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The engineering of artificial systems hosting topological excitations is at the heart of current condensed matter
research. Most of these efforts focus on single-particle properties, neglecting possible engineering routes via the
modifications of the fundamental many-body interactions. Interestingly, recent experimental breakthroughs have
shown that Coulomb interactions can be efficiently controlled by substrate screening engineering. Inspired by
this success, we propose a simple platform in which topologically nontrivial many-body excitations emerge
solely from dielectrically engineered Coulomb interactions in an otherwise topologically trivial single-particle
band structure. Furthermore, by performing a realistic microscopic modeling of screening engineering, we
demonstrate how our proposal can be realized in one-dimensional systems such as quantum-dot chains. Our
results put forward Coulomb engineering as a powerful tool to create topological excitations, with potential
applications in a variety of solid-state platforms.

DOI: 10.1103/PhysRevResearch.3.013265

I. INTRODUCTION

Topology represents one of the most fertile fields in
modern condensed matter physics [1–3], boosted by the
prediction and experimental realization of topological sys-
tems, ranging from quantum spin Hall [4] and Chern
[5,6] insulators to topological superconductors [7–9] and
topological crystalline insulators [10,11]. Besides being of
fundamental interest, these states are widely discussed due
to their potential impact on solid-state technology, includ-
ing low-consumption electronics [12], spintronics [13], and
topological quantum computing [14]. The topological clas-
sification of noninteracting systems continues to grow with
the recent examples of higher-order topological insulators
[15,16], non-Hermitian topology [17–19], fragile topological
phases [20,21], quasiperiodic topology [22,23], and random
topological systems [24,25].

Some of the most groundbreaking discoveries in con-
densed matter physics have been intimately related with
strong interactions, with the paradigmatic examples of high-
temperature superconductivity [26] and fractional quantum
Hall physics [27,28]. It is thus not surprising that the interplay
of topology and correlation effects is increasing as one of the
most enigmatic fields in modern condensed matter physics.
Topological states associated with interactions in topological
Mott [29] and Kondo [30,31] insulators represent examples.
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In many instances, the role of interactions in generating topol-
ogy is, however, reduced to a mean-field single-particle effect
[29–32]. The potentially genuine role of interactions in topo-
logical systems beyond mean-field single-particle effects is,
hence, still at an early stage.

Here, we demonstrate that Coulomb-engineered local
interactions allow us to induce many-body topological exci-
tations. Our mechanism puts forward a paradigm to generate
topological states purely driven by electronic interactions.
These topological states result from imprinting quasiperiodic
structures to the local Coulomb interactions Un only, without
requiring modifications to the topologically trivial single-
particle dispersions. Crucially, we show how such a spatial
structuring of the local interactions can be experimentally
achieved using quantum-dot (QD) arrays and by exploit-
ing Coulomb engineering [33–36] via structured substrate,
as depicted in Figs. 1(a) and 1(b). This paper is organized
as follows: In Sec. II, we present how spatially modulated
Coulomb interactions give rise to topological modes at the
mean-field level. In Sec. III, we show how topological modes
appear from these Coulomb interactions in a purely many-
body model without a single-particle analog. In Sec. IV, we
show how modulated Coulomb interactions can be realized
by dielectric engineering. Finally, in Sec. V, we summarize
our conclusions.

II. SCREENING-INDUCED SINGLE-
PARTICLE TOPOLOGY

To exemplify our proposal using a simple Hamiltonian, we
start with a model in which interactions generate a topolog-
ical state that can be understood on the single-particle level
within a mean-field framework. We consider a linear array
of QDs with a single level per dot and spatially modulated
local Coulomb interactions. The corresponding Hamiltonian
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FIG. 1. (a) Sketch of the proposed system: A quantum-dot (QD)
chain is deposited on a structured substrate. The spatial modula-
tion of the substrate permitivity results in a spatially dependent
environmental screening resulting in site-dependent local Coulomb
interactions (b) within the otherwise homogeneous QD chain.

