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Abstract—Channel charting is a method for creating radio-
maps of a cell that capture the neighborhood relationships
between User Equipments (UEs) in the cell based on machine
learning techniques. In this paper, we leverage channel charting
for predicting the best Base Station (BS) beam to serve a given
UE in a massive-MIMO 5G network. Because of the autonomous
beamforming at the UE in 5G networks, the BS cannot determine
the best beam for transmission to a UE by measuring the UE
transmissions in all the BS beams. To address this issue, we
propose a framework to predict the best BS beam for a mobile
UE in the next transmission instant by utilizing the channel charts
of the cell that the UE is currently in. We evaluate the prediction
accuracy of the framework using simulated channels from
QuaDRiGa channel generator. We compare the performance
of channel chart and physical location based predictors. While
the prediction accuracy attained using channel charting is less
than that of the prediction using physical locations, there remain
several ways to improve the performance.

Index Terms—mmWave, CSI features, 5G TDD system, chan-
nel charting, BS beam prediction.

I. INTRODUCTION

Millimeter Wave (mmWave) communication is one of the
enabling technologies for Beyond Fifth-Generation (B5G)
communication systems, providing large bandwidths that can
help meet the formidable capacity demands and low latency
requirements. However, mmWave transmissions are prone
to high propagation loss for non-line-of-sight cases. Large
antenna arrays as used in Massive Multiple-Input-Multiple-
Output (mMIMO) technology can provide significant beam-
forming gains and directivity to help overcome the attenuation
suffered by mmWave transmissions [1], [2].

Because of the high attenuation of mmWave transmissions,
precise alignment of transmission beams towards the receiving
UEs is necessary to have reliable communication links. This
may be difficult in mMIMO systems with mobile users.
Accordingly, mmWave wireless systems may suffer from
significant overhead in searching for the optimal beam to serve
mobile UEs. If there were only one UE antenna, it would be
rather simple for the BS to measure the best beam, once there
is a UE transmission. In a Time Division Duplexing (TDD)
system with channel reciprocity, the same beam could directly
be used for transmission. What makes the thing challenging
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is that in 5G networks the UE autonomously selects a beam
direction to transmit to in uplink, and to receive from in
downlink. Now this UE beam is not under the control of the
BS, and it is unclear what consequences a change of BS beam
would have. As a result, the BS cannot simply determine the
best BS beam by measuring the UE transmissions in all the
BS beams. Hence, the problem of determining the best BS
beam gains significance in case of mobile 5G systems.

To reduce the latency associated with searching for the
optimal beam exhaustively, use of Machine Learning (ML)
techniques with a data-driven approach has been gaining
significance. Optimal beam prediction for vehicles in mmWave
networks is performed by training ML models with a richer
data set including physical locations of not just the vehicle
but also that of its neighbouring vehicles and some side
information together termed as situational awareness in [3].
In [4] a ML solution leveraging geolocation side information
is considered for enhancing beam management in mmWave
wireless systems. Support vector machines are used to model
the mapping between the UEs geolocations and their serving
beams/cells in a multiuser, multi-cell environment. In [5],
ML assisted beam training is performed for mmWave cellular
systems using realistic beamforming data and GPS coordinates
of UEs.

Channel charting is the application of unsupervised machine
learning techniques to process the high-dimensional Channel
State Information (CSI) of UEs in a cell, and obtain a logical
radio-map which is a lower-dimensional representation of
the cell where the neighborhood relationship of the UEs is
preserved [6]. Channel charting can be performed for a single
BS to obtain what is called a Single-Point Channel Chart
(SPCC) or for multiple BSs from their individual channel
charts to obtain a Multi-Point Channel Chart (MPCC) [7].
Once Channel Chart (CC) is constructed by collecting suf-
ficiently sampled CSI information from a cell, it facilitates
Radio Resource management (RRM) functions like handover
prediction and link quality prediction for V2V communication
[8].

For the purpose of prediction of future best beam, we
propose a novel framework where the received signals from
each BS beam are used to construct a CC for each beam
used by the BS. The beam prediction framework consists



Fig. 1. Beam prediction based on channel charting. (Left); a cell (a street segment) served by a multi antenna BS. (Middle); per beam CCs constructed at
the BS. (Right); BS beam and the corresponding best UE beam for different locations.

of two phases where the first phase involves collection of
CSI information under each BS beam necessary to construct
per BS beam CC at the BS. The second phase is the online
usage phase, where the collected data is leveraged to perform
prediction in real time. The real time prediction helps reduce
the overhead and delay associated with the beam alignment in
mmWave systems. In the entire prediction framework, we do
not use any physical location information of the UEs but use
only the received CSI at the BS.

