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0F  
Abstract—The current critical global concerns regarding fossil 

fuel exhaustion and environmental pollution have been driving 
advancements in transportation electrification and related 
battery technologies. In turn, the resultant growing popularity of 
electric vehicles (EVs) calls for the development of a well-
designed charging infrastructure. However, an inappropriate 
placement of charging stations might hamper smooth operation 
of the power grid and be inconvenient to EV drivers. Thus, the 
present work proposes a novel two-stage planning model for 
charging station placement. The candidate locations for the 
placement of charging stations are first determined by fuzzy 
inference considering distance, road traffic, and grid stability. 
The randomness in road traffic is modelled by applying a 
Bayesian network (BN). Then, the charging station placement 
problem is represented in a multi-objective framework with cost, 
voltage stability reliability power loss (VRP) index, accessibility 
index, and waiting time as objective functions. A hybrid 
algorithm combining chicken swarm optimization and the 
teaching-learning-based optimization (CSO TLBO) algorithm is 
used to obtain the Pareto front. Further, fuzzy decision making is 
used to compare the Pareto optimal solutions. The proposed 
planning model is validated on a superimposed IEEE 33-bus and 
25-node test network and on a practical network in Tianjin, 
China. Simulation results validate the efficacy of the proposed 
model. 
 

Index Terms—Bayesian network, Charging station, 
Congestion, CSO TLBO, Electric vehicle, Optimization 
 

I. INTRODUCTION 
Nrecent years, EVs have gained popularity principally as a 
cleaner alternative to fossil fuel-based transportation. 

Electrification of transport has the potential to reduce CO2 
emissions over the vehicle lifecycle if the electric power 
production has low CO2 intensity [1]. Naturally, for a wider 
acceptance of EVs; the development of charging stations is 
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required. The charging station placement problem is a 
complex and demanding problem concerned with questions 
such as: 

 Where charging stations should be placed? 
 What type of charging stations should be placed 

(slow/fast)? 
 How many charging stations should be placed? 

In other words, the charging station placement problem is 
an optimization problem where the decision variables are the 
locations, number, and type of charging stations; the objective 
functions include cost and operating parameters of the power 
grid such as power loss, voltage stability, reliability, and EV 
driver convenience; and the constraints include the upper and 
lower limits of charging stations and the power balance 
equation. 

Improper placement of charging stations is a threat to the 
power system and may cause voltage instability and power 
loss [2], [3]. Moreover, the placement of charging stations at 
highly congested nodes in the road network will delay the 
time taken by EV drivers to reach the charging stations, 
thereby causing inconvenience. Thus, the optimal placement 
of charging stations is a complicated problem, as it involves 
interactions between distribution and road networks. 
Recently, many researchers have delved into the 
aforementioned placement issue. Deb et al. [4] 
comprehensively presented modelling approaches, objective 
functions, and constraints of the charging station placement 
problem. Liu et al.[5] identified candidate sites for EV 
charging station placement, taking into account 
environmental factors and EV service radius thereby solving 
the problem by using the modified primal-dual interior point 
algorithm (MPDIPA) with cost as objective function . In [6], 
the charging station placement problem was rendered in a 
multi-objective framework with EV flow, power loss, and 
voltage deviation as the objective functions and solved by 
data envelope analysis (DEA) combined with cross entropy 
(CE). In [7], the placement problem was formulated for fast 
charging stations in a multi-objective framework with cost, 
EV flow, and energy losses as the objective functions and 
solved by multi-objective evolutionary algorithm (MOEA). 
The placement problem was formulated for public parking 
lots and roadside fast-charging stations with cost as the 
objective function [8]. Further, in the same paper, a Voronoi 
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diagram and particle swarm optimization (PSO) were 
employed to solve the placement problem. In [9], zonal 
traffic circulation was considered in the formulation of 
charging station placement along with station development 
cost and grid operator cost and solved by Genetic Algorithm 
(GA). In [10], cost and a demand response program were 
considered as the objective functions, and the problem was 
solved by applying PSO. Deb et al.[11]modelled the 
charging station placement problem with cost as the 
objective function while also accounting for the operating 
parameters of the distribution network, such as voltage 
deviation, reliability, and power loss, by imposing a penalty 
for violating the safe limits of these parameters . 
Furthermore, the authors also employed a novel CSO TLBO 
algorithm to obtain the optimal locations of charging 
stations. In [12], the authors presented a two-stage closed 
model for charging station placement considering the 
heterogeneous driving range and charging demand of EVs 
and solved the problem in CPLEX solver. The change in 
charging demand with time was captured by a modified 
capacitated flow refuelling location model. Reference[13] 
presented a two-stage planning model for optimal placement 
of charging stations considering stochastic arrival, dwell 
time of EVs, uncertainties in the state of charge of the 
batteries of EVs, charging choices, charging demand, and 
rate of adoption of EVs. This planning model was concerned 
with maximizing the convenience for EV drivers, thereby 
increasing the accessibility of charging stations [13]. In 
addition, the problem was solved by the sampling average 
approximation (SAA) technique and novel heuristics inspired 
by a score-measuring mechanism [14]. In [15], the authors 
presented a coordinated planning strategy for EV charging 
stations considering the establishment cost of charging 
stations, charging spots and lanes, travel cost from charging 
demand points to charging stations, and distribution network 
expansion cost and the problem was solved in a GAMS 
solver. In Zhang et al.[16], formulated the charging station 
placement problem as a mixed integer linear program 
considering charging station building cost, distribution 
network upgrade cost, cost of energy, and penalty for 
unsatisfied charging demand as objective functions. They 
also proposed a capacitated flow refuelling location model to 
address uncertainties related to driving range and finally, the 
problem was solved in a CPLEX solver. Rahmani-Andebili 
et al.[17] solved parking lot allocation for EVs considering 
cost, power loss, and expected energy not served as objective 
functions. The optimization problem was solved by using a 
quantum-inspired simulated annealing (QSA) algorithm. 