reads

H =
∑
n,s

t c†
n,scn+1,s +

∑
n

Un c†
n,↑cn,↑c†

n,↓cn,↓ + H.c., (1)

where n is the QD site index, t the nearest-neighbor hop-
ping, and Un a spatially varying local Coulomb repulsion
of the form Un = Ũ [1 + λ cos(�n + φ)], which is periodi-
cally modulated around a constant Ũ . Here, �, φ, and λ are
the modulation wavelength, phase, and strength, respectively,
which can be efficiently controlled via spatially structured
substrates, as we demonstrate later. With these parameters,
we are able to explore the full phase space of Coulomb
pattern-induced topological effects. We solve this model
via a mean-field decoupling yielding Hmf = ∑

n,s c†
n,scn+1,s +∑

n Un〈c†
n,scn,s〉c†

n,s̄cn,s̄ + H.c. Assuming time reversal sym-
metry, i.e., 〈c†

n,↑cn,↑〉 = 〈c†
n,↓cn,↓〉, the interactions Un locally

renormalize the onsite energies, following the modulation
profile. This mean-field Hamiltonian is a realization of a di-
agonal Aubry-Andre-Harper model [37,38] for electrons with
a nonzero charge average per site that is known to have edge
states stemming from a parent two-dimensional (2D) Hall
state [39,40].

The topological invariant at certain excitation gaps of such
models is given by the Chern number [39–43], which matches
the number of states that cross the gap as a function of the
phason φ [40,44]. In Fig. 2(a), we show the bulk energy spec-
trum of a QD chain as a function of � at half-filling, which is
clearly gapped in certain regions. As shown in Fig. 2(b), those
gaps increase with Ũ . These gaps are of topological origin
[43,45], as depicted in Figs. 2(c) and 2(d), where we show
the mean-field spectrum as a function of φ. In particular, we
see two edge modes (red and blue) that cross the gap as φ

is changed. Spatially modulated onsite Hubbard interactions
are thus indeed capable of generating topological nontrivial
modes by modulating the effective single-particle mean-field
Hamiltonian. This rather simple mechanism on the effective

FIG. 2. Screening-induced mean-field topology. Bulk spectra as
functions of (a) � and (b) Ũ , showing the emergence of topological
gaps. Full spectra as a function of φ for (c) � = 0.4π and (d) � =
0.5π , depicting edge states pumping through the gaps. Red (blue)
denotes left (right) edge, the Fermi level is at E = 0.0 and the system
half filled. We use 80 sites and choose Ũ = 6t , λ = 0.5, and � =
0.4π if not stated otherwise.

single-particle level exemplifies that interactions alone are
able to induce nontrivial topology.

III. SCREENING-INDUCED MANY-BODY TOPOLOGY

In a more sophisticated scenario, we induce topological
behavior in a regime with a topologically trivial mean-field
Hamiltonian. To this end, we propose a similar interacting
Hamiltonian as before but with exactly one electron per site:

H =
∑
n,s

t c†
n,scn+1,s

+
∑

n

Un

(
c†

n,↑cn,↑ − 1

2

)(
c†

n,↓cn,↓ − 1

2

)
+ H.c. (2)

This Hamiltonian can be understood as a Hubbard QD
chain in which each QD is biased so that it is half filled.
The corresponding mean-field decoupled Hamiltonian is by
construction uniform Hmf = ∑

n,s tc†
n,scn+1,s + H.c. and thus

topologically trivial. To exactly treat the Hamiltonian from
Eq. 2, we use the tensor network formalism [46–52]. For
all φ, the system remains nonmagnetic and half filled in
every site. We analyze the dynamical spin response defined
by S (ω, n) = 〈GS|Sz

nδ(ω − H + EGS )Sz
n|GS〉 that can be mea-

sured with inelastic spectroscopy [53] and which is shown in
Figs. 3(a) and 3(c) as a function of φ for different �. Again,
we find edge excitations crossing bulk excitation gaps as the
phason is changed. These finite spectral gaps are visible in
the bulk spin responses shown in Figs. 3(b) and 3(d) and are
present for arbitrary modulation frequencies �, as depicted
in Fig. 3(e), leading to in-gap edge excitations for generic
�. These gaps are furthermore proportional to the Hubbard
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FIG. 3. Screening-induced many-body topology. Spin spectral
function (a) in the edge and (b) in the bulk for � = π/

