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ABSTRACT:
The spatial properties of a noise field can be described by a spatial coherence function. Synthetic multichannel noise

signals exhibiting a specific spatial coherence can be generated by properly mixing a set of uncorrelated, possibly

non-stationary, signals. The mixing matrix can be obtained by decomposing the spatial coherence matrix. As

proposed in a widely used method, the factorization can be performed by means of a Choleski or eigenvalue decom-

position. In this work, the limitations of these two methods are discussed and addressed. In particular, specific prop-

erties of the mixing matrix are analyzed, namely, the spectral smoothness and the mix balance. The first quantifies

the mixing matrix-filters variation across frequency and the second quantifies the number of input signals that con-

tribute to each output signal. Three methods based on the unitary Procrustes solution are proposed to enhance the

spectral smoothness, the mix balance, and both properties jointly. A performance evaluation confirms the improve-

ments of the mixing matrix in terms of objective measures. Furthermore, the evaluation results show that the error

between the target and the generated coherence is lowered by increasing the spectral smoothness of the mixing

matrix.VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003565

(Received 4 November 2020; revised 1 February 2021; accepted 2 February 2021; published online 2 March 2021)

[Editor: Kainam Thomas Wong] Pages: 1425–1433

I. INTRODUCTION

A noise field recorded with multiple microphones can

be analyzed in terms of spatial properties, such as the signals

correlation or coherence. For some cases, these quantities

can be approximated by analytical models. Cylindrical and

spherical isotropic noise fields, referred to as two-

dimensional (2D) (Cook et al., 1955) and three-dimensional

(3D) (Cron and Sherman, 1962) diffuse noise fields, respec-

tively, can be thought of as generated by an infinite number

of independent acoustic sources uniformly distributed on a

cylinder or a sphere (Dal-Degan and Prati, 1988; Elko,

2000). These spatial coherence models are commonly time-

invariant, real-valued, and dependent on the sensor positions

(Elko, 2001). The 3D-diffuse noise field can be suitable to

model the acoustic condition of a multi-talker environment,

e.g., a crowded room (Jacobsen and Roisin, 2000).

In our recent work (Mirabilii and Habets, 2018), we

analyzed the noise field recorded with closely spaced micro-

phones that were exposed to the airflow generated by a sta-

tionary fan. The low-frequency spatial coherence of the

aerodynamic noise agreed well with the empirical model

identified by Corcos (Corcos, 1964). In Mirabilii et al.

(2020), the noise field induced by atmospheric wind pre-

sented a similar coherence.

Generating synthetic noise allows us to evaluate dere-

verberation, noise reduction, and sound source localization

algorithms in a controlled environment and circumvent the

time-consuming collection of real data. This also avoids

the inclusion of unwanted acoustic sources in the record-

ings. Examples of multi-channel dereverberation

approaches that utilize synthetic noise signals with specific

spatial properties can be found, e.g., in Dietzen et al.
(2020) and Th€une and Enzner (2017). In Mirabilii and

Habets (2019, 2020), synthetic wind noise exhibiting the

Corcos model was used to evaluate the performance of two

multi-channel wind noise reduction algorithms by adding

the noise to the speech signals. In Mirabilii et al. (2020),
the synthetic noise was used as a training set for a deep

neural network approach that aimed at estimating the air-

flow speed and direction based on the spatial characteris-

tics of the noise field.

In this respect, the method proposed in Habets et al.
(2008) generates a set of signals that exhibit a predefined

spatial coherence, which can be measured from real data or

computed using analytical models. The signals are obtained

by filtering and summing an equal number of uncorrelated

noise instances in the short-time Fourier transform (STFT)

domain. The filter weights for generating the correlated out-

put signals from the uncorrelated input signals can be

arranged in a so-called mixing matrix, i.e., the output signals

are obtained by multiplying the input signals with the
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mixing matrix. The mixing matrix is computed by decom-

posing the spatial coherence matrix using an eigenvalue

(EVD) or a Choleski (CHD) decomposition. The same

method was used, e.g., in Mirabilii and Habets (2018) to

simulate wind noise exhibiting the Corcos model and in

Adrian et al. (2017) to generate perceptually plausible noise

signals based on different statistical properties.

The method proposed in Habets et al. (2008), however,
presents two main limitations. The first limitation is given

by the CHD, which yields an unbalanced mix of the input

signals, i.e., the output signals do not contain equal or simi-

lar proportions of each input signal. This is due to the fact

that the CHD solution yields an upper triangular matrix such

that, e.g., the first output signal is always equal to the first

input. The balance problem was addressed in Habets et al.
(2008) only for mixing two signals. The mix balance is rele-

vant for perceptual reasons such as signal density or timbral

similarity (Adami et al., 2016), i.e., a balanced mix sounds

more natural and plausible. The second limitation is given

by the EVD, where the obtained eigenvectors can largely

vary from one frequency band to the following, leading to

discontinuities of the filters’ magnitude response. This

results in long filter responses and an increased error

between the generated and the target spatial coherence.