The rest of the paper is organized as follows. Section II
elaborates on the system model used as the basis for analysis
and simulation. Section III expands on the concept of channel
charting and beam prediction with CCs. Section IV presents
the simulation results and Section V concludes the paper by
presenting the inferences from the results.

II. SYSTEM MODEL

We consider a cell (a sector of a BS) in a TDD system,
serving a set of K UEs. The BS has M antennas while
each UE u has N antennas. The UEs use orthogonal pilots
to transmit to the BS. Analog beamformers are used at the
UE and BS sides to create beams using phase shifters. The
BS has several RF chains and can accordingly simultaneously
transmit and receive from multiple beams. Here, for simplicity,
we assume there are M RF chains.

The MIMO channel at subcarrier s between UE u and
the BS is denoted as Hu,s ∈ CM×N . The BS and UE
are capable of forming a large discrete set of beams. For
purposes of beam management, a limited number of beams
is considered at the BS. We shall typically use B = M BS
beams. The beamforming vectors at the BS are wm ∈ CM×1
for m = 1, . . . , B where B is the number of BS beams.
The beamforming vectors at the UE are vn ∈ CN×1 for
n = 1, . . . , Bu where Bu is the number of UE beams. We
use Bu = N UE beams.

Wideband beams are considered; i.e., one beam for all
frequencies. The BS uses a Discrete Fourier Transform (DFT)
based codebook of size M and the UE uses a DFT codebook

of size N . The codebook C = [c0, . . . , cL−1] for the BS and
UE is generated as:

cl =
1√
L
[1, ej2π

l
L , ej2π

2l
L , . . . , ej2π

(L−1)l
L ]T , (1)

where L = M for BS codebook and L = N for UE codebook
and l = 0, . . . , L− 1.

The received signal from UE u in subcarrier s at the BS
using beam wm when the UE transmits on beam vn is

yu,sm,n = wH
mHu,svnxs + nu = hu,sm,nx+ nu, (2)

where hu,sm,n = wH
mHu,svn denotes the effective channel

coefficient for BS beam m and UE beam n, x is the trans-
mitted symbol and nu is an additive white Gaussian noise.
The BS can estimate this effective channel from a UE pilot
transmission. The effective channel vector measured from all
beams at the BS from a UE transmission using beam vn is
then:

hu,sn = WHHu,svn, (3)

where W = [w1, . . . ,wB ] is the matrix of BS beamforming
vectors. The BS can measure the effective channel from one
pilot transmission of the UE, assuming that it has an RF chain
for each beam. If the BS has less than M RF-chains, multiple
UE transmissions are needed for the BS to measure this. The
best combination of BS & UE wideband beams is

{m∗u, n∗u} = argmax
n,m

E{|hu,sm,n|2}, (4)

where the expectation is with respect to frequency samples.
For each BS beam there exists a best UE beam. The UE

has a function

n̂ = n̂(m) = argmax
n

E{|hu,sm,n|2}, (5)

for selecting the best UE-beam for transmission to-
wards/reception from BS beam wm, given the wideband
channel of the UE. The BS does not know which beam the
UE uses, only which BS beam it is supposed to transmit
towards and receive from. The channel vector between the B
BS beams and the UE baseband receiver thus is conditioned on



the assumption of the UE regarding which beam the BS uses.
If the UE assumes that the BS uses beam m, this channel
vector becomes

hu,sn̂(m) = WHHu,svn̂(m). (6)

Accordingly, the BS cannot unilaterally measure and find the
best beam towards the user. The BS can measure the elements
in the vector (6) from UE transmissions, but the BS cannot
measure what the channel coefficient at a beam m′ 6= m
would be, if the UE would select the best precoder vn(m′) for
transmission towards wm′ . There is a beam-mismatch problem
arising from UE autonomous precoding; the precoder vn(m′)
may or may not be the same as vn(m).