√
3. Spectral

function (c) in the edge and (d) in the bulk for � = π/2. (e) Bulk
spectral function as a function of �, showing gaps at generic values
of �. (f) Approximate linear scaling of the topological gap as a func-
tion of λ. We used 30 sites and set λ = 0.5, Ũ = 6t , and � = 0.4π

if not stated otherwise.

modulation strength λ, as shown in Fig. 3(f). We verified
that such in-gap modes are robust toward the presence of
random disorder in the modulated local Coulomb interaction
Un or interdot hopping t ′. These characteristics underline their
topological origin [40,44,54], which is here solely created by
modulated many-body interactions.

The model of Eq. 2 is a many-body version of the Aubry-
Andre-Harper model, as introduced in the previous section.
However, a mapping to the parent electronic 2D quantum
Hall state cannot be performed due to its genuine many-body
nature. To understand how the engineered interactions are ca-
pable of creating topological edge modes here, we explore the
model in the strong coupling limit, i.e., Ũ � t . In this strongly
interacting limit, spin and charge degrees of freedom are sep-
arated while every QD is still hosting one electron, giving rise
to gaped charge excitations decoupled from the spin sector.
This can be explicitly shown by performing a Schrieffer-Wolff
transformation of the Hamiltonian from Eq. 2 (which is not
possible for Eq. 1) into spin operators yielding the effective
Hamiltonian

H eff =
∑

n

Jn,n+1Sn · Sn+1, (3)

where Sn are the S = 1
2 operators on each site, and Jn,n+1

is the effective exchange interaction that takes the form
Jn,n+1 = 2t2( 1

Un
+ 1

Un+1
) ≈ 4t2

Ũ
[1 − λ cos (�n + φ)] [55]. This

Hamiltonian realizes a quasiperiodic antiferromagnetic S =
1/2 Heisenberg model, [56,57] whose ground state is a time-
reversal symmetric singlet state. Such a ground state is an
entangled many-body state that cannot be described as a
classical symmetry broken anti-ferromagnetic state due to
strong quantum fluctuations. Its low-energy excitations have
S = 1

2 , in contrast to S = 1 of classical magnets. A common
approach to characterize these low-energy excitations is to
use a so-called parton Abrikosov fermion transformation of
the form Sα

n = ∑
s,s′

1
2σα

s,s′ f †
n,s fn,s, where f †

n,s and fn,s are the
creation and annihilation spinon operators [58]. Using this to
transform the operators in H eff followed by a mean-field de-
coupling for the Abrokosov fermions, we obtain an effective
Hamiltonian of the form H eff

P = ∑
n,s γn,n+1 f †

n,s fn+1,s + H.c.
[59]. This effective Hamiltonian H eff

P describes fractional-
ized particles with S = 1

2 and no charge, where the effective
hoppings are proportional to the exchange coupling of the
parent Heisenberg model, i.e., γn,n+1 ∼ Jn,n+1. Here, H eff

P thus
again resembles an off-diagonal spinon Aubry-Andre-Harper
model that can be mapped to a 2D quantum Hall state for
spinons. As a result, the effective Hamiltonian H eff hosts
topologically nontrivial edge spin excitations, and so does the
original Hamiltonian from Eq. 2 in the strong-coupling limit,
resulting from the spatially patterned local interactions. The
topological behavior of the model from Eq. 2 is thus clearly
induced by many-body effects alone and does not rely on
any topological behavior on the single-particle or mean-field
level.