We refer to this property as spectral variation. In particu-

lar, we refer to mixing matrices exhibiting a slow-varying

filters’ response as spectral smooth in the following,

where spectral smoothness denotes a low spectral

variation.

In this work, we propose to extend the method in

Habets et al. (2008) to increase the mix balance and

decrease the spectral variation of the mixing matrix

obtained with the CHD or the EVD for any arbitrary num-

ber of signals and microphone constellations. After defin-

ing a target spatial coherence matrix, the latter is

decomposed via CHD or EVD. Subsequently, the mix bal-

ance, the spectral smoothness, or both properties of the

obtained mixing matrix are enhanced using three pro-

posed methods based on the unitary Procrustes solution

(Gower and Dijksterhuis, 2004). Mutually uncorrelated

input signals are then mixed using the obtained mixing

matrix to yield output signals exhibiting the target spatial

coherence.

The remainder of the paper is structured as follows. In

Sec. II, we formulate the problem and introduce the nota-

tion. Section III describes the methods proposed in Habets

et al. (2008) to generate multi-channel signals with a prede-

fined spatial coherence. Section IV introduces objective

measures to quantify the mix balance and the spectral

smoothness of the mixing matrix. The limitations of the

state-of-the-art (SoA) methods are described in terms of the

above-mentioned properties. In Sec. V, three methods are

proposed to respectively enhance the spectral smoothness,

the mix balance, and both properties simultaneously. In

Sec. VI, we evaluate the proposed methods in terms of mix

balance and spectral smoothness. Section VII contains some

conclusions.

II. PROBLEM FORMULATION

This section introduces the notation and the quantities

of interest. In Sec. II A, we define the spatial coherence

function, and we give some examples of analytical models.

Section II B illustrates how to obtain the mixing matrix

given a predefined coherence matrix. In Sec. II C, we

explain the non-uniqueness of the matrix decomposition,

which allows imposing desired properties on the mixing

matrix.

A. Spatial coherence

The complex-valued spatial coherence is a measure of

the correlation between the ith and jth microphone signals in

the frequency domain, expressed as

CijðxÞ ¼
/ijðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/iiðxÞ/jjðxÞ
q ; (1)

where /ij denotes the cross-power spectral density for i 6¼ j
and the auto-spectral density for i¼ j, and x denotes the

angular frequency. Examples of analytical models of Eq. (1)

are the spherically isotropic noise field,

CijðxÞ ¼
sin ðxdij=cÞ
xdij=c

; (2)

and the cylindrically isotropic noise field,

CijðxÞ ¼ J0ðxdij=cÞ; (3)

where c denotes the sound velocity in ms� 1, dij denotes the
distance between the ith and the jth microphones in m, and

J0 denotes the zero-order Bessel function of the first kind.

An additional example is given by the spatial coherence of

wind-noise contributions measured with closely spaced

microphones (Mirabilii and Habets, 2018; Mirabilii et al.,
2020), expressed as

CijðxÞ ¼ exp
�xdij aðhwÞ � i cos ðhwÞ½ �

Uc

� �
; (4)

where i ¼
ffiffiffiffiffiffiffi
�1

p
; aðhwÞ denotes a decay-rate parameter

which depends on the airflow direction hw, and Uc denotes

the convective turbulence speed. The pair-wise coherence

functions, e.g., Eqs. (2), (3), or (4), can be arranged in a

matrix

CðxÞ ¼
C11ðxÞ � � � C1NðxÞ

..

. . .
. ..

.

CN1ðxÞ � � � CNNðxÞ

2
64

3
75 2 C

N�N; (5)

where N is the number of channels, CðxÞ is Hermitian, i.e.,

CijðxÞ ¼ C�
jiðxÞ, positive semi-definite and jCiiðxÞj ¼ 1. As

Eqs. (2), (3), and (4) are Hermitian symmetric across fre-

quency, i.e., Cijð�xÞ ¼ C�
ijðxÞ, the corresponding time-

domain signals are real-valued.
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B. Mixing matrix

We aim at generating N signals exhibiting a predefined

coherence CðxÞ by filtering and summing N uncorrelated

signals. Given N mutually uncorrelated, and possibly non-

stationary, signals XðxÞ ¼ ½X1ðxÞ;X2ðxÞ;…;XNðxÞ�,
we obtain N signals YðxÞ ¼ ½Y1ðxÞ; Y2ðxÞ;…; YNðxÞ�
exhibiting the predefined coherence by applying a mixing

matrix CðxÞ 2 C
N�N

, i.e.,

YðxÞ ¼ CHðxÞXðxÞ; (6)

where ð:ÞH denotes the Hermitian operator. The mixing

matrix can be obtained by decomposing the spatial coher-

ence matrix [Eq. (5)], such that

CHðxÞCðxÞ ¼ CðxÞ: (7)