Previous studies [5]–[17] reported the contributions of 
different researchers in the paradigm of charging station 
placement. A comparative analysis of the contributions of 
the present work with those of the existing literature is 
shown in Table I. Table I reveal that existing research 
neglects the reliability of distribution networks when 
modelling the charging station placement problem. 
Nevertheless, Deb et al.[3] reported the serious impact 

suffered by the placement of charging stations at the buses of 
a distribution network with a high failure rate on the 
reliability and security of the power system. Thus, neglecting 
the reliability of the power network while modelling the 
charging station placement problem is a highly significant 
research gap. Moreover, the existing studies on charging 
station planning do not take into account some of the key 
factors, such as the waiting time in the charging stations and 
congestion probabilities of the road network. Further, the 
planning models reported in [5], [8]–[10] and [17] show that 
the objective functions and constraints related to distribution 
networks are modelled comprehensively. However, these 
models neglected EV driver convenience. On the other hand, 
in the planning model reported in [13], EV driver 
convenience and the accessibility of charging stations are 
modelled effectively, but the security of the power grid is 
neglected. Thus, to address the aforementioned research 
gaps, a robust two-stage model for charging station 
placement is proposed in the present work that takes into 
account cost, voltage stability, reliability, power loss, EV 
driver convenience and waiting time in charging stations and 
simultaneously addresses road traffic uncertainty. 

TABLE I 
COMPARISON OF THE CONTRIBUTIONS OF THE PRESENT WORK WITH THOSE 

OF THE EXISTING LITERATURE 
Ref Stages Objective 

functions 
Traffic 

uncertainty 
Solution 

methodology 
[5] Two Cost Not 

considered 
MPDIPA 

[6] One EV flow, 
power loss 
and voltage 
deviation 

Not 
considered 

DEA and CE 

[7] One Cost, EV flow 
and energy 
losses 

Not 
considered 

MOEA 

[8] One Cost Not 
considered 

Voronoi 
diagram and 
PSO 

[9] One Cost Considered GA 
[10] One Cost and 

demand 
response 
program 

Not 
considered 

PSO 

[11] One Cost Not 
considered 

CSO TLBO 

[12] Two Cost Considered CPLEX solver 
[13] Two EV user 

convenience 
Considered SAA and 

novel 
heuristics 
based on 
score-
measuring 
mechanism 

[15] One Cost Not 
considered 

GAMS solver 

[16] One Cost Considered CPLEX solver 
[17] One Cost, power 

loss and 
energy not 
served 

Not 
considered 

QSA 

Proposed 
approach 

Two Cost, VRP 
index, 
accessibility 
index, and 
waiting time 

Considered Pareto 
dominance-
based CSO 
TLBO 
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Compared with the existing research works related to 
charging infrastructure planning, the main contributions of the 
present work are summarized as follows. 

First, this work proposes a two-stage planning model for the 
charging station placement problem. In the first stage, the 
candidate locations for the placement of charging stations are 
identified by applying fuzzy logic considering the distance 
between a node in the road network and the nearest bus in the 
distribution network, traffic intensity, and grid stability. In the 
second stage, optimization is performed to select the optimal 
locations, type, and number of charging points considering 
cost, VRP index, accessibility index, and waiting time as 
objective functions. The first stage involving screening of the 
candidate locations of charging stations will reduce the size of 
the search space and reduce the complexity of the problem. To 
the best of the authors' knowledge, the screening of candidate 
locations for the placement of charging stations by applying 
fuzzy logic is performed for the first time in the paradigm of 
the charging station placement problem. The key features of 
the proposed robust two-stage planning model are as follows: 

(1) Reduction in the search space by screening the candidate 
locations for the placement of charging stations by applying 
fuzzy logic 

(2) Consideration of voltage stability, reliability, power 
losses, accessibility index, and waiting time in charging 
stations as objective functions 

Second, the congested nodes in the road network with high 
traffic intensity are computed by a probabilistic approach 
based on a Bayesian network (BN). The capacity of the BN to 
deal with uncertainties is effectively utilized in the present 
work to find the congestion probabilities of the road network. 
Last, the planning model is validated on a standard IEEE 33-
bus distribution network and 25-node road network as well as 
a real time-network in Tianjin. 

II. TWO-STAGE PLANNING MODEL 
A two-stage planning model is used to solve the charging 

station placement problem. In the first stage, the candidate 
locations for the placement of charging stations are identified 
by applying fuzzy logic considering the distance between a 
node in the road network and the nearest bus in the 
distribution network, traffic intensity, and grid stability. In the 
second stage, optimization is performed to select the optimal 
locations, type, and number of charging stations as well as 
charging points considering cost, VRP index, accessibility 
index, and waiting time as objective functions. The first stage 
involving screening of the candidate locations of charging 
stations will reduce the size of the search space and reduce the 
complexity of the problem. 

A. Stage I: Determination of Candidate Locations for 
Charging Station Placement 

In Stage I, the candidate locations for the placement of 
charging stations are determined by using Mamdani fuzzy 
inference (MFI) [18]. It is common practice to place the 
charging stations at the superimposed nodes of the distribution 

and road networks [6], [7], [11]. Thus, we can say that the 
superimposed nodes, or the nodes of the road network close to 
the buses of the distribution network, are the candidate 
locations for the placement of charging stations. However, 
some of these nodes might be congested with high traffic flow. 
Moreover, we cannot ignore the possibility that some of these 
nodes are weak points in the grid in terms of voltage stability. 
Hence, in the present work, the distance between a node in the 
road network and the nearest bus in the distribution network, 
traffic intensity, and the voltage sensitivity factor (VSF) are 
considered for finding the candidate locations for placing 
charging stations. The vagueness related to the 
aforementioned factors considered for finding the candidate 
locations for the placement of charging stations has motivated 
the authors to apply MFI. Fig. 1 shows MFI utilized in the 
present work to find the candidate locations for the placement 
of charging stations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Mamdani fuzzy inference used to find the candidate locations for the 
placement of charging stations. 

 
The first input of MFI is the distance between a node in the 

road network and the nearest bus in the distribution network, 
which can be graphically calculated. The second input is the 
voltage sensitivity factor (VSF). The computational 
methodology of the second input of Mamdani Fuzzy 
inference, the VSF, can be found in [3]. The third input is the 
congestion probability of the road network nodes. The 
computational methodology of the congestion probability is 
illustrated in Section II (B). The linguistic variables 
associated with the three inputs are high (H), medium (M), 
and low (L). The linguistic variables associated with the 
output are high (H) and low (L). Triangular membership 
functions are used for both the input and output of MFI. The 
rule base of MFI is shown in Table II. Defuzzification is 
performed using the centre of gravity method [18]. The 
locations of the test network with high values of the 
defuzzified output are the candidate locations for the 
placement of charging stations. The details of the VSF and 
congestion probability are elaborated below. In addition, the 
distance is graphically calculated between the transport 
network node and its nearest distribution network bus. 
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TABLE II 
RULE BASE OF MAMDANI FUZZY INFERENCE 

Input Output 
VSF Distance Congestion 

probability 
Probability 
of being a 
candidate 
location 

L L L H 
L L M H 
L L H L 
L M L H 
L M M L 
L M H L 
L H L L 
L H M L 
L H H L 
M L L L 
M L M L 
M L H L 
M M L L 
M M M L 
M M H L 
M H L L 
M H M L 
M H H L 
H L L L 
H L M L 
H L H L 
H M L L 
H M M L 
H M H L 
H H L L 
H H M L 
H H H L 

• VSF- The VSF quantifies the change in the bus voltage 
upon increasing the active power or loading. 
Mathematically, it is defined as: 

dP
dVVSF =

 (1) 
where dV indicates the change in bus voltage and dP indicates 
the change in active power. 