Let us now briefly comment on the role of edge pertur-
bations. A perturbation on the edge can change the energy
of the edge mode discussed above, as in the single-particle
Su-Schrieffer-Heeger (SSH) model [60–62], in second-order
topological insulators [15,63–65], as well as in topological
crystalline insulators [10,66]. In fact, the topologically non-
trivial states of the SSH and higher-order topological models
can be rationalized as highly specific examples of a gener-
alized single-particle quasiperiodic topological mode [43]. In
this regard, the topological origin of the modes in our many-
body proposal share analogous robustness with the modes in
the SSH [60–62] and higher-order models [15,63–65]. Finally,
it is worth noting that, in the presence of an edge perturbation,
the spectrum of the presented many-body models will always
show an edge mode pumping the gap as the parameter φ is
changed [40,42,43,67].

IV. LOCAL COULOMB ENGINEERING

After establishing the novel concept of Coulomb-
engineered topology in one-dimensional (1D) systems, we
now turn to the experimental feasibility. While 1D tight-
binding-like chains have been already created and studied
using metallic nanospheres [68,69], QDs [70,71], and even
single atoms [72,73], spatially patterned Hubbard models
have not been created yet. Thus, we will focus in the following
on how a structuring of Un can be achieved using substrate-
screening effects.
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FIG. 4. Local Coulomb engineering. Local Coulomb interaction
Un controlled by (a) homogeneous and (b) heterogeneous dielectric
substrates. (c)–(d) Upper and lower limits of the Coulomb modula-
tion strength λmax estimated from homogeneous and heterogeneous
substrates for different δ/h ratios and εmin = 3. (e) Example Un

profile corresponding to Ũ = 3 eV, λ = 0.25, and � = φ = 0.4π ,
which could be realized with a patterned substrate, as illustrated in
the sketch (f).

The local Coulomb interactions used in the Hubbard
models from above are matrix elements evaluated in a single-
orbital Wannier basis ψ (r) given by Un = ∫∫

dr dr′ |ψ (r −
rn)|2|ψ (r′ − rn)|2 U (r, r′). In the following, we will approx-
imate these elements by Un ≈ e
n(�δ), where 
n(�x) is the
electrostatic potential of an electron with charge e localized
at the lattice position n as felt by a second electron in its
close vicinity (at distance �δ), as depicted in Fig. 4(a). The
screening effects of a homogeneous substrate can readily be
calculated using the concept of image charges, as described
in the Methods section. Here, U hom

n is then fully defined by
the effective Wannier-orbital spread δ and the dot-substrate
separation h, as depicted in Fig. 4(a) for different δ and h as
a function of the substrate screening constant εsub and for a
background ε0 = 2. The unscreened (bare) value of the local
Coulomb interaction is defined by δ, whereas h controls its
vulnerability to εsub [74]. We see that the local Coulomb

interaction can be significantly modulated by changes to the
homogeneous substrate screening.

The key element of our Coulomb-engineered topology
proposal is a spatial modulation of the local interactions
Un. To achieve this, we propose to spatially structure the
substrate screening. A corresponding heterogeneous setup
with just one dielectric interface in the substrate is depicted
in Fig. 4(b). Here, we approximate the resulting potential

(�x) with a multi-image-charge ansatz to fulfill the neces-
sary boundary conditions (see Methods for more details).
Figure 4(b) shows a corresponding example in the form of
U het(εL

sub, ε
R
sub) for δ/h = 1 [75]. We present data for εR

sub =
εL

sub (homogeneous substrate), εR
sub = 2, and εR

sub = 10, from
which we see that the homogeneous solution smoothly inter-
polates between the two heterogeneous situations for εL

sub ∈
[2, 10]. Here, U het(εL

sub, ε
R
sub = 2) is always the largest due to

the reduced screening from the right side of the substrate,
while U het(εL

sub, ε
R
sub = 10) is the smallest for εL

sub ∈ [2, 10].
Most importantly, we find that there are just minor quan-
titative changes to the local Coulomb interaction screened
by εL

sub with εR
sub being different in close vicinity. We can

thus conclude that periodically patterned substrate screening
functions with additional dielectric interfaces will not qualita-
tively affect the local substrate screening properties from the
immediate surrounding.