Because of CðxÞ being normalized, every column CiðxÞ of
the mixing matrix is a unit vector, i.e., jjCiðxÞjj2 ¼ 1. This

guarantees that the output signals YðxÞ have equal power

when the input signals XðxÞ have equal power. In the fol-

lowing, we assume homogeneous input signals, i.e., XðxÞ
presents the same auto-power spectral density /xðxÞ for

each signal. The covariance matrix of the mutually uncorre-

lated input signals is given by UxðxÞ ¼ EfXðxÞXHðxÞg
¼ /xðxÞI, where Ef:g denotes the mathematical expecta-

tion and I 2 RN�N denotes the identity matrix. It follows

from Eq. (6) that the output signals YðxÞ yield a covariance

matrix UyðxÞ ¼ EfYðxÞYHðxÞg ¼ /xðxÞCðxÞ. Therefore,
the methods described in the following are limited to the

simulation of homogeneous noise fields captured by unit-

gain sensors exhibiting a predefined spatial coherence CðxÞ.
A method to simulate non-homogeneous signals exhibiting

a predefined covariance matrix can be derived by replacing

the desired spatial coherence matrix in Eq. (7) with a desired

covariance matrix.

C. Unitary mixing matrix

The matrix decomposition in Eq. (7) is, however, not

unique. This non-uniqueness can be exploited to impose

desired properties on the mixing matrix. Specifically, given

any unitary matrix U 2 C
N�N

, i.e., UHU ¼ I, the equality

CHC ¼ CHUHUC ¼ C holds. Therefore, the unitary

transformation,

ĈðxÞ ¼ UðxÞCðxÞ; (8)

preserves the inner product in Eq. (7), so that Ĉ and C yield

the same target coherence C.
One can modify the mixing matrix to fulfill specific

requirements by using U as a design parameter. In this

work, we aim at obtaining a mixing matrix that yields a bal-

anced mix and spectral smoothness. These two properties

are introduced in Secs. I A and IVB.

III. STATE OF THE ART

In this section, we summarize the matrix decomposition

algorithms presented in Habets et al. (2008), where the

authors introduce two different methods to decompose

Eq. (5), namely, CHD and EVD. Whenever possible, we

omit the frequency argument for brevity.

The CHD yields an upper triangle matrix CCHDðxÞ,
which solves Eq. (7) if CðxÞ is positive definite. The

positive-definite property holds, e.g., for Eqs. (2), (3), and

(4) at x 6¼ 0. A fully coherent matrix, i.e., CijðxÞ ¼ 1 for all

i and j, is rank-deficient and thus positive semi-definite.

Therefore, the CHD is not applicable to a fully coherent

matrix, for example, the one obtained using Eq. (4) for

x ¼ 0. In the latter case, the mixing matrix must be com-

puted otherwise. In addition, the spatial response of a point

source, which yields a rank-1 spatial coherence matrix irre-

spective of the source incident angle (Bienvenu and Kopp,

1981; Epain and Jin, 2016; Karasalo, 1986), cannot be gen-

erated with the CHD.

In contrast to the CHD, the EVD is applicable to posi-

tive semi-definite and rank-deficient matrices. The mixing

matrix given by the EVD is computed as follows. First, the

spatial coherence is decomposed as

C ¼ VKVH ¼ V
ffiffiffiffi
K

p ffiffiffiffi
K

p
VH; (9)

where K; V 2 C
N�N

are, respectively, the diagonal matrix

whose elements are the eigenvalues of C and the matrix

whose columns are the corresponding eigenvectors. Then,

the mixing matrix is given by

CEVDðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
KðxÞ

p
VHðxÞ: (10)

IV. DESIGN CRITERIA AND SOA LIMITATIONS

In Secs. IVA and IVB, we propose novel requirements

on the mixing matrix and we introduce the related objective

measures. In particular, Sec. IVA introduces the concept of

coherence error and spectral smoothness and describes their

relation. Section IVB introduces the concept of mix bal-

ance. Subsequently, in Sec. IVC, we analyze the CHD and

the EVD in terms of coherence error, spectral smoothness,

and mix balance.

A. Design criterion: Spectral smoothness

The overall accuracy of the mixing matrix filter is given

by the mean squared error (MSE),

n ¼ 1

2p

ðp
�p

jjCðxnÞ � CHðxnÞCðxnÞjj2F dx; (11)

where jj:jjF denotes the Frobenius norm of a matrix and xn

is the angular frequency, x, normalized by the sampling fre-

quency. We refer to Eq. (11) as coherence error in the fol-

lowing. A discrete-time mixing filter can be designed by

solving the mixing matrix at discrete frequency points xk,
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yielding CðxkÞ at frequency instances k ¼ 0;…;K � 1. An

inverse discrete Fourier transform (DFT) F�1fCðxkÞg
with length K yields a matrix of filters CðnÞ where

n ¼ 0;…;K � 1 denotes the time index.