The present study models the placement problem in the 
context of a radial distribution network. Due to the high 
resistance-to-reactance (R/X) ratio in the case of a radial 
distribution network, there is a possibility that the Jacobian 
matrix may become singular. Thus, the conventional Newton-
Raphson method cannot be used for computing the voltages of 
the buses in the case of a radial distribution network. Hence, 
the voltage of the buses is determined by the forward and 
backward sweep algorithm [19]. The pseudo-code illustrating 
the computation of the VSF is shown in Algorithm 1. 
Algorithm1- Pseudo-code for computation of the VSF [19] 
Input the bus data and line data; 
Run distribution load flow for base case by forward backward 
method; 
For i=1: total number of bus; 

)(
)()(

idP
idViVSFbase = ; 

End for 
k=1; 
While k< Realistic loading margin 
Increase load in steps; 
Run distribution load flow by forward backward sweep algorithm; 
If load flow converges 
k=k+1; 
else 

Algorithm 1 continues 
Compute VSF for critical loading; 
End if else 
End while 

• Congestion probability of road network- The present 
work proposes a probabilistic approach based on a BN 
for finding the nodes of the road network with high 
traffic intensity. The capability of the BN in handling 
uncertainty and interaction among different events is 
effectively utilized in the present work [20]. The BN 
model used for the computation of congestion 
probability is shown in Fig.2. Table III presents a 
summary of the node types and states of different nodes 
of the proposed BN. The probability that a road network 
is congested depends on the traffic flow, which, in turn, 
depends on the day of the week, time of day, area 
covered by the road, and lanes of the road. Thus, 'Day', 
'Time', 'Area', and 'Lane' are the root nodes [20] of the 
BN. In addition, 'Traffic Flow' is the child node [20] of 
the nodes 'Day', 'Time', 'Area', and 'Lane'. Similarly, 
'Congestion' is the child node of 'Traffic Flow'. The 
probability of congestion being high or low can be 
computed with a bucket elimination algorithm [20]–
[23]. The congestion probabilities of residential single- 
and double-lane roads are: 

)Hcongestion(|)SLaneR,Area( ==== PPPRS  (1) 
)Hcongestion(|)DLaneR,Area( ==== PPPRD  (2) 

where PRS and PRD are the probabilities that residential single-
lane and double-lane roads are congested. 

 
Fig. 2. BN model for congestion of a road network. 

 
TABLE III 

SUMMARY OF THE NODES OF THE PROPOSED BN 
Node name Type States 

Day Parent {Weekday, Weekend} 
Time Parent {AM Peak, Work, PM 

Peak, Leisure, Rest} 
Area Parent {Residential(R), Office 

(O), Market (M), School 
(Sc)} 

Lane Parent {Single (S), Double (D)} 
Traffic Flow Child {Low (L), Medium (M), 

High (H)} 
Congestion Child {Low (L), High (H)} 

The congestion probabilities of other roads can also be 
found by replacing the numerators of Eq. (1) and Eq. (2) 
accordingly based on the area and lanes. 

B. Stage II: Optimal Locations of Charging Stations 
The second stage of the proposed planning model involves 

finding the best or optimal locations for the placement of 

Day Time Area Lane 

Traffic 
Flow 

 

Congestion 
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charging stations (p) from the set of candidate locations 
(pcandidate), the number of fast/slow charging stations, and the 
number of fast/slow charging points or servers. The logical 
relationship between charging stations and chargers or 
charging points cannot be explained mathematically. Chargers 
represent the charging points or servers present in the charging 
stations to perform the charging service. 

The objective functions are cost, voltage stability reliability 
power loss (VRP) index, accessibility index, and waiting time 
in the charging stations. The constraints include the voltage 
limit, active and reactive power limits, power balance 
equations, maximum and minimum numbers of fast and slow 
charging stations placed at each location and maximum and 
minimum numbers of fast and slow charging points in the 
respective charging stations. The objective functions and 
constraints of the placement problem are elaborated in this 
section. 

List of Notation used in the planning model 
Decision variables 
p Optimal locations for the placement of charging 

stations 
FP, SP Number of fast/slow charging stations at 

location p 
fp, SP Number of fast/slow servers at location p 
Constant parameters 
Cfast Installation cost of fast charging station 
Cslow Installation cost of slow charging station 
CPfast Capacity of fast charging station 
CPslow Capacity of slow charging station 
Pelec Per-unit cost of electricity 
VSIbase Base value of voltage stability index 
SAIFIbase Base value of system average interruption 

frequency index (SAIFI) 
SAIDIbase Base value of system average interruption 

duration index (SAIDI) 
CAIDIbase Base value of customer average interruption 

index (CAIDI) 
base
lossP  Base value of power loss 

Fmax, fmax Maximum number of fast charging stations and 
charging points  

Smax, smax Maximum number of slow charging stations 
and charging points  

Fmin, fmin Minimum number of fast charging stations and 
charging points  

Smin, smin Minimum number of slow charging stations 
and charging points  
 

Functions 
Cinstallation Installation cost 
Coperation Operation cost 
V Voltage stability index 
R Composite reliability index 
P Power loss 
A Accessibility index 
Wt Waiting time in charging stations 
Variables 
m Maximum number of locations in which 

charging stations will be placed 
q Total number of charging demand points 
w1 Weight assigned to voltage stability index 
w2 Weight assigned to composite reliability index 
w3 Weight assigned to power loss 
w21 Weight assigned to SAIFI 
w22 Weight assigned to SAIDI 
w23 Weight assigned to CAIDI 
VSIl Voltage stability after placement of charging 

stations 
SAIFIl SAIFI after placement of charging stations 
SAIDIl SAIDI after placement of charging stations 
CAIDIl CAIDI after placement of charging stations 

l
lossP  Power loss after placement of charging stations 

dicj

 
Distance between ith charging demand point 
and jthcharging station 

Wf 
Waiting time in fast charging stations 

Ws 
Waiting time in slow charging stations 

λf, λs Arrival rates of EVs in fast and slow charging 
stations 

ρf, ρs Utilization rates of fast and slow charging 
stations 

fP0 , sP0  Probabilities of no EVs in fast and slow 
charging stations 

Pgi Active power generation of ith bus 
Pdi Active power demand of ith bus 
Qgi Reactive power generation of ith bus 
Qdi Reactive power demand of ith bus 
Vj Voltage of jth bus 
Yij Magnitude of (i,j)th term of bus admittance 

matrix 

ijθ  Angle of Yij 

iδ  Voltage angle of ith bus 

jδ  Voltage angle of jth bus 

dicj Distance between ithcharging station and 
jthcharging demand point where i=1,2...q and 
j=1,2...m 

Matrices 
D Distance matrix 
DD Reduced distance matrix 

The present work is concerned with minimization of cost, 
VRP index, and waiting time in the charging stations 
simultaneously with maximization of the accessibility index. 