As described above and shown in Fig. 3(f), the topological
gap in the spin spectral function is proportional to t2λ/Ũ .
The Coulomb modulation strength λ thus plays a significant
role for our proposal, as it maximizes the topological gap
and thus protects the topological character of the system.
To estimate the maximal possible modulation strength, we
define λmax = Umax

Uave
− 1 = �U

Uave
with �U = Umax − Umin and

Uave = (Umax + Umin)/2, i.e., λmax is defined by the the max-
imally and minimally achievable local interactions. For the
homogeneous substrate, we can calculate λhom

max by defining
Umax = U hom(εmin) and Umin = U hom(εmax) with εmin < εmax.
In Fig. 4(c), we show the resulting values for fixed εmin =
3. Here, λhom

max steadily increases with the dielectric contrast
�ε, which is driven by the enhancement of �U (due to the
reduction of Umin) upon increasing εmax. Additionally, λhom

max
increases with the δ/h ratio, which results from a decreased
Uave for increased δ and the enhanced substrate-screening
vulnerability of U hom upon decreasing h. Here, λhom

max is thus
maximized by large dielectric contrasts and large δ/h ratios.

These homogeneous λhom
max are, however, just upper lim-

its. In a more realistic setting, Umax and Umin might result
from a heterogeneous substrate with additional dielectric in-
terfaces, as depicted in the sketch of Figs. 4(e) and 4(f).
To estimate λhet

max in such a setting, we imagine the transi-
tion from Umax to Umin taking place within three lattice sites
and set Umax = U het(εmin, εmid) and Umin = U het(εmax, εmid)
with εmid = εmin + �ε/2. The resulting values are shown in
Fig. 4(d). Due to the additional dielectric interface in the
substrate, �U is decreased so that λhet

max is overall smaller than
λhom

max, but behaves otherwise similar. For δ = 2 Å (orange and
red dots) λhet

max represents the lower limit since the interface
is positioned here at y0 = δ = 2 Å. By increasing y0, λ

het
max ap-

proaches the upper limit λhom
max. The optimal parameter regime

to realize screening-induced many-body topology is thus de-
fined by small QD heights h, large QD diameters δ, large

013265-4



INDUCING A MANY-BODY TOPOLOGICAL STATE OF … PHYSICAL REVIEW RESEARCH 3, 013265 (2021)

QD separations y0, and large dielectric contrasts �ε, which
increases λmax and thus the topological gap.

V. CONCLUSIONS

We proposed a family of topological states whose topo-
logical excitations stem purely from many-body interactions
instead of from single-particle engineering. Our proposal
compares with conventional schemes that rely on engineering
single-particle physics, demonstrating that engineered elec-
tronic interactions are a powerful complementary tool for
exploring quantum states, which can be also used to create
more complex models, such as second-order topological in-
sulators [15,43,64]. Importantly, we showed that Coulomb
engineering can be efficiently utilized to create the needed
interaction profiles, demonstrating that our proposal can be
implemented with current dielectric-engineering techniques.
Our results thus put forward a method to create topological
states of matter based on engineered interactions, providing
a stepping stone to exploit dielectric engineering to realize
exotic quantum excitations.
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APPENDIX A: TENSOR NETWORK FORMALISM

We solve exactly the many-body problems from the main
text with the help of the kernel polynomial tensor network
formalism [46–52]. Within the latter, we expand the spectral
function in terms of Chebyshev polynomials, whose coeffi-
cients can be efficiently computed using a recursion relation
between tensor network wave functions. Here, S (n, ω) is sub-
sequently represented in terms of N Chebyshev polynomials
Tk (ω) as S (ω, n) = 1

π
√

1−ω2 [μ0 + 2
∑N

k=1 μkTk (ω)]. The co-
efficients μk are defined by μk = 〈GS|Sz

nTk (H )Sz
n|GS〉, which

can be efficiently computed using the Chebyshev recursion re-
lations. Once the first N/2 moments are computed, we use an
autoregressive algorithm [76] to predict the next N/2 moments
and reconstruct the spectral function using a Jackson kernel
[77]. The autoregressive model halves the calculation costs,
and the Jackson kernel quenches Gibbs oscillations. This for-
malism allows us to compute dynamical response functions
of the many-body system directly in frequency space, without
requiring any time evolution.