III. BEAM PREDICTION USING CHANNEL CHARTING

To solve the beam mismatch problem, we apply ML based
on a channel charting approach. Here, we first introduce the
concepts related to channel charting and then proceed with
an elaboration of the proposed beam prediction with CCs.
The concept of beam prediction using beam-based CCs is
illustrated in Fig. 1. The idea is to utilize per beam CCs of
the best beam at the present time instant to predict the best
beam in the next time instant for a mobile UE.

A. Channel Charting

The base assumption of channel charting is that the CSI
covariance matrix of a location reflects the large-scale effects
of the wireless channel. To create a CC for a given base-
station, first the CSI covariance matrix Ru for the UE u is
processed to obtain channel features fu that capture the large-
scale properties of the wireless channel [6].

The set of collected features {fu}Ku=1 for the set of UEs
K = {1, . . . ,K} seen by the BS are used to calculate the
dissimilarity matrix D ∈ RK×K+ which consists of the feature
dissimilarities du,u′ between pairs of UEs u, u′ ∈ K. There
are different ways to extract channel features and to obtain the
dissimilarity matrix [3], [5]. In this paper, we directly calculate
the dissimilarity matrix for a given base station from the
covariance matrices {Ru}Ku=1 at the BS using the Collinearity
Matrix Distance (CMD) metric [9]. The dissimilarity for two
UEs u and u′ with covariances Ru and Ru′ under CMD
measure is the Frobenius norm of normalized covariance
matrices:

dCMD(Ru,Ru′) = 1− Tr(RuRu′)

||Ru||F||Ru′ ||F
(7)

where Tr indicates trace operator.
Dimensionality reduction techniques like Isomaps [10] and

t-Distributed Stochastic Neighbor Embedding (t-SNE) [11] are
applied on the dissimilarity matrix to obtain a two-dimensional
chart containing coordinates corresponding to each UE, re-
ferred to as its chart location. The chart location of each
UE is such that the neighborhood relations of its physical
location with other physical locations of other UEs within
the cell are preserved in the chart. The quality of CCs is
characterized in terms of Continuity (CT), Trustworthiness

(TW) and Kruskal Stress (KS) metrics [12]. These metrics
quantify how well the CC locations preserve the distance
relations of the true physical domain. CT represents how
well the neighbors in physical domain are preserved in the
CC domain. TW quantifies how well the CC refrains from
introducing false neighbors when compared to the physical
domain. KS indicates how well the CC preserves the global
structure in the mapping. CT, TW and KS values lie between
0 and 1. It is desirable to have CT and TW as close to 1 as
possible and KS as close to 0 as possible.

B. Beam Prediction Using CC

Beam Prediction using CC is based on the channel reci-
procity in TDD. For each RF-chain of the BS, the BS can
measure one element of the vector (6) in each subframe where
the UE is transmitting. If the BS has one RF-chain, and the
UE transmits only in subframes where the BS receives from
the indicated best beam of the UE, the BS gets only 1D
channel information from the UE, which is not sufficient to
create a CC. Essentially, the BS receives transmissions from
an effective 1 × 1 SISO channel. If the UE transmits pilot
information in multiple subframes, where the BS listens to
multiple beams, or the BS has multiple RF-chains, the BS
acquires a richer channel which can be used for channel
charting.

If the BS measures using M beams, the effective channel
measured is 1×M SIMO. However, due to the beam misalign-
ment problem, the measured channel vector depends on the BS
beam wm the UE is transmitting towards. At a given spatial
location, the channel vectors hu,sn(m) and hu,sn(m′) may differ.
For a given m, this vector is changing continuously in space,
but if we select different n(m) at different spatial locations,
the corresponding channels would not change continuously
in space. To create reliable CCs, we thus have to condition
the CC on the BS beam that the UE transmits towards. The
BS thus constructs a separate CC for each BS beam, from
the received signals (6) where the UEs at different locations
transmit with the location specific vn(m) which is the best
beam at that location for transmitting towards wm.

At each sample location, there exists a best BS beam which
is determined as:

m̂ = argmax
m

E
{∣∣∣hu,sm,n(m)

∣∣∣2} . (8)

We now annotate all the CCs with information about the
best BS beam m̂ at each sample point, which enables best BS
beam prediction.