Thus, the objective function can be mathematically 
expressed as: 

)min(
)max()min()min(cos

timewaiting
indexityAccessibilindexVRPtF

+
++=

 (3) 
operationoninstallati CCCost +=  (4) 

}){(}){(
11

slowi
m

i
ifasti

m

i
ioninstallati CsSCfFC ××+××= ∑∑

==  (5) 

elecslowi

m

i
ifasti

m

i
ioperation P}CP)sS{(}CP)fF{(C ×××+××= ∑∑

== 11  (6) 
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PwRwVwsfSFpfVRP pppp 321),,,,( ++==  (7) 

where
l

base

VSI
VSI

V =  

base

l

base

l

base

l

CAIDI
CAIDI

w
SAIDI

SAIDI
w

SAIFI
SAIFI

wR 232221 ++= base
loss

l
loss

P
PP=

 

d
pfindexityAccessibil 1)( ==

 (8) 




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
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


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22212
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cdcdcd
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1  (9) 
sft WWWtimeWaiting +=)(  (10) 

f
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i fii
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f

P
ff

W
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λ
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=
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s

s
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i sii
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P
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1
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×

−×−
=
∑
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+

 (12) 
Subject to  

maxminmaxmin and fffFFF pp ≤<≤<  (13) 
maxminmaxmin and sssSSS pp ≤<≤<  (14) 

0)cos(
1

=−−−− ∑
=

ijjiij

N

j
jidigi YVVPP

D
θδδ

 (15) 
𝑄𝑄𝑔𝑔𝑔𝑔 − 𝑄𝑄𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑖𝑖 ∑ 𝑉𝑉𝑗𝑗

𝑁𝑁𝐷𝐷
𝑗𝑗=1 𝑌𝑌𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠( 𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖) = 0 (16) 

As illustrated in Eq. (5) and Eq. (6), the installation and 
operating costs are only dependent on the number of fast and 
slow charging stations and the number of fast and slow 
servers. It is assumed that the land, floor, building, labour, 
charger, and electricity costs are the same for all nodes in the 
entire network. As illustrated by Eq. (7), the VRP index is a 
function of the locations and numbers of charging stations 
and servers. The detailed mathematical formulations of the 
VRP index can be found in Deb et al.[3]. As illustrated by 
Eq. (9), the distance matrix, D, gives the distance between 
the charging point demand and charging stations. In addition, 
the reduced distance matrix, DD, gives the distance between 
the charging point demand and its nearest charging station. 
The waiting time (Wt) in charging stations causes 
inconvenience to EV drivers. Hence, the optimization aims 
to minimize the waiting time. In the present work, the 
waiting time in charging stations is modelled by the M/M/c 
queuing theory [24]–[26]. An M/M/c queue is a stochastic 
process with state space in the set {0, 1, 2, 3 ...}, where the 
value corresponds to the number of EVs in the system, 

including any currently in service. Arrivals occur at 
rate λ according to a Poisson process and move the process 
from state i to state i+1. Service times have an exponential 
distribution with utilization factor μ. The detailed 
mathematical formulations of the waiting time can be found 
in Ref [24]–[26]. 

The constraints depicted by Eq. (13) and Eq.(14) consider 
the maximum and minimum numbers of fast and slow 
charging stations placed at the candidate locations and the 
maximum and minimum numbers of fast and slow servers 
placed at the candidate locations. The amount of power 
generated at all buses must satisfy the load demand and 
losses. Hence, the power balance equations given by Eq. (15) 
and Eq. (16) are considered equality constraints in the 
charging station placement problem. 

III. OPTIMIZATION ALGORITHMS 
The solution methodology applied for solving the charging 

station placement problem reported in Section II leans on 
nature-inspired optimization algorithms. The present work 
uses a novel Pareto dominance-based CSO TLBO algorithm 
proposed by Deb et al.[27] as a tool to solve the optimization 
problem. CSO is a nature-inspired optimization algorithm 
proposed by Meng et al. [28] mimicking the food searching 
process of chickens in a swarm. Salient features of CSO are 
good utilization of the population and a good balance between 
exploration and exploitation. Similarly, TLBO is also a nature-
inspired algorithm proposed by Rao et al. [29] mimicking the 
teaching and learning process. For the sake of completeness, 
the pseudo-codes of multi-objective CSO, TLBO, and Pareto 
dominance-based CSO TLBO are given by Algorithms 2-4, 
respectively. 

 
Algorithm 2-Pseudo-code of multi-objective CSO [27] 
Initialize the population of chickens having size PN and define other 
algorithm specific parameters such as G, size of rooster, hen, chicken and 
mother hen; 
Evaluate the rank of PN chickens, t=0, establish the hierarchal order in the 
swarm based on rank and form mother-child relationship; 
While (t<gen) 
t=t+1; 
If(t%G==0) 
Establish the hierarchal order in the swarm as well as mother-child 
relationship; 
Else 
For i=1:PN 
If i==rooster 
Update its solution by: 

)),0(randn1( 2
,

1
, σ+×=+ t

ji
t

ji xx ; 

%where randn(0,σ2) is a Gaussian distribution function with mean 0 and 
standard deviation σ2 
End if 
If i==hen 
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Algorithm 2 continues 
Update its solution by: 

)(rand2)(rand1 ,,2,,1,
1

,
t

ji
t

jr
t

ji
t

jr
t

ji
t

ji xxSxxSxx −××+−××+=+
 

%where )
)(abs

exp(1 1
ε+

−
=

i

ri
f
ff

S )exp(2 2 ir ffS −=  

rand is a randomly generated number between 0 and 1. ],1[1 Nr ∈ is an index of 

the rooster thatistheith hen's group mate. In addition, ],1[2 Nr ∈  is an index of 
the rooster or hen thatis randomly chosen such that r1 is not equal to r2, f 
denotes the fitness function, ε is a small number 
End if 
If i==chick 
Update its solution by )( ,,,