The discrete solution can yield large errors in Eq. (11),

especially between the frequency points xk. To illustrate

this, let us assume the target spatial coherence matrix

CðxÞ � I. A possible mixing matrix solution is

CðxkÞ ¼ Uk, where Uk are different unitary matrices for

each k. If we, however, compute from CðnÞ the continuous

frequency response via a discrete-time Fourier transform,

CðxÞ for x 6¼ xk are not necessarily unitary and conse-

quently CðxÞ 6¼ I. As a result, although CðxkÞ are accurate,
the MSE n in Eq. (11) can become large. In practice, we

evaluate the MSE in Eq. (11) with a zero-padded DFT of

length K0 � K. In the given example, the generated coher-

ence is inaccurate due to the discontinuities along frequency

of the mixing matrix, i.e., due to a low spectral smoothness.

Therefore, we propose to choose the mixing matrices at

adjacent frequency bands such that they are as similar as

possible, i.e., we aim at minimizing

� ¼ 1

K

X
k

jjCðxkÞ � Cðxk�1Þjj2F; (12)

where x�1 ¼ xK�1. We refer to Eq. (12) as the spectral var-

iation in the following. In particular, we refer to fast-varying

mixing matrices along frequency as non-smooth matrices

and to slowly varying mixing matrices as smooth matrices.

In Sec. VI, we demonstrate that the spectral smoothness is a

sufficient requirement for a low coherence error [Eq. (11)].

Additionally, smooth mixing matrices result in short filters

CðnÞ, which can be further truncated for efficient

processing.

In Fig. 1, we show the difference between non-smooth

and smooth mixing matrices in terms of coherence error and

spectral smoothness, for CðxÞ � I, K ¼ 1024 and N ¼ 4.

The non-smooth solution is generated from random unitary

matrices at each frequency instance xk. For the smooth solu-

tion, we applied the method used in Schlecht and Habets

(2015), originally derived to achieve continuous feedback

matrix modulation. We imposed smooth transitions, i.e.,

similar unitary matrices across frequency, between Cðx0Þ
¼ I and CðxK=2Þ ¼ H=

ffiffiffiffi
N

p
, where H denotes a complex

Hadamard matrix, e.g., a DFT matrix of size N � N. The
coherence error, Eq. (11), was computed by applying a DFT

of length K0 ¼ dp � Ke ¼ 3217 to CðnÞ, i.e., FK0 fCðnÞg,
where p was chosen to obtain a sufficiently large non-

integer multiple of K. The non-smooth solution presents

long and discontinuous filters [Fig. 1(a)] and a large coher-

ence error [Fig. 1(c)], whereas the smooth solution presents

shorter filters [Fig. 1(b)] associated with a lower coherence

error [Fig. 1(d)].

B. Design criterion: Mix balance

We require the mixing matrix to yield a balanced mix,

i.e., similar contributions of the input signals at each output

signal. As a matter of example, a target coherence CðxÞ ¼ I

can occur, e.g., in Eq. (4) at sufficiently high frequency. For

this case, an unbalanced mix can be given by C ¼ I, where

the output is the exact copy of the input in Eq. (6). An alter-

native mixing matrix can be given by C ¼ H=
ffiffiffiffi
N

p
. While I

presents zeros outside the diagonal and thus each input sig-

nal contributes to only one output signal, H=
ffiffiffiffi
N

p
is a dense

matrix, i.e., most of its elements are non-zero, and therefore

yields a balanced mix. To objectively evaluate the mix bal-

ance, one can compute the entry-wise l1-norm normalized

by the number of channels N of the mixing matrix

b ¼ 1

KN
ffiffiffiffi
N

p
X
k

jjCðxkÞjj1; (13)

where jjCðxkÞjj1 ¼
PN

i¼1

PN
j¼1 jCijðxkÞj, and CijðxkÞ

denotes the entries of CðxkÞ. The l1-norm is an indicator of

how dense the mixing matrix is and thus reflects the mix

balance obtained with Eq. (6). In the above-mentioned

example, in fact, the Hadamard matrix presents an l1-norm
that is higher than the identity matrix, i.e., jjIjj1 ¼ N
< jjH=

ffiffiffiffi
N

p
jj1 ¼ N

ffiffiffiffi
N

p
.

C. SOA limitations

As the CHD yields an upper triangle matrix, the result-

ing mix is unbalanced. In particular, the first output signal

corresponds to the first input signal, while the Nth output

signal is a linear combination of all the input signals.

Therefore, the input signals do not similarly contribute to

each output signal. The mixing matrix obtained with the

EVD generally yields a mix that is more balanced than the

CHD, but it does not guarantee similar contributions of

the input signals when N > 2. The EVD, however, can yield

an eigenvectors basis VðxkÞ that is dissimilar at adjacent

frequency instances. This leads to large variations across

frequency and thus to pronounced discontinuities in the filter

FIG. 1. (Color online) Filter response C12ðnÞ obtained from (a) non-smooth

solution with random unitary matrices and (b) smooth solution with unitary

matrices varying slowly along frequency. The generated coherence (7) with

FK0 fC12ðnÞg is (c) and (d), respectively.
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responses compared to the mixing matrix obtained with the

CHD.

