the BFT
based blockchain system is lower than that of B4SDC. When
M (M > τ (TN−nTve)/2(n+2)) increases, the throughput
of B4SDC decreases more slowly than that of the BFT
based blockchain system, which implies the higher ability of
B4SDC to ensure a high throughput. Therefore, B4SDC can
support better scalability compared to BFT based blockchain
systems. In the blockchain systems based on PoW, PoUW,
and trees and DAGs, the time of block creation Tbc is very
long since they aim to prevent an attacker from easily creat-
ing blocks in order to avoid forking. Their throughput can
be denoted as TH3 = n/(Tbc + nlogτM + nTve). Based on
the above analysis, we can see that their scalability is worse
than the scalability of B4SDC with large enough M since
Tbc is very large. In a PoS based blockchain system, some
miner can quickly create a block with a negligible difficulty.
The throughput of the PoS based blockchain systems is
TH4 = 1/(logτM + Tve). Thus, TH0 and TH4 are equal.
When the task interval is longer than the consensus time in
B4SDC and M > τ (TN−nTve)/n, the throughput of B4SDC
is higher than that of the PoS based blockchain system. If
M (M > τ (TN−nTve)/n) increases, the ability of B4SDC to
maintain a high throughput is higher than the PoS based
blockchain systems’. Therefore, the scalability of B4SDC is
better than that of the PoS based blockchain system whenM
is large enough. As a consequence, B4SDC supports better
scalability compared to PoW, BFT, PoUW, PoS, and trees and
DAGs based blockchain systems.

In summary, B4SDC provides incentives and solves the
three challenges (i.e., forking, low efficiency and the trend
of centralization) of mainstream blockchain systems, and
the security problems of mainstream incentive systems. In
addition, B4SDC ensures better scalability compared to the
mainstream blockchain systems. Therefore, B4SDC outper-
forms the mainstream works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 4
Comparison of B4SDC with mainstream blockchain and incentive systems

Blockchain Systems Incentive Systems
PoW BFT PoS PoUW Trees and DAGs Reputation Micropayment

Criteria Bitcoin Algorand Ethereum Permacoin GHOST [11] LWT [23] IMM [5] Sprite [3] B4SDC
Incentive IN Y N Y Y Y - - - Y

Security
properties

LI Y Y Y Y Y - - - Y
SA Y Y N Y Y - - - Y
FT 25% 33% 50% 25% 25% - - - 50%
DE N Y N N N - - - Y
RS - - - - - N N Y Y
RC - - - - - N - Y Y
RE - - - - - - Y N Y
FR - - - - - Y N Y Y

Performance

TC 3600s 40s 72s 3600s - - - - 36.9s
TH 7tx/s 875tx/s 30tx/s - 15.5tx/s - - - 27.1tx/s
CPB High Low Low High High - - - Low
CMB O(M) O(M2) O(M) O(M) O(M) - - - O(M)

SC Low Low Low Low Low - - - High

IN: incentive; LI: liveness; SA: safety; FT: fault tolerance; DE: decentralization; RS: resisting spoofing attacks; RC: resisting collusion attacks; RE:
resisting excessive forwarding; FR: fairness; CPB: computational burden; CMB: communication burden; SC: scalability; Y: supported; N: not
supported; -: not given or not suitable for evaluation.

6 CONCLUSION

In this paper, we proposed B4SDC, a blockchain system for
security data collection in MANETs. It not only incented se-
curity data collection in route discovery, but also motivated
the collection at collection nodes. Analysis and simulation
based experiments showed that B4SDC can resist spoof-
ing attacks, collusion attacks, and excessive forwarding,
guarantee fairness as much as possible, and also solve the
main problems of current blockchain technologies, namely
forking, low efficiency, and centralization. In the future, we
will explore a feasible scheme to preserve privacy in B4SDC.