1
,

t
ji

t
jm

t
ji

t
ji xxFLxx −×+=+ ; 

%where
t

jmx , represents the position of the ith chick's mother. FL is a 

parameter signifying that the chick would follow its mother. FL is generally 
chosen between 0 and 2 
End if 
Compute the rank of all the individuals of the population 
If rank(t)<rank(t-1) 
Update the solution 
If rank(t)=rank(t-1) 
Compute crowding distance of all the individuals of the population 
If crowding distance(t)>crowding distance(t-1) 
Update the solution 
Else 
Retain the existing solution  
End if else 
Else 
Retain the existing solution 
End if else 
End for 
End if else 
End while 
 
Algorithm 3- Pseudo-code of multi-objective TLBO [27] 
Set k=1; 
Initialize the population size(PN) and generate the initial population of 
students randomly; 
Compute the rank for all the individuals of the population; 
while(k<gen) 
{Teacher Phase} 
Assign the teacher (Tk)based on the rank; 
for i=1:PN 
Update each learner by: )(rand ktkoldnew mRTZZ −×+=  
% where rand is a random number, Rtis random number between 0 and 2,mkis 
the mean of the decision variable vector 
End if else 
{End of teacher phase} 
{Learner Phase} 
Choose two learners ZiandZj, i≠j; 
if(fitness of Zi better than Zj) 
Replace ithlearner by )( jioldnew ZZrandZZ −×+= ; % rand is a random 

number 
Else 
Replace ithlearner by )( ijoldnew ZZrandZZ −×+= ; 

End if else 
End for 
Compute the rank of all the individuals of the population 
If rank(t)<rank(t-1) 
Update the solution 
If rank(t)=rank(t-1) 
Compute crowding distance of all the individuals of the population 
If crowding distance(t)>crowding distance(t-1) 
Update the solution 
Else 
Retain the existing solution  

Algorithm 3 continues 
End if else 
Else 
Retain the existing solution 
End if else 
k=k+1 
End while 
 

Algorithm 4- Pseudo-code of Pareto dominance-based multi-objective 
CSO TLBO [27] 
Initialize the population size, gen and other algorithm-specific parameters of 
CSO TLBO  
Set t=1 
While (t<gen) 
Activate TLBO 
If (t mod INV)>0 % INV is the frequency of introducing CSO 
Activate CSO 
End if 
t=t+1 
Selection based on rank and crowding distance 
End while 

IV. SOLUTION OF CHARGING STATION PLACEMENT PROBLEM 
BY CSO TLBO 

Pareto dominance-based multi-objective CSO TLBO is 
employed in the present work to solve the charging station 
placement problem. The systematic procedure for the solution 
of the charging station placement problem by CSO TLBO is 
as follows: 

Step 1: Initialization 
Step 1.1: Input data. Input the road network and distribution 

network data and upper and lower limits of different 
constraints, and set the different algorithm-specific parameters 
of CSO TLBO. 

Step 1.2: Generate a feasible initial population randomly. 
The initial feasible population is of the form: 

][int poppoppoppoppopl EDCBApop =  
where 
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The randomly generated initial solution is feasible if it 

satisfies all the constraints of the charging station placement 
problem explained in Section III. 

Step 1.3: Evaluate the four objective functions, cost, VRP 
index, accessibility, and waiting time, for the initial 
population. Compute the rank and crowding distance by the 
methodology elaborated in Ref [30], [31]. The first Pareto 
front with rank one is designated as Tk. 

Step 2: Run TLBO 
Step 2.1: Run TLBO, and update the solution based on the 

rank and crowding distance. 
Step 2.2: If the elements of Bpop exceed Fmax and the 

elements of Cpop exceed Smax, then those elements are made 
equal to Fmax and Smax, respectively. Similarly, if the elements 
of Dpop exceed fmax and the elements of Epop exceed smax, then 
those elements are made equal to fmax and smax, respectively. 

Step 2.3: Otherwise, check the feasibility of the solution. If 
the solution is infeasible, repeat Step 2.1 and Step 2.2 until a 
feasible solution is obtained. 

Step 3: Check whether the iteration count, t, is divisible by 
INV. If yes, go to Step 3.1. Otherwise, go to Step 3.5. 

Step 3.1: Run CSO. 
Step 3.2: Update the solution based on the ranking and 

crowding distance. 
Step 3.3: Repeat Step 2.2. 
Step 3.4: Otherwise, check the feasibility of the solution. If 

the solution is not feasible, repeat Step 3.1 and Step 3.2 until a 
feasible solution is obtained. 

Step 3.5: Update the iteration count. 
Step 4: Check whether the maximum generation count is 

reached. If the maximum generation count is reached, print the 
Pareto front. Otherwise, repeat Steps 2 to 4. 

Step 5: The best compromise solution is selected from the 
set of non-dominated solutions by using fuzzy decision 
making [32]–[34]. 

V. RESULTS 

A. Test System and Input Parameters 
The proposed two-stage planning model is validated on a 

superimposed IEEE 33-bus distribution network and 25-
node road network as well as a practical network in Tianjin, 
China. The superimposed IEEE 33-bus distribution network 

and 25-node road network are shown in Fig. 3.The second 
test system is a real-time network in Tianjin, China, as 
shown in Fig. 4.The power distribution network in Tianjin 
resembles the standard IEEE 69-bus system [35]. The bus 
and line data of the IEEE 33-bus system and 69-bus system 
can be found in [3], [35].The types of nodes and charging 
demand points in the road network are reported in Table IV 
for Test system 1 and Test system 2. Table V reports the 
input parameters of the charging station placement 
problem. Table VI reports the values of the upper and lower 
limits of the constraints of the charging station placement 
problem. It is assumed that EVs follow the routes(1-2-3-4-
5-6-7-8-9-10-13-11-12-15-16-17-18-20-21-14-22-23-24-
25) and (1-2-3-4-5-6-7-8-9-10-13-11-12-15-16-17-19-20-
21-14-22-23-24-25) for Test system 1 and (1-2-3-4-5-10-9-
8-6-11-12-13-14-15-16-21-20-19-18-17) and (1-2-3-4-5-
10-9-8-6-11-12-13-14-15-16-21-20-19-18-26-22-27-23-28-
24-25) for Test system 2. The driving range of EVs is 
considered to be 150 km. The power consumption of fast 
and slow chargers can be found in [3]. 