We consider a CC based beam prediction, that consists of
two phases: The training (offline) and the prediction (online).
In the training phase, the BS collects channel features for UEs
transmitting towards different beams. Data is accumulated,
and a BS-specific beam is constructed. There is a set of UEs
selecting their respective best UE beam n̂(m) for transmission
towards BS beam wm. Note that in the training phase, wm

may or may not be the best BS beam for a user in this set. The
UEs transmit pilot transmissions towards the BS at multiple



time instances. The covariance matrix of UE u towards BS
beam m is then

Ru,m = E{hu,sn̂(m)(h
u,s
n̂(m))

H}, (9)

where, the expectation is over frequency and spatial samples.
The covariances of this set of UEs is used to create the CC
of beam m. The CMD measure is used to obtain the dis-
similarity between covariance matrices. The manifold learning
techniques of Isomaps and t-SNE are used to create the CC
from the dissimilarity matrices. The CC is annotated based on
the best beam information collected.

In the prediction (online) phase, the CCs with associated
best beam data are used to predict next position’s best beam.
Assume that a UE transmits with beam vn(m), where m may
or may not indicate the best BS beam at the location of
the UE. The BS measures the CSI feature for the UE, and
obtains the CC coordinates using out-of-sample extension for
the new UE positions on the CC of beam m. This can be
done, e.g., by calculating the dissimilarities of the covariances
of the new data point with those of the existing CC points
and approximating the CC location of the new data point as
that of the charted UE with the smallest dissimilarity with the
new UE. From the annotations of the best beams on sample
points, the BS can deduce the best BS beam index m̂ for the
location of the UE.

Furthermore, we can predict mobility of the UE, and the
best beam at a future time instance. After obtaining the
approximate CC locations for the past positions of the UE,
we can predict the future chart position of the UE from its
past positions. We consider simple linear prediction of future
(t + 1)th CC position ẑt+1 using the past two CC positions
zt−1 and zt which is given as:

ẑt+1 = zt + (zt − zt−1). (10)

The two point CC based prediction is illustrated in Fig. 2. Sim-
ilarly, we can go for a more sophisticated position prediction
methods considering more past positions than just two. We
consider a 5-point prediction scheme where the points from
index t through t− 4 are used to predict the (t+ 1)th point.
For this, we consider the approach that the predicted location
is sum of the past value and a factor related to the difference
of the sample times. Thus, if we consider the average of four

such terms zt+(zt−zt−1), zt+
(zt − zt−2)

2
, zt+

(zt − zt−3)

3
,

and zt +
(zt − zt−4)

4
, we arrive at future CC prediction

ẑt+1 =
73

48
zt −

1

4

(
zt−1 +

zt−2
2

+
zt−3
3

+
zt−4
4

)
.

After predicting the future CC position using the above
simple approaches, from the annotations of the sampling points
of the CC for beam m, we can now predict the best beam of
the UE at time t+ 1.

Fig. 2. Two-point prediction of CC locations.

C. Beam Prediction Performance

The prediction error is used as the performance measure of
the CC based beam prediction computed as:

Err =

∑P
p=1 1b̂p 6=bp

P
, (11)

where P is the number of beam predicted locations, b̂p is the
predicted beam at location p, bp is the true best beam at CC
location b and 1 is the indicator function. The physical location
for beam management is considered in [4], [5]. Therefore,
the error performance of the CC based beam predictor is
compared with error performance of beam prediction using
physical locations of the UEs. For this, in the offline phase, the
physical location is annotated with the best beam information
and in the online phase, the UE future physical location is
predicted based on previous UE physical locations and the
best beam is determined from the annotated physical location
chart. To determine the error performance of prediction using
physical locations, we first predict the future position of the
UE using true locations of its past positions in the same way as
for prediction with CCs. Then, the best beam for the predicted
position is assigned based on the nearest UE location among
the UEs used for CC creation in the physical domain.

IV. SIMULATION RESULTS

A. Simulation Settings

The Quasi Deterministic Radio Channel Generator
(QuaDRiGa) is used to simulate the radio environment and
obtain the CSIs of the wireless links [13]. We consider a
single cell setting with a BS at the [−114 − 100] at an
approximate distance of 151 m from the street segment
containing UEs. The simulation settings in Table I are used
to generate the CSI information from QuaDRiGa.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

Center Freq. 28 GHz Subcarriers 256
Subcarrier BW. 240 KHz UE speed 50 Kmph
BS Array 32 ULA UE Array 8 ULA
Scenario 3GPP 38.901