ACKNOWLEDGMENTS

The work is supported in part by the National Natural Sci-
ence Foundation of China under Grants 61672410, 61802293
and U1536202, the Academy of Finland under Grants 308087
and 314203, the Key Lab of Information Network Security,
Ministry of Public Security under grant No. C18614, the
National Postdoctoral Program for Innovative Talents under
grant BX20180238, the Project funded by China Postdoctoral
Science Foundation under grant 2018M633461, the open
grant of the Tactical Data Link Lab of the 20th Research
Institute of China Electronics Technology Group Corpora-
tion, P.R. China under grant CLDL-20182119, the shaanxi
inovation team project under grant 2018TD-007 and the 111
project under grant B16037.

REFERENCES

[1] G. Liu, Z. Yan, and W. Pedrycz, “Data collection for attack detection
and security measurement in Mobile Ad Hoc Networks: A survey,”
Journal of Network and Computer Applications, vol. 105, pp. 105-
122, 2018.

[2] Y. Liu, Y. Wang, X. Wang, et al., “Privacy-preserving raw data col-
lection without a trusted authority for IoT,” Computer Networks,
vol. 148, pp. 340-348, 2019.

[3] S. Zhong, J. Chen, and Y.R. Yang, “Sprite: A simple, cheat-proof,
credit-based system for Mobile Ad-Hoc Networks,” In Proceeding
of IEEE INFOCOM, 2003, pp. 1987-1997.

[4] S. Liu, L. Zhang, and Z. Yan, “Predict pairwise trust based on
machine learning in online social networks: A survey,” IEEE Access,
vol. 6, pp. 51297-51318, 2018.

[5] C. Li, B. Yu, and K. Sycara, “An incentive mechanism for message
relaying in unstructured Peer-to-Peer systems,” Electronic Com-
merce Research and Applications, vol. 8, no. 6, pp. 582-592, 2009.

[6] Y. Zhang, D. Robert, X. Liu, et al, “Outsourcing service fair
payment based on blockchain and its applications in cloud
computing,” IEEE Transactions on Services Computing, 2018,
https://doi.org/10.1109/TSC.2018.2864191.

[7] P.J. Taylor, T. Dargahi, A. Dehghantanha, et al., “A systematic litera-
ture review of blockchain cyber security,” Digital Communications
and Networks, 2019, https://doi.org/10.1016/j.dcan.2019.01.005.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008, https://git.dhimmel.com/bitcoin-whitepaper.

[9] Y. Gilad, R. Hemo, S. Micali, et al., “Algorand: Scaling byzantine
agreements for cryptocurrencies,” In Proceeding of ACM SOSP,
2017, pp. 51-68.

[10] W. Wang, D.T. Hoang, Z. Xiong, et al., “A survey on consensus
mechanisms and mining management in blockchain networks,”
2018, https://arxiv.org/abs/1805.02707.

[11] Y. Sompolinsky and A. Zohar, “Accelerating bitcoins transaction
processing. fast money grows on trees, not chains,” IACR Cryptol-
ogy ePrint Archive, 2013.

[12] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: A fast
and scalable cryptocurrency protocol,” IACR Cryptology ePrint
Archive, 2016.

[13] S. Qazi, R. Raad, Y. Mu, et al., “Securing DSR against wormhole
attacks in Multirate Ad Hoc Networks,” Journal of Network and
Computer Applications, vol. 36, no. 2, pp. 582-592, 2013.

[14] J. Chen, S. Yao, Q. Yuan, et al., “CertChain: Public and efficient
certificate audit based on blockchain for TLS connections,” In
Proceeding of IEEE INFOCOM, 2018, pp. 2060-2068.

[15] R. Zou, X. Lv, and B. Wang, “Blockchain-based photo forensics
with permissible transformations,” Computers and Security, vol.
87, pp. 101567, 2019.

[16] D. Wang, H. Cheng, D. He, et al., “On the challenges in design-
ing identity-based privacy-preserving authentication schemes for
mobile devices,” IEEE Systems Journal, vol. 12, no. 1, pp. 916-925,
2016.