 
Fig. 3. Superimposed IEEE 33-bus distribution and 25-node road networks 
[11]. 

 
Fig. 4. Superimposed distribution and road networksinTianjin [35]. 
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TABLE IV 
TYPES OF NODES IN THE ROAD NETWORK 

Test system 1 Test system 2 
Type Node no. Type  Node no. 
Residential 1, 2, 3, 4, 

18,20,21, 22, 
23, 24, 25 

Residential 1,2, 12, 13, 14, 15, 
16, 22, 23 

School 10, 11, 13, 
14, 19 

School 3, 6, 7, 8, 17, 19, 
24 

Market 12, 15, 16, 
17 

Market 5, 11, 20, 21, 26, 
27 

Office 5, 6, 7, 8, 9 Office 4, 9, 10, 18, 25,28 
Single lane 3, 5, 6, 7, 8, 

9, 10, 14, 22, 
23, 24, 25 

Charging 
demand 

1, 7, 12, 15, 20, 25 

Double lane 1, 2, 4, 7, 11, 
12, 13, 15, 
16, 17, 18, 
19, 20, 21, 
22 

In the case of Tianjin, no 
information regarding single- and 
double-lane roads was available.  

Charging 
demand 

4, 7, 9, 13, 
15, 18, 22, 
25 

TABLE V 
INPUT PARAMETERS [3] 

Parameter Value Parameter Value 
Cfast 3000 $ w2 0.7 
Cslow 2500 $ w21 0.2 
CPfast 50 kW  w22 0.4 
CPslow 19.2 kW  w23 0.1 
Pelectricity 65 $/MWhr w3 0.2 
w1 0.1 λf 5.6/hr 
λs 1.4/hr 

TABLE VI 
UPPER AND LOWER LIMITS OF CONSTRAINTS 

Test system 1 Test system 2 
Smax 3 smax 20 Smax 3 smax 20 
Fmax 2 fmax 10 Fmax 2 fmax 10 
Smin 1 smin 5 Smin 1 smin 6 
Fmin 1 fmin 3 Fmin 1 fmin 4 

B. Screening of Candidate Locations for Charging Station 
Placement 

The candidate locations for the placement of charging 
stations are found by applying MFI, as elaborated in Section 
II. The first input of MFI named the VSF is computed by the 
pseudo-code elaborated by Algorithm 1 in Section II (A). 
The VSFs of the IEEE 33-bus and IEEE 69-bus distribution 
networks are shown in Fig. 5 and Fig.8, respectively. Fig. 5 
reveals that bus 14 of the IEEE 33-bus distribution network 
has the highest VSF, indicating that it is most vulnerable to 
voltage instability. Fig. 8 indicates that bus 65 of the IEEE 
69-bus distribution network has the highest VSF, indicating 
that it is the weakest bus in the system. Fig.6 and Fig.9 
provide graphical representations of the distance between a 
road network node and its nearest bus in the distribution 
network for Test system 1 and Test system 2, respectively. 
Table VII reports the congestion probabilities of the nodes in 
the road network computed by a BN for Test system 1 and 
Test system 2. The set of candidate locations of charging 
stations is computed by fuzzy logic illustrated in Section II 
with the VSF, distance, and congestion probability as input 
parameters. The values of defuzzified outputs representing 
the probability of being a candidate location for EV charging 
station placement for Test system 1 and Test system 2 are 

shown in Figs.7 and 10, respectively. The buses with high 
values of the defuzzified output are the candidate locations 
for EV charging station placement. Thus, for Test system 1, 
the candidate locations are Pcandidate= {2, 4, 5, 7, 21, 22, 24, 
25, and 27}, and, for Test system 2, the candidate locations 
are Pcandidate= {5, 9, 13, 28, 30, 31, 34, 35, 39, 41, 42, 46, 47, 
49, and 51}. For Test system 1, the search space is reduced 
by 72.73%, and for Test system 2, the search space is 
reduced by 78.26%. 

 
Fig. 5. VSF of IEEE 33-bus distribution network. 

Fig. 6. Distances between the road network and the nearest bus in the 
distribution network for Test system 1. 

 
Fig. 7. Defuzzified values representing the probability of being a candidate 
location of charging station placement for Test system 1. 
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Fig. 8. VSF of IEEE 69-bus distribution network. 

 
Fig. 9. Distances between the road network and the nearest bus in the 
distribution network for Test system 2. 

 
Fig. 10.Defuzzified values representing the probability of being a candidate 
location of charging station placement for Test system 2. 

 
TABLE VII 

CONGESTION PROBABILITIES OF THE NODES IN THE ROAD NETWORK 
Test system 1 

Area Lane Congestion 
Probability 

Area Lane Congestion 
Probability 

Residential Single 0.619 Market Single 0.524 
Residential Double 0.44 Market Double 0.39 
School Single 0.283 Office Single 0.387 
School Double 0.185 Office Double 0.179 

Test system 2 
Area Congestion 

Probability 
Area Congestion 

Probability 
Residential 0.72 Market 0.54 
School 0.153 Office 0.198 

C. Optimal Allocation of Charging Stations 
The second stage of the proposed two-stage planning model 

involves selecting the best locations for EV charging station 
placement from the set Pcandidate. The optimization problem 
reported in Section III is solved by the Pareto dominance-based 
CSO TLBO algorithm explained earlier in Section IV. The 
optimization is run for a population size of 10 and generation 
size of 20. The values of algorithm-specific control parameters 
of CSO TLBO are the same as those in Deb et al. [11].In multi-
objective optimization, a number of optimal solutions are 
obtained instead of a single optimal solution due to the 
involvement of conflicting objectives. For both Test system 1 
and Test system 2, the optimization yielded six non-dominated 
solutions (NDSs) or planning schemes, as shown in Table VIII. 
Table IX reports the values of the four objective functions for 
the six planning schemes. It is observed that for Test system 1, 
Plan 3 is the most economical, whereas Plan 6 is the most 
expensive. However, in Plan 3, the values of the accessibility 
index and waiting time in charging stations are not satisfactory 
and may cause inconvenience to EV drivers. The optimized 
values of the VRP index are satisfactory for all six plans. For 
Test system 2, Plan 6 is the most economical, while Plan 3 is 
the most expensive. Plan 3 seems to be the most suitable plan 
if EV driver convenience is taken into account. 