APPENDIX B: ROBUSTNESS OF THE EDGE MODES

Here, we show how the topological edge modes are found
to be robust against perturbations of the many-body Hamil-
tonian of Eq. 2. In particular, we explore two different
perturbations that are especially relevant for the experimen-
tal realization: Second-neighbor hopping and disorder in
the interactions. First, the nearest-neighbor hopping model
of Eq. 2 is expected to be an approximation to the real
system, as a finite overlap between second-neighbor sites

FIG. 5. Robustness of the edge modes: (a) Spectral function of
the edge for a finite second-neighbor hopping, and (b) with a finite
random disorder in the local interactions, showing that the topolog-
ical edge modes survive those perturbations. We took Ũ = 6t and
� = π/

√
3.

is expected. We capture this by adding a perturbation of
the form HNNN = tNNN

∑
n,s c†

i,sci+2,s + H.c.. In Fig. 5(a),
we show the spectral function at the edge under the influ-
ence of this additional perturbation for tNNN = 0.1t , showing
that the in-gap modes survive. Second, as our proposal re-
quires us to engineer different dielectric environments for
each dot, defects in the fabrication are expected to give rise
to imperfect interaction profiles. This can be captured by
adding to the Hamiltonian from Eq. 2 a term of the form
HW = ∑

n Wn(c†
n,↑cn,↑ − 1

2 )(c†
n,↓cn,↓ − 1

2 ) where Wn are site-
dependent random numbers. We show in Fig. 5(b) the spectral
function at the edge, including this onsite Coulomb disorder
for Wn ∈ (−0.3t, 0.3t ), showing that the in-gap edge modes
again survive disorder. These results highlight the robustness
of the edge modes toward perturbations that are likely to
present in the experimental setup.

APPENDIX C: POISSON SOLVER

To calculate the substrate-screened local Coulomb interac-
tions Un = e
(δ), we use the concept of image charges. In
the case of a simple homogeneous substrate, we can choose
an ansatz of the form


(�x) =
{

1
ε0

q00

| �q00−�x| + 1
ε0

q01

| �q01−�x| for y � 0
1

εsub

q11

| �q11−�x| for y < 0
, (C1)

where q00 and �q00 are the charge and position of the source
charge, and q01, q11, �q01, and �q11 are the charges and positions
of the image charges. This potential needs to solve the Poisson
equation in each εi region, i.e.,

�
(�x) =
{ ρ(�x)

ε0
for y � 0

0 for y < 0
, (C2)

where ρ(�x) is the point-charge density of the source charge
q00 and must fulfill the boundary conditions


(�xy+ ) = 
(�xy− ), (C3)

ε0
∂
(�xy+ )

∂y
= εsub

∂
(�xy− )

∂y
, (C4)
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FIG. 6. Example result of the multi-image-charge approach. (a) Left and (b) right show the numerically evaluated potential for ε0 = 2,
εL

sub = 4, εR
sub = 10, h = 2 Å, and δ = y0 = 2 Å in the (x, y) and (x, z) planes. Large red dot: Source charge position, orange dots: Poisson

equation evaluation points, green dots: y = 0 interface discrete boundary condition points, red dots: x = 0 interface discrete boundary condition
points, blue dots: Image charge positions, black lines: Dielectric interfaces.

at the dielectric interface defined by y = 0. By exploiting the
full rotational symmetry around the y axis (through the source
charge), we can readily fix �q01 to the y = 0 plane mirrored
position of �q00 and choose �q11 = �q00. Subsequently, q01 and
q11 are fixed by the boundary conditions yielding

q01 = ε0 − εsub

ε0 + εsub
q00, (C5)

q11 = q01 − q00. (C6)