[17] Y.C. Hu, A. Perrig, and D.B. Johnson, “Wormhole attacks in wire-
less networks,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, pp. 370-380, 2006.

[18] K. Fan, S. Wang, Y. Ren, et al., “Blockchain-based secure time
protection scheme in IoT,” IEEE Internet of Things Journal, 2018,
https://doi.org/10.1109/JIOT.2018.2874222.

[19] W. Feng and Z. Yan, “MCS-Chain: Decentralized and trustworthy
mobile crowdsourcing based on blockchain,” Future Generation
Computer Systems, vol. 95, pp. 649-666, 2019.

[20] C. Decker and R. Wattenhofer, “Information propagation in the
bitcoin network,” In Proceeding of IEEE P2P, 2013, pp. 1-10.

[21] L. Luu, Y. Velner, and J. Teutsch, “SMART POOL: Practical decen-
tralized pooled mining,” IACR Cryptology ePrint Archive, 2017.

[22] A. Miller, A. Juels, E. Shi, et al., “Permacoin: Repurposing bitcoin

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

work for data preservation,” In Proceeding of IEEE S&P, 2014, pp.
475-490.

[23] N. Marchang and R. Datta, “Light-weight trust-based routing
protocol for Mobile Ad Hoc Networks,” IET Information Security,
vol. 6, no. 2, pp. 77-83, 2012.

[24] A. Clement, E.L. Wong, L. Alvisi L, et al., “Making byzantine
fault tolerant systems tolerate byzantine faults,” In Proceeding of
USENIX NSDI, 2009, pp. 153-168.

[25] S. Abbas, M. Merabti, D. Llewellyn-Jones, et al., “Lightweight sybil
attack detection in MANETs,” IEEE Systems Journal, vol. 7, no. 2,
pp. 236-248, 2013.

[26] F. Zhang, I. Eyal, R. Escriva, et al., “REM: Resource-efficient
mining for blockchains,” In Proceeding of USENIX Security, 2017,
pp. 1427-1444.

[27] Peercointalk, “Peercoin invalid checkpoint,” 2015,
https://www.peercointalk.org/t/invalidcheckpoint/3691.

[28] L. Luu, Y. Velner, and J. Teutsch, “SMART POOL: Practical decen-
tralized pooled mining,” IACR Cryptology ePrint Archive, 2017.

[29] A. Tuteja, R. Gujral, and S. Thalia, “Comparative performance
analysis of DSDV, AODV and DSR routing protocols in MANET
using NS2,” In Proceeding of ACE, 2010, pp. 330-333.

[30] D.B. Johnson, D.A. Maltz, and J Broch, “DSR: The dynamic source
routing protocol for multi hop wireless Ad Hoc Networks,” Ad Hoc
Networking, vol. 5, pp. 139-172, 2001.

[31] A. Yazdinejad, R.M. Parizi, A. Dehghantanha, et al., “An
energy-efficient SDN controller architecture for IoT networks with
blockchain-based security,” IEEE Transactions on Services Comput-
ing, 2020, https://doi.org/10.1109/TSC.2020.2966970.

[32] D. Menotti, G. Chiachia, A. Pinto, et al., “Deep representations for
iris, face, and fingerprint spoofing detection,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 4, pp. 864-879, 2015.

[33] W. Bhaya and S.A. Alasadi, “Security against spoofing attack in
Mobile Ad Hoc Network,” European Journal of Scientific Research,
vol. 64, no. 4, pp. 634-643, 2011.

[34] R. Lu, X. Lin, H. Zhu, et al., “A novel fair incentive protocol for
mobile ad hoc networks,” In Proceeding of IEEE WCNC, 2008, pp.
3237-3242.

[35] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve
digital signature algorithm (ECDSA),” International journal of in-
formation security, vol. 1, no. 1, pp. 36-63, 2001.