To visualize the difference between the filters obtained

with the CHD and the EVD in the time domain, we show

the filter responses computed via the inverse DFT in Fig. 2.

The spatial coherence was [Eq. (2)] for a uniform linear

array with N ¼ 4, K ¼ 1024, diðiþ1Þ ¼ 20 cm, Fs ¼ 16 kHz.

The CHD yielded a filter response that is significantly

shorter than the filter response of the EVD. In Fig. 3, we

compared the CHD and the EVD in terms of spectral

smoothness and mix balance, using Eqs. (12) and (13),

respectively. It is noticeable how the mixing matrix obtained

with the EVD was discontinuous across the frequencies,

whereas the CHD approached zero in terms of the difference

between mixing matrices of adjacent bins. Moreover, the

CHD resulted in an unbalanced mix compared to the EVD.

Additionally, we can evaluate the MSE in Eq. (11) by apply-

ing a DFT of length K0 � K to CðnÞ, as explained in

Sec. IVA. In Fig. 4, the result is shown for K0 ¼ dp � Ke.
The obtained coherence matrix CHðxkÞCðxkÞ was com-

pared to the target coherence [Eq. (4)] computed with the

increased frequency resolution K0. The coherence obtained

with the EVD in Fig. 4(a) presented a high variance noise-

like trend at in-between frequencies x 6¼ xk caused by the

non-smoothness of the filters. The coherence obtained with

the CHD in Fig. 4(b) agreed better with the target

coherence, as the noise at in-between frequencies presented

a reduced variance.

In conclusion, the CHD yields a smooth mixing matrix

with the drawback of an unbalanced mix, while the EVD

yields a more balanced mix at the cost of discontinuous fil-

ters across the frequencies.

V. PROPOSED METHOD

The objective of this work is to obtain a mixing matrix

from the decomposition of a target coherence matrix. In

addition to what was proposed in Habets et al. (2008), we
require that the mixing matrix is smooth across the frequen-

cies and yields a balanced mix. These are conflicting

requirements, since achieving mix balance could disrupt the

spectral smoothness. The main idea is to fulfill these

requirements by multiplying the mixing matrix CCHD or

CEVD with an unitary matrix as explained in Sec. II C. In

Sec. VA, we propose a method to enhance the spectral

smoothness. In Sec. VB, we propose a method to enhance

the mix balance. Finally, in Sec. VC, we propose a method

to jointly enhance both properties.

A. Spectral smoothness

To minimize Eq. (12), we make use of the orthogonal

(unitary) Procrustes problem (Gower and Dijksterhuis,

2004), which finds the unitary matrix that most closely maps

one matrix to another. The problem can be formally

expressed as

ÛfðxkÞ ¼ min
Uf

jjUfCðxkÞ � Cðxk�1ÞjjF; (14)

subject to UH
f Uf ¼ I with Uf 2 C

N�N
. The solution of Eq.

(14) is given by the orthogonal polar factor of the matrix

R ¼ Cðxk�1ÞCðxkÞH, which is obtained from the singular

value decomposition (SVD) of R as follows:

R ¼ WRZH; (15)

where R ¼ diag½r1; r2;…; rN� denotes the diagonal matrix

containing the singular values ri of R, and W, Z are unitary

FIG. 2. (Color online) Filter responses C12ðnÞ obtained with the EVD (a)

and the CHD (b). The spectral variation [Eq. (12)] is shown in the legend.

FIG. 3. (Color online) Frequency bin-wise spectral variation (a) and mix

balance in dB (b) of the mixing matrix obtained with the CHD (blue lines)

and the EVD (red dotted line).

FIG. 4. (Color online) Target coherence C12ðxkÞ (dotted blue lines) com-

pared to the coherence [Eq. (7)] obtained with the mixing matrix

FK0 fC12ðnÞg given by (a) the EVD and (b) the CHD (marked red lines).

The coherence error [Eq. (11)] is shown in the legend.
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matrices whose columns are the left-singular and right-

singular vectors, respectively. Finally, the closed-form solu-

tion is given by

ÛfðxkÞ ¼ WZH: (16)

The spectral smoothness can be propagated from any initial

frequency index k̂ to the whole frequency range by applying

Eq. (14) iteratively, i.e., we first solve Eq. (14) for k̂ þ 1,

then for k̂ þ 2, etc., and vice versa in the negative direction.