UMa-NLOS
BS height 25 m

We consider a street segment of 10 m × 10 m between
coordinates [0 10] on the x-axis and [0 10] on the y-axis.
The direction of motion is considered along the positive x-
direction for the collection of the spatial samples used for
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Fig. 3. (Top); Sampled UE physical locations marked by colors with a
sampled mobility path. (Bottom); Best beam information as a function of
the physical location with different best beams indicated by different colors.
The best beam in the central region, colored with yellow, is beam 23

covariance calculation and 2000 UEs are uniformly distributed
in this street segment for the purpose of constructing the
CCs. We assume a UE pilot transmission every 1 ms, and
the data from 100 such transmissions is collected for each
UE. A covariance matrix estimate is created from the channel
estimates of these 100 transmissions over a distance of 1.39
m with the considered UE speed. We constructed CCs using
Isomaps and t-SNE techniques. For each of the UEs, the best
BS serving beam is determined during the training phase and
annotated to their CC location.

Then, 35 separate mobile UEs moving in the street segment
along the x-direction are considered. For each of these UEs,
we consider a path of length of about 10 m. The starting
points of the paths lie uniformly distributed between [0 0.28]
m on x-axis and [0 10] m on y-axis. Along this path, we
will again collect CSI data for the UE for every 1 ms. The
channel covariance data is calculated for every 20 ms. We have
considered 100 samples for each covariance calculation. Thus
for every 20 ms, we obtain a sample covariance considering
the subsequent 100 channel samples. This kind of sampling
provides us with slowly varying covariances. The relative
physical locations of the UE path points are shown in the
top of Fig. 3. A single UE’s mobility path is marked in the
middle of the street as an illustration. The best beam for each
UE location in the physical domain is shown on the bottom
of Fig. 3. A mobility path of a mobile UE in the middle of
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Fig. 4. CCs for beam 23 and the chart locations of a single mobility path
from Fig. 3 marked: (Top); Isomap CC. (Bottom); t-SNE CC.

the street is shown in the Isomap CC and t-SNE CC for beam
23 in Fig. 4. The CCs show the approximative structure of
the actual physical layout of the UEs which can be observed
in the overall square shape and relative locations indicated by
the colormap. It can also be noted that even an approximated
mobility path on the CC has a smooth progression. The Isomap
CC and t-SNE CC for beam 23 annotated with best beam
information are shown on the top and bottom parts of Fig. 5.

The performance metrics of the Isomap and t-SNE CCs are
tabulated in Table II for the dominant beams in the region con-
sidered; beams 19 and 23. The high values close to 1 for the
quality scores CT and TW indicates that the CCs obtained are
high-quality in terms of maintaining neighborhood relations
of the UEs in the physical dimension.

TABLE II
CC PERFORMANCE MEASURES

Performance Isomaps t-SNE
Measures Beam 19 Beam 23 Beam 19 Beam 23

TW 0.977 0.985 0.981 0.986
CT 0.982 0.989 0.980 0.988
KS 0.308 0.300 0.326 0.316

B. Beam Prediction Performance and Discussion
The beam prediction accuracies for the Isomap and t-SNE

CCs are tabulated in the Table. III. Maximum prediction accu-
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Fig. 5. CCs for beam 23 annotated with best beam information: (Top); Isomap
CC. (Bottom); t-SNE CC.

TABLE III
BEAM PREDICTION ACCURACY

Physical Isomaps t-SNE
81.1 68.5 70.8
79.6 70.2 70.4

racy of around 71% has been achieved. The maximum beam
prediction accuracy for physical location based prediction is
81%. There is a performance loss of the CC-based prediction
as compared to physical location based prediction. This is the
cost from relying on existing Radio Access Network internal
CSI for localization, instead of using GPS information.

V. CONCLUSIONS

The challenge of beam alignment in mmWave communi-
cation system can be tackled by using prediction of future
best beams. CC can help deal with the beam misalignment
problem. A CC based framework to perform such predictions
was considered. Simulations were conducted to evaluate the
performance of the prediction scheme. Prediction accuracies
achieved using CC formed with only CSI information of
the UEs were slightly worse compared to the prediction
accuracies using physical location of the UEs. In the proposed
framework, we do not require use of actual physical locations
of the UEs. This demonstrates the potential of using channel
charting in performing proactive RRM. There are some areas

of improvement that can help improve the performance of the
prediction such as using neural networks based prediction.
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