[36] E.K. Kogias, P. Jovanovic, N. Gailly, et al., “Enhancing bitcoin
security and performance with strong consistency via collective
signing,” In Proceeding of USENIX Security, 2016, pp. 279-296.

[37] A. Miller, A. Kosba, J. Katz, et al., “Nonoutsourceable scratch-off
puzzles to discourage Bitcoin mining coalitions,” In Proceeding of
ACM CCS, 2015, pp. 680-691.

[38] S. Bano, A. Sonnino, M. Al-Bassam, et al., “SoK: Consensus in the
age of blockchains,” In Proceeding of ACM AFT, 2019, pp. 183-198.

[39] J.H. Noh, “Low-latency and robust peer-to-
peer video streaming,” Stanford University, 2011,
https://books.google.fi/books?id=UbTXCUhTIIwC.

Gao Liu is currently a Ph.D. candidate in Infor-
mation Security, School of Cyber Engineering,
Xidian University. His research interest includes
network security measurement, data collection,
blockchain, deep learning, machine learning, e-
voting, e-lottery, micropayment, data aggrega-
tion in Smart Grid, and authentication in Smart
Grid and VANETs.

Huidong Dong is currently pursuing the mas-
ter’s degree with the School of Cyber Engineer-
ing, Xidian University. His research interests in-
clude IoT security and applied cryptography.

Zheng Yan received the BEng degree in electri-
cal engineering and the MEng degree in com-
puter science and engineering from the Xi’an
Jiaotong University, Xi’an, China in 1994 and
1997, respectively, the second MEng degree in
information security from the National University
of Singapore, Singapore in 2000, and the licenti-
ate of science and the doctor of science in tech-
nology in electrical engineering from Helsinki
University of Technology, Helsinki, Finland. She
is currently a professor at the Xidian University,

Xi’an, China and a visiting professor at the Aalto University, Espoo, Fin-
land. Her research interests are in trust, security, privacy, and security-
related data analytics. Prof. Yan serves as a general or program chair
for 30+ international conferences and workshops. She is a steering
committee co-chair of IEEE Blockchain international conference. She is
also an associate editor of many reputable journals, e.g., IEEE Internet
of Things Journal, Information Sciences, Information Fusion, JNCA,
IEEE Access, SCN, etc.

Xiaokang Zhou (M’12) received the Ph.D. de-
gree in human sciences from Waseda University,
Japan, in 2014. From 2012 to 2015, he was a
research associate with the Department of Hu-
man Informatics and Cognitive Sciences, Faculty
of Human Sciences, Waseda University, Japan.
From 2016, he has been a lecturer with the Fac-
ulty of Data Science, Shiga University, Japan. He
also works as a visiting researcher in the RIKEN
Center for Advanced Intelligence Project (AIP),
RIKEN, Japan, from 2017. Dr. Zhou has been

engaged in interdisciplinary research works in the fields of computer
science and engineering, information systems, and social and human
informatics. His recent research interests include ubiquitous computing,
big data, machine learning, behavior and cognitive informatics, cyber-
physical-social-system, cyber intelligence and cyber-enabled applica-
tions. Dr. Zhou is a member of the IEEE CS, and ACM, USA, IPSJ,
and JSAI, Japan, and CCF, China.

Shohei Shimizu is a Professor at the Faculty
of Data Science, Shiga University, Japan and
leads the Causal Inference Team, RIKEN Center
for Advanced Intelligence Project. He received a
Ph.D. in Engineering (Statistical Science) from
Osaka University in 2006. His research inter-
ests include statistical methodologies for learn-
ing data generating processes such as struc-
tural equation modeling and independent com-
ponent analysis and their application to causal
inference. He received Hayashi Chikio Award

(Excellence Award) from the Behaviormetric Society in 2016. He is a
coordinating editor of Springer Behaviormetrika since 2016.