The mixing matrix is updated between each solution. In

practice, we commonly choose k̂ ¼ K=2 (for even K). The
mixing matrix at the kth frequency bin is then computed as

ĈfðxkÞ ¼ ÛfðxkÞCðxkÞ: (17)

The resulting smooth mixing matrix is unique up to

multiplication with a broadband unitary matrix, i.e., for any

two matrices Ĉf1 and Ĉf2, there is a unitary matrix U such

that Ĉf2ðxkÞ ¼ UĈf1ðxkÞ for all k. The choice of U does

not affect the spectral smoothness.

This method can be applied, e.g., to the mixing matrices

obtained with the EVD to attenuate the discontinuity along

the frequencies shown in Fig. 3(a) and the coherence error

shown in Fig. 4(a).

B. Mix balance

To maximize the mix balance [Eq. (13)], we propose

the following iterative algorithm. The maximum value of

the l1-norm is attained by the unitary Hadamard matrix H.

Therefore, we are interested in finding the unitary matrix

that most closely maps the mixing matrix to H in terms of

element-wise absolute values. This can be achieved by mini-

mizing the following cost function:

ÛbðxkÞ ¼ min
Ub

jjjUbCðxkÞj � jHjjjF; (18)

subject to UH
bUb ¼ I with Ub 2 C

N�N , where j:j denotes the
element-wise absolute values of a matrix. The minimization

in Eq. (18) is equivalent to

ÛbðxkÞ ¼ min
Ub

jjUbCðxkÞ � PjjF; (19)

where P is the optimal set of phases, such that jPijj ¼ 1,

where Pij denotes the ith row and jth column of P. A similar

method was used in Schlecht and Habets (2018) for

designing the spatial configuration of feedback delay net-

works. We propose to solve Eq. (19) iteratively by using the

unitary Procrustes solution (Gower and Dijksterhuis, 2004).

At the mth iteration, the unitary matrix is given by

Û
ðmÞ
b ðxkÞ ¼ min

Ub

jjUbCðxkÞ � P̂
ðm�1Þ jjF; (20)

where P̂ is the set of phases updated as

P̂
ðmÞ ¼ / Û

ðmÞ
b ðxkÞCðxkÞ

� �
; (21)

where /ð:Þ denotes the element-wise phase of a matrix.

The proof of convergence is given by the Procrustes

solution being the global minimum of the difference [Eq.

(20)] in the Frobenius-norm sense, similar to Eq. (14).

Therefore,

jjÛðmÞ
b C� P̂

ðm�1ÞjjF 	 jjÛðm�1Þ
b C� P̂

ðm�1ÞjjF; (22)

and

jjÛðmÞ
b C� P̂

ðmÞ jjF 	 jjÛðm�1Þ
b C� P̂

ðm�1ÞjjF: (23)

The balanced mixing matrix is finally obtained as

ĈbðxkÞ ¼ ÛbðxkÞCðxkÞ: (24)

The solution of Eq. (18) is a local minimum and represents a

proxy measure for the mix balance, whose results are evalu-

ated in terms of Eq. (13) in Sec. VI. The balancing step can be

skipped, e.g., when the input signals are given by realizations

of zero-mean random Gaussian processes, since a balanced

mix of noise-like input signals does not exhibit substantial per-

ceptual differences compared to an unbalanced mix.

C. Joint spectral smoothness and mix balance

One can use the method proposed in Secs. VA or VB to

individually increase the spectral smoothness or the mix bal-

ance of the obtained mixing matrix, respectively. However,

one might be interested in jointly enhancing both properties

at the same time. Solving simultaneously Eqs. (14) and (19)

to achieve smoothness and balance by finding a single uni-

tary matrix (i.e., Ûb ¼ Ûf) could lead to a cumbersome non-

convex optimization problem. Moreover, applying a cascade

of Eqs. (14) and (19) replaces the obtained balanced-mixing

matrix with the smooth-mixing matrix, neglecting the benefit

FIG. 5. (Color online) Frequency bin-wise spectral variation (a) and mix

balance (b) of the mixing matrix obtained with the CHD (solid blue lines),

compared to the mixing matrix obtained with CHD and Eq. (24) (dashed

red lines).
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of the balance algorithm. Conversely, a cascade of Eqs. (14)

and (19) could disrupt the spectral smoothness.

As a matter of example, let us decompose, e.g., Eq. (4)

using the CHD. As shown in Fig. 3, the CHD yields smooth

filters but an unbalanced mix. Therefore, we can induce bal-

ance by applying Eq. (24) to C and obtain Ĉb. The balance

of C and Ĉb is shown in Fig. 5(b). On one hand, the method

proposed in Sec. VB yields a mixing matrix with maximum

balance. On the other hand, while C was smooth, Ĉb results

as highly discontinuous after applying Eq. (24), in Fig. 5(a).