TABLE VIII 
OPTIMAL ALLOCATION OF CHARGING STATIONS 

Test System 1 
NDS p Fp Sp fp sp NDS p Fp Sp fp sp 

1 4 1 1 9 6 4 21 1 1 3 9 
24 1 1 4 6 5 1 2 5 9 
2 1 1 4 13 2 1 1 6 7 

2 2 1 1 8 13 5 2 1 1 10 7 
7 1 1 4 10 7 1 1 10 7 
25 1 1 6 10 24 1 1 6 16 

3 5 1 1 4 8 6 7 1 1 6 9 
2 1 1 3 9 4 1 3 5 14 
7 1 1 4 9 22 1 1 6 11 

Test System 2 
1 13 1 1 6 11 4 39 1 1 6 10 

35 1 1 10 8 34 1 1 6 11 
34 1 1 7 8 28 1 1 6 11 

2 34 1 1 5 7 5 39 1 2 5 9 
28 1 1 5 8 28 1 1 6 8 
13 1 1 5 8 35 2 1 4 11 

3 34 1 1 8 8 6 28 1 1 3 9 
39 1 1 7 16 34 1 2 6 7 
28 1 1 6 14 13 1 1 3 6 

TABLE IX 
OBJECTIVE FUNCTION VALUES FOR THE PLANNING SCHEMES 

Test system 1 
Planning 
Scheme 

Cost 
($×106) 

VRP A(/km) Wt(hr) 

1 4.5073 11.5071 0.0006 0.5311 
2 5.1572 11.7378 0.0010 0.0388 
3 3.4954 11.5666 0.0009 0.2390 
4  4.5023 11.3693 0.0011 0.2812 
5  5.1589 11.6957 0.0009 0.3084 
6  6.6878 11.9560 0.0019 0.0295 

Test system 2 
1  5.6960 21.5313 0.1347 0.0828 
2  4.0325 21.3883 0.1171 0.2030 
3  5.9873 20.9884 0.1253 0.0437 
4  5.0983 20.9716 0.1253 0.0155 
5  5.5714 21.0038 0.1241 0.1332 
6 3.8506 21.3488 0.1171 0.6446 
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D. Impact of Charging Stations on Distribution Network 
The impact of EV charging station placement on the 

distribution network is examined for further analysis. The 
voltage profiles of all the buses in the IEEE 33-bus 
distribution network and IEEE 69-bus distribution network for 
the six planning schemes are shown in Figs.11 and 12, 
respectively. The voltage profiles of all the buses are within an 
acceptable range. The impact of EV charging stations on 
different reliability indices such as SAIFI and SAIDI is shown 
in Figs.13-16 for Test system 1 and Test system 2, 
respectively. The reliability indices of the network, such as 
SAIFI and SAIDI, have degraded due to the increased EV 
load. Nevertheless, the degraded values are far less than the 
dead zone values of the reliability indices reported in 
Chowdhury and Koval[36]. 

 
Fig. 11. Voltage profile of the IEEE 33-bus distribution network after 
charging station placement. 

 
Fig. 12. Voltage profile of the IEEE 69-bus distribution network after 
charging station placement. 

 
Fig. 13. Impact of EV charging stations on the SAIFI of the IEEE 33-bus 
distribution network. 

 
Fig. 14. Impact of EV charging stations on the SAIDI of the IEEE 33-bus 
distribution network. 

 
Fig. 15. Impact of EV charging stations on the SAIFI of the IEEE 69-bus 
distribution network. 

 
Fig. 16. Impact of EV charging stations on the SAIDI of the IEEE 69-bus 
distribution network. 

E. Final Decision Making 
It is difficult to select the best plan out of the six plans 

presented due to the interaction of conflicting objective 
functions. In the real world, some criteria cannot be 
measured by precise values due to the ambiguity arising 
from human qualitative judgement [34]. Fuzzy evaluation 
can be used for the quantification of such cases. In the 
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present work, a fuzzy evaluation system is used for the 
final decision making [34]. The cost, VRP index, 
accessibility index, and waiting time are chosen as the four 
aspects of decision making in the charging station 
placement problem. In fuzzy decision making, low cost, 
VRP index, and waiting time received higher evaluations. 
High accessibility also received a higher evaluation. Table 
X lists the scale of the four objective functions based on the 
aforementioned criteria for Test system 1 and Test system 
2. The scores of each plan obtained by the fuzzy evaluation 
system are reported in Table XI for Test system 1 and Test 

system 2. Fig.17 shows radar charts of the six planning 
schemes for Test system 1. The area occupied by Plan 4 is 
larger than that of the other five figures, indicating that 
Plan 4 is the most advantageous plan for Test system 1. 
Fig.18 shows radar charts of the six planning schemes for 
Test system 2. It is observed from Fig. 18 that the area 
occupied by Plan 4 is highest, thus indicating that it is the 
most preferable plan for Test system 2. 
 
 

TABLE X 
SCALE OF THE FUZZY EVALUATION SYSTEM 

Test system 1 Test system 2 

Sc
al

e 

Cost  
($×106) 

VRP index A 
(10-3/km) 

Wt (hr) 

Sc
al

e 

Cost  
($×106) 

VRP index A(/km) Wt (hr) 

1 More than 
6.68 

More than 
11.95 

Less than 
6 

More than 
0.53 

1 More than 
5.9873 

More than 
21.5313 

Less than 
0.1206 

More than 0.6446 

2 6.042-6.68 11.832-11.95 6-9 0.4299-0.53 2 5.56-5.9873 21.4194-21.5313 0.1206-0.1224 0.5188-0.6446 
3 5.723-6.042 11.773-11.832 9-10- 0.3799-0.4299 3 5.3463-5.56 21.3634-21.4194 0.1224-0.1241 0.4559-0.5188 
4 5.404-5.723 11.714-11.773 10-11 0.3298-0.3799 4 5.1326-5.3463 21.3074-21.3634 0.1241-0.1259 0.3930-0.4559 
5 5.085-5.404 11.665-11.714 11-12 0.2798-0.3298 5 4.9190-5.1326 21.2515-21.3074 0.1259-0.1277 0.3330-0.3930 
6 4.766-5.085 11.596-11.665 12-14 0.2297-0.2798 6 4.7053-4.9190 21.1955-21.2515 0.1277-0.1294 0.2671-0.3330 
7 4.447-4.766 11.537-11.596 14-15 0.1797-0.2297 7 4.4916-4.7053 21.1395-21.1955 0.1294-0.1312 0.2042-0.2671 
8 4.128-4.447 11.478-11.537 15-16 0.1296-0.1797 8 4.2779-4.4916 21.0835-21.1395 0.1312-0.1329 0.1413-0.2042 
9 3.809-4.128 10.969-11.478 16-18 0.0795-0.1296 9 4.0643-4.2779 21.0276-21.0835 0.1329-0.13467 0.0784-0.1413 
10 Less than 

3.809 
Less than 
10.9680 

More 
than 18 

Less than 
0.0795 

10  Less than 
4.2779 

Less than 21.0835 More than 
0.13467 

Less than 0.1413 

 

Fig. 17. Radar charts of the planning schemes for Test system 1. 