Thus, in the case of a homogeneous substrate, the influence
of εsub to the local Coulomb interaction Un can be calculated
analytically. As soon as there is an additional dielectric in-
terface in the substrate, we cannot find an analytic solution
anymore. To estimate the impact of this heterogeneous sub-
strate screening, we construct an approximate solution from a
multiple image charge ansatz of the form


(�x) =

⎧⎪⎪⎨
⎪⎪⎩

1
ε0

q00

| �q00−�x| + 1
ε0

∑2N
i

q0i

| �q0i−�x| , y � 0
1

εL
sub

∑N
i

q1i

| �q1i−�x| , y < 0, x � 0
1

εR
sub

∑N
i

q2i

| �q2i−�x| , y < 0, x > 0

,

(C7)

which is supposed to solve the Poisson equation given in
Eq. (C2) with the boundary conditions at the y = 0 interfaces


(�xy+ ) = 
(�xy− ), y = 0, (C8)

ε0
∂
(�xy+ )

∂y
= εL

sub
∂
(�xy− )

∂y
, y = 0, x � 0, (C9)

ε0
∂
(�xy+ )

∂y
= εR

sub
∂
(�xy− )

∂y
, y = 0, x > 0, (C10)

and at the x = 0 interface in the substrate


(�xx+ ) = 
(�xx− ), y < 0, x = 0, (C11)

εL
sub

∂
(�xx+ )

∂x
= εR

sub
∂
(�xx− )

∂x
, y < 0, x = 0. (C12)

If we fix all image charge positions, we can use the 4N
image charges q(0,1,2)i to fulfill 4N boundary conditions at

discrete interface positions �xi. The resulting linear equation
system is well defined and has a unique solution. Here, how-
ever, we reformulate the Poisson equation into a minimization
problem of the form

minq(0,1,2)i

∥∥∥∥�
(�x) − ρ(�x)
ε0

for y � 0.0
�
(�x) for y < 0.0

∥∥∥∥, (C13)

using the boundary conditions from Eqs. ((C8)–(C12)) to
define constraints for the minimization. This relaxes the one-
to-one correspondence between the number of image charges
and the number of discrete boundary conditions.

Numerically, we use the Sequential Least SQuares Pro-
gramming (SLSQP) algorithm [78] as implemented in the
Scipy minimization package. We use 5 × 2 × 5 image
charges per substrate region (i.e., 100 in total), separated
by (dx, dy, dz ) = (4, 4, 4) Å and distributed, as indicated in
Fig. 6, and 182 boundary condition points at the y = 0 in-
terface and 130 points at the x = 0 interface distributed, as
also indicated in Fig. 6. To minimize the function defined
in Eq. (C13), we evaluate the Poisson equation on a dis-
crete grid of 18 points in the x-z plane slightly below the
source charge (see Fig. 6). The source charge is positioned at
�q00 = (h, y0 = −2, 0) (with variable distance h to the y = 0
interface and fixed position relative to the vertical interface
in the substrate), and its charge distribution is approximated
using a three-dimensional Gauss function of the form

ρ(�x) = q00

σ 3(2π )3/2
exp

[
− (�q00 − �x)2

σ 2

]
, (C14)

with σ = 0.15 Å. Finally, Un = e
(�δ) is evaluated using
eq00 ≈ 14.39 eVÅ and �δ = �q00 + (δ, 0, 0) with variable δ.

In Fig. 6, we show a corresponding example result for ε0 =
2, εL

sub = 4, εR
sub = 10, h = 2 Å , and δ = |y0| = 2 Å. In this

situation, we would a priori expect to see equipotential lines
with small kinks at the ε0/ε

L
sub boundary and with enhanced

kinks at the interfaces to the εR
sub area, which is approximately

the case in our numerical estimate. Furthermore, we see that
these boundary conditions are also approximately fulfilled
between the discrete boundary positions in the vicinity of the
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source charge (large red dot). Further away, we however also
find deviations to this. We thus expect our numerical solution

to be approximately valid in the vicinity of the source charge,
which is enough to estimate the local Coulomb interaction.
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