Therefore, we propose a method to jointly increase the

mix balance and the spectral smoothness of the mixing

matrix. This is performed by alternating the spectral

smoothness [Eq. (14)] and a smoothness-preserving version

of Eq. (19). First, we apply Eq. (19) to the mixing matrix at

any initial frequency xk̂ , i.e., we compute Ĉbðxk̂Þ to maxi-

mize the balance of the initial state. Then, we solve Eq. (17)

obtaining ĈfðxkÞ at the neighbour frequency band.

Subsequently, we solve

Ûb ¼ min
Ub

jjUbĈfðxkÞ � Pf jjF; (25)

by iterating Eq. (20) one time, where P̂f is deterministic and

defined as the phases of ĈfðxkÞ, i.e.,

P̂f ¼ / ĈfðxkÞ
� �

: (26)

After solving Eq. (20) using the unitary Procrustes solution,

we obtain the smoothness-preserving balanced matrix,

ĈfbðxkÞ ¼ ÛbĈfðxkÞ: (27)

The choice of iterating one time is justified by the fact that

the algorithm in Eq. (20) converges rapidly if the mixing

matrix is already dense. This is true, e.g., when we impose

spectral smoothness [Eq. (18)] between the current and the

previous frequency bin of the mixing matrix, to which we

previously imposed balance. In other words, imposing

smoothness propagates the balance.

In Fig. 6, we show the trade-off between the spectral

smoothness and the mix balance averaged over the fre-

quency bins at each iteration of Eq. (20). By smoothness we

refer to Eq. (12), where a small value is desired. By balance

we refer to Eq. (13), where a large value is desired. The

measures on the abscissa origin (marked with triangles) cor-

respond to the matrix obtained solely with the CHD. The

following values (circles) correspond to the matrix obtained

with the CHD where we imposed smoothness using Eq. (17)

from the maximum to the minimum frequency and by apply-

ing Eq. (19) to the initial state. It is noticeable how inducing

smoothness between a balanced matrix and the neighbour

matrix has the side effect of propagating the balance. The

third point (squares), corresponds to the measures of the

matrix obtained with a single iteration, i.e., using Eq. (27).

From the third point on, the axis corresponds to the mth iter-

ation in Eq. (20). The best trade-off is attained at the first

iteration [Eq. (27)], where the balance is close to the maxi-

mum while the Frobenius norm of the difference between

adjacent matrices is close to the minimum attained by Eq.

(17), i.e., the spectral smoothness is reasonably high. By

iterating more than once, the balance algorithm increasingly

degrades the spectral smoothness without further enhancing

the balance. In addition, using a single iteration to obtain

Eq. (27) is beneficial in terms of computational efficiency.

Audio examples of the SoA and the proposed methods can

be found at the AudioLabs website (AudioLabs, 2020).

VI. PERFORMANCE EVALUATION

In this section we evaluated the mixing matrix obtained

with the proposed methods, i.e., Eqs. (17), (24), and (27), in

terms of mix balance, spectral smoothness, and coherence

error. We compared the results with the original mixing

matrix obtained with CHD and EVD to assess the improve-

ments. In the following, the measures are expressed in dB.

We expect b ¼ 0 dB [Eq. (13)] for maximum balance or

close to 0 dB for well-balanced matrices, while n [Eq. (11)]

and � [Eq. (12)] as small as possible for smooth matrices.

We simulated the spatial response of a uniform linear

array with N ¼ 4, K ¼ 1024, Fs ¼ 16 kHz, and a variable

inter-microphone distance. The coherence matrix was

defined with the models in Eqs. (2), (3), and (4). For Eqs.

(2) and (3), we computed the performance measures for an

inter-microphone distance of diðiþ1Þ ¼ f10; 20; 40g cm. For

Eq. (4), the distance was kept fixed at 0.5 cm, while the

stream direction was hw 2 f0; p=4; p=2g rad and the con-

vective turbulence speed was Uc 2 f3; 6; 12g ms� 1.

The results are shown in Table I, where we averaged

over the microphone distance for Eqs. (2) and (3), and over

the stream speed and direction for Eq. (4). The mixing

matrix obtained with the CHD (Habets et al., 2008), pre-
sented overall a low spectral variation and a low coherence

error, but it was poorly balanced. Vice versa, the EVD

(Habets et al., 2008) presented an increased mix balance at

the cost of a high spectral variation compared to the CHD.

To decrease the spectral variation and the coherence error,

we applied Eq. (17) to both CHD and EVD from the maxi-

mum to the minimum frequency. The obtained mixing

matrices yielded overall the minimum spectral variation and
FIG. 6. (Color online) Spectral variation (in solid blue) and mix balance (in

dashed red) against the iterations of Eq. (20).
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coherence error without any significant impact on the mix

balance. To enhance the mix balance, we applied Eq. (24) to

the matrices obtained with the CHD and the EVD. The algo-

rithm was iterated until convergence. Although the l1-norm
was overall maximized, the balance algorithm significantly

increased the spectral variation and the coherence error

yielding the worst performing results, as shown in Fig. 5.