 
Fig. 18. Radar charts of the planning schemes for Test system 2. 
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TABLE XI 
SCORES OF THE SIX SCHEMES 

Test system 1 Test system 2 
Plan Cost VRP  

index 
A Wt Plan Cost VRP  

index 
A Wt 

1 7 7 2 1 1 2 2 10 10 
2 5 3 4 10 2 8 3 1 8 
3 9 7 3 6 3 2 10 4 9 
4 7 9 5 5 4 5 10 4 10 
5 5 5 3 5 5 2 8 3 9 
6 1 1 10 10 6 10 4 1 2 

F. Statistical Comparison of CSO TLBO with Other State-of-
the-Art Algorithms for Solving the Proposed Problem 

The performance of Pareto dominance-based CSO TLBO in 
solving the charging station placement problem is compared 
with that of the non-dominated sorted genetic algorithm 
(NSGA II). Evolutionary algorithms are characterized by the 
random generation of a population. Hence, different solutions 
are obtained for every independent trial. The two algorithms 
are statistically compared by computing the hypervolume for 
20 independent trials. The hypervolume is a metric proposed 
by Zitzler[37] used for analysing the distribution of Pareto 
optimal solutions. The hypervolume physically signifies the 
volume occupied by the NDS set. Reference [38] concludes 
that maximizing the hypervolume produces a well-distributed 
Pareto front. The average hypervolume and the average run 
time comparison of CSO TLBO with NSGA II for Test system 
1 and Test system 2 are reported in Table XII. Table XII 
shows that the performance of CSO TLBO is better than that 
of NSGA II for both Test system 1 and Test system 2. 
However, the average run time of CSO TLBO is more than 
that of NSGA II. 

TABLE XII 
COMPARISON OF CSO TLBO WITH NSGA II 
Test system 1 Test system 2 

Algorithm Hypervolume Run 
time 
(sec) 

Algorithm Hypervolume Run 
time 
(sec) 

CSO 
TLBO 

0.4857 1400 CSO 
TLBO 

0.4098 2000 

NSGA II 0.4675 1200 NSGA II 0.3867 1800 

G. Complexity of the Proposed Two-Stage Planning Model 
The time complexity of the proposed two-stage planning 

model is compared with that of a single-stage planning model. 
In the single-stage planning model considered for comparison, 
only optimization is performed with the objective functions 
and the constraints reported in Section III. The initial 
screening of the search space is neglected in the single-stage 
planning model considered for the purpose of comparison. The 
average run times of the proposed model and the single-stage 
planning model are reported in Table XIII. From Table XIII, it 
is clear that the average run time of the single-stage planning 
model is more than twice the average run time of the proposed 
planning model. 

 
 
 
 
 
 
 

TABLE XIII 
COMPLEXITY ANALYSIS OF THE PROPOSED PLANNING MODEL 

Test 
system 

Run time of 
single stage 

planning 
model (sec) 

Run time of 
proposed two 
stage planning 

model (sec) 
1 3000 1400 
2 4200 2000 

VI. DISCUSSION AND FUTURE WORK 
This work proposes a novel two-stage planning model for 

the optimal allocation of charging stations. The first stage 
involving screening of the candidate locations for the 
placement of charging stations reduces the size of the search 
space of the optimization problem, thereby reducing the 
complexity of the problem to some extent. Furthermore, all of 
the key factors, such as distance, traffic intensity, and voltage 
stability, are carefully taken into account when finding the set 
of candidate locations for the placement of charging stations 
(Pcandidate). In addition, the present work proposes a 
probabilistic approach based on Bayesian networks for 
computing the congested nodes in the road network. This 
probabilistic approach is capable of efficiently computing the 
congested nodes in the road network without involving the 
complexities of traffic modelling. In the second stage, the 
charging station placement problem is represented in a multi-
objective framework with cost, VRP index, accessibility, and 
waiting time in charging stations as objective functions. 

The proposed model is validated on a coupled IEEE 33-bus 
distribution network and 25-node road network as well as a 
real-time network in the city of Tianjin in China. A 
comparison of this planning model with the planning models 
presented in existing literature [11], [27] shows that the 
optimized values of cost, VRP index, and accessibility of the 
proposed model are far better for Test system 1. Furthermore, 
it is also observed that the proposed model is capable of 
allocating charging stations in the distribution network with 
the least harm to the voltage profile and reliability. The 
planning results indicate that the charging stations are easily 
accessible to EV drivers and that the waiting times at the 
charging stations are also within acceptable limits. 

It should be noted that a comparison of the proposed 
planning model with some existing planning models is beyond 
the scope of this work. The planning models are validated on 
different test networks with different sets of input parameters. 
For a fair comparison of the proposed model with existing 
models, it is necessary to validate all the models on a common 
test network with the same set of input parameters. 

A novel Pareto dominance-based CSO TLBO algorithm is 
used to solve the optimization problem. The experimental 
results confirm that CSO TLBO outperforms NSGA II in 
solving the charging station placement problem. 

Although the proposed model is efficient enough, there is 
still room for improving the model. The proposed planning 
model does not consider the number of missed trips for EV 
charging, the net benefit earned by participating in vehicle-to-
grid (V2G) schemes, and the uncertainty in the behaviour of 
EV drivers. The capacity of a BN in dealing with uncertainties 
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can be utilized for modelling stochastic driving behaviour. 
There is also scope for proposing more efficient algorithms to 
solve the issue of charging station placement. Our future work 
will focus on some of the aforementioned research gaps. 

VII. CONCLUSIONS 
The development of a well-designed charging infrastructure 

is critical for promoting EVs. The present work proposes an 
effective planning model for EV charging stations considering 
the fundamental design parameters of a well-functioning 
charging network, which may be summarized as cost, 
respecting the operating parameters of the distribution 
network, and the convenience of the charging network for EV 
drivers (e.g., accessibility of and waiting times at charging 
stations). In addition, the present work proposes a two-stage 
planning model for EV charging stations. First, the candidate 
locations for the placement of charging stations should be 
identified by applying fuzzy logic. In the second stage, the 
optimal locations, type, and number of charging stations are 
computed. Simulation results indicate that the planning model 
is sufficiently efficient to be implemented in a real-world 
environment. 
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