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Microarchitecture-dependent nonlinear bending analysis for cellular plates 
with prismatic corrugated cores via an anisotropic strain gradient plate 
theory of first-order shear deformation 

Jalal Torabi *, Jarkko Niiranen 
Department of Civil Engineering, School of Engineering, Aalto University, P.O. Box 12100, Aalto 00076, Finland   
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A B S T R A C T   

This study focuses on the microarchitecture-dependent nonlinear bending behavior of cellular plates with 
equitriangularly prismatic microarchitectures by adopting a dimensionally and constitutively reduced strain 
gradient plate model. The strain energy formulation is based on the dimension reduction of the first-order shear 
deformation plate theory along with von Kármán’s nonlinear strain relations and anisotropic strain gradient 
theory. The classical and higher-order constitutive parameters are obtained according to the recently published 
homogenization results for a corresponding linear plate model. The corresponding finite element simulations, 
numerically solving the anisotropic strain gradient plate problems, rely on a nonstandard, higher-order, six-node 
triangular element showing good convergence properties. Comparisons between the proposed (2D) strain 
gradient shear deformation plate model and the corresponding (3D) detailed full-field reference models 
demonstrate for a variety of cellular plate structures that the accuracy of the proposed approach is at a very good 
level with relatively low computational costs. A diverse set of numerical examples is provided in order to 
investigate the size-dependent nonlinear structural response of cellular plates having different numbers of 
microarchitectural layers, midsurface shapes and boundary conditions.   

1. Introduction 

Owing to vast improvements in design and manufacturing technol-
ogies and remarkable mechanical properties, a large variety of appli-
cations of advanced cellular metamaterials in various science and 
engineering fields have been developed [1–3]. Based on different design 
aspects such as shape, size and topology, cellular structures with 
different microarchitectures can be extensively used in a variety of in-
dustrial applications such as lightweight components, absorbers and 
dampers [4–6]. Hence, providing efficient theoretical and computa-
tional infrastructures for predicting the material properties and me-
chanical behavior of lattice metamaterials play an important role in the 
work flow of accurate and efficient structural design. However, due to 
the high computational costs [7,8] and intricate microarchitecture- 
dependent mechanical characteristics [9–12], the structural modeling 
of lattice metamaterials is a complex and time-consuming task for en-
gineers and scholars. 

The classical continuum mechanics can be effectively employed to 
study the physics and mechanics of a diverse range of materials and 

metamaterials. However, especially for (a) small-scale structures and (b) 
structures of any scale with a microarchitecture more general but still 
practical and efficient approaches should be employed for considering 
additional aspects such as size effects. In (a), a (natural) material 
microstructure affects the structural behavior, whereas in (b) the 
structural behavior is affected by a certain (artificial) metamaterial 
microarchitecture. This way, independently of the physical scale, there 
are typically two neighboring scales for which the principle of separa-
tion of scales is not fully valid. In the present study belonging to the line 
(b) when it comes to applications, the structural scale describes the 
overall structure (e.g., a plate), whereas the microarchitectural scale 
defines the internal configurations (e.g., the geometric details of a unit 
cell of a periodic honeycomb structure). The higher-order continuum 
theories such as microcontinuum theory [13,14] (including micropolar, 
microstretch and micromorphic theories), nonlocal theory [15–18] and 
strain gradient theory (SGT) [19–23] provide efficient models for the 
incorporation of more than one scale and, accordingly, for capturing size 
effects in structural modeling. The fundamental principle in the gener-
alized continuum theories is to provide a physico-mathematical 
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description richer than the classical Cauchy’s continuum framework but 
to keep as much as possible of the generality, applicability and relative 
simplicity implied by the fundamental continuum assumptions and the 
rigorous mathematicality. On one hand, the generalized theories enable 
to describe some essential physical phenomena, e.g., size-effects, over-
looked by the classical continuum theory. On the other hand, the non- 
physical stress singularities present in the classical theory of elasticity, 
for instance, do not appear in the strain gradient theory of elasticity. For 
further discussion, a detailed and informative review study on beam and 
plate models within these non-classical theories can be found in [24]. 

Although a diverse variety of investigations based on the non- 
classical continuum theories can be found in the literature [25–32], 
the SGT seems to be the most commonly studied theory for investigating 
the size-dependent physicomechanical behavior of nano/micro-scale 
structures and macro-scale (or any-scale) structures with architected 
microstructures. Connected to the present study, the classical Kirchhoff 
plate models within the (different versions of the) SGT were first pre-
sented by Yang et al. [33], Lazopoulos [34,35], Beskou and Beskos [36], 
Wang et al. [37] as well as Movassagh and Mahmoodi [38]. The appli-
cations of the first-order and higher-order shear deformation theory 
(FSDT and HSDT) for structural analysis of beams, plates and shells 
under the classical continuum theories have been extensively demon-
strated in the literature [39–46], howevere, the implementation of the 
FSDT for plates within the SGT was first studied by Ramezani [47]. 
Niiranen et al. presented a variational formulation [48] and iso-
geometric analysis [49] for strain gradient Kirchhoff plates. Thai et al. 
[50] also dealt with the static and dynamic isogeometric analysis of 
functionally graded microplates under the modified SGT. The size- 
dependent buckling and wave propagation analysis of functionally 
graded nanoplates and shells were presented by Karami et al. [51,52] 
following the nonlocal SGT. Higher-order three-node triangular [53] 2D 
finite element (FE) was introduced by Ansari and his co-authors to 
numerically model the linear vibration of microplates. A nonlinear FE 
formulation for the three-dimensional strain gradient theory was 
formulated by Torabi et al. [54] and two higher-order 3D elements were 
proposed and applied to plate problems [54,55]. In addition, nonlinear 
finite element electro-magneto-mechanical analysis of microbeam under 
the modified SGT was presented by Alimirzaei et al. [56]. A strain 
gradient Kirchhoff–Love shell model with an isogeometric FE study was 
developed by Balobanov et al. [57]. More numerical studies on the strain 
gradient problems can be found in [58–63]. 

Although various studies on the structural behavior of sandwich 
lattice structures can be found under the classical continuum theories 
[45,46,64–67], the literature on the microarchitecture-dependent me-
chanical modeling of lattice or cellular structures, or mechanical met-
amaterials, within the generalized continuum theories is fairly limited 
[7,9,11,12,26,59,68–82]. Connected to the present study, for the so- 
called pantographic structures there exists a fairly solid theoretical un-
derstanding [9,11] and a variety of numerical and experimental vali-
dation studies [12]. Auffray et al. [69] developed a strain gradient 
homogenization approach for 2D cellular media. Khakalo et al. [70,71] 
presented a detailed study on the size-dependent modeling of uniform 
and functionally graded 2D equitriangular (stretching-dominated) 
multi-layer lattice beams under the SGT: the two standard variants of the 
first-order beam kinematics, typically called the Bernoulli–Euler or en-
gineering beam model and the Timoshenko or first-order shear defor-
mation beam model, were considered, and a computational 
homogenization method was employed to determine the non-classical 
material parameters. An extension to the geometrically nonlinear 
regime was accomplished by Tran and Niiranen [73]. A comparative 
study for 2D square multi-layer lattice beam has been accomplished very 
recently in [74], whereas for modeling single-layer web-core sandwich 
structures, sharing essentially the same (bending-dominated) lattice 
geometry, the modified couple stress Timoshenko beam theory was 