Finally, to jointly increase the mix balance and decrease the

spectral variation along with the coherence error, we applied

Eq. (27) to the CHD and EVD. The spectral smoothness was

imposed from the maximum to the minimum frequency,

where the matrix balance of the initial state was maximized

using Eq. (19). The proposed smoothness-preserving bal-

ance algorithm described in Sec. VC consisted in a single

iteration of the absolute unitary Procrustes solution [Eq.

(20)] and resulted in a good trade-off between a balanced

and a smooth matrix. The l1-norm of the obtained matrix

was in fact close to the maximum, while the spectral

smoothness and the coherence error presented values of Eqs.

(12) and (11) relatively close to the cohesion-algorithm

results, as shown in Fig. 6. Optionally, one could increase

the mix balance at the cost of increasing the spectral varia-

tion by iterating more than once. As hypothesized in Sec.

IVA, increasing the spectral smoothness [Eq. (12)] of the

mixing matrix was sufficient to decrease the coherence error

[Eq. (11)] for every spatial coherence model.

In Fig. 7, we show the filter responses of the mixing

matrix obtained with the above-mentioned methods. The fil-

ter responses were computed by applying the inverse DFT

to the mixing matrix. The spatial coherence model was

Eq. (2) with N ¼ 2, d ¼ 4 cm and K ¼ 1024. In Fig. 7(a), the

mixing matrix obtained with the EVD presented a long and

discontinuous filter response’s magnitude caused by the low

spectral smoothness. The smoothness-inducing algorithm

[Eq. (17)] applied to the EVD-based mixing matrix yielded

a shorter and smoother filter, as shown in Fig. 7(b). The

balance-inducing algorithm [Eq. (24)] significantly dis-

rupted the spectral smoothness, yielding a highly discontinu-

ous filter, as shown in Fig. 7(c). Finally, the smoothness-

preserving balance algorithm [Eq. (24)] yielded a filter with

a response comparable to Fig. 7(b), shown in Fig. 7(d).

VII. CONCLUSION

In this work, we proposed three methods to enhance

specific properties of the mixing matrix obtained by decom-

posing a spatial coherence matrix. In addition to attaining a

low error between the target and the generated coherence,

our goal was to obtain a mixing matrix that yields spectral

smoothness, i.e., small variations of the filters’ magnitude

response across frequency, and a balanced mix, i.e., similar

contributions of the input signals at each output signal. We

introduced these additional requirements by means of objec-

tive measures and demonstrated that the spectral smoothness

is a sufficient requirement for a low coherence error. We

developed a method to enhance the spectral smoothness, the

mix balance, and both properties jointly. An evaluation of

the proposed methods showed that (a) enhancing the

smoothness of the mixing matrix lowers the coherence error

with no significant impact on the mix balance, (b) enhancing

TABLE I. Mix balance (b), spectral variation (�) and coherence error (n) of different mixing matrices. All measures are expressed in dB. The coherence

matrix was defined with the spherical [Eq. (2)] and cylindrical [Eq. (3)] isotropic diffuse model, using an increasing inter-microphone distance, and with the

Corcos model [Eq. (4)], using different stream direction hw and convective turbulence speed Uc. The results were then averaged over the considered set of

microphone spacing and the set of direction/speed, respectively.

Spherical Cylindrical Corcos

b (13) � (12) n (11) b (13) � (12) n (11) b (13) � (12) n (11)

CHD �5.72 �32.92 �17.25 �4.92 �25.97 �16.73 �5.62 �28.15 �17.56

EVD �0.54 �1.22 �2.12 �0.57 3.15 �0.56 �0.32 �1.14 �5.14

Smoothness CHD þ [Eq. (17)] �5.43 262.92 221.51 �4.72 254.29 219.97 �5.33 246.24 218.66

EVD þ [Eq. (17)] �0.48 �62.43 �20.33 �0.44 �53.96 �18.78 �0.31 �45.41 �18.31

Balance CHD þ [Eq. (24)] 0.00 6.01 0.12 0.00 6.03 0.12 0.00 6.01 0.11

EVD þ [Eq. (24)] 0.00 6.01 0.12 0.00 6.02 0.09 0.00 6.01 0.12

Joint CHD þ [Eq. (27)] �0.01 �58.62 �19.42 �0.03 �52.12 �19.76 �0.03 �42.76 �18.28

EVD þ [Eq. (27)] �0.01 �55.9 �18.92 �0.02 �51.45 �18.17 �0.04 �44.82 �18.15

FIG. 7. (Color online) Filter responses C12ðnÞ of the mixing matrix obtained

with the (a) EVD, (b) EVD þ Eq. (17), (c) EVD þ Eq. (24), and (d) EVD

þ Eq. (27).
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the balance disrupts significantly the smoothness and the

coherence error, and (c) jointly enhancing the smoothness

and the balance yields results, which were close to the

individually enhanced properties. The third method attained

the best trade-off in terms of spectral smoothness and mix

balance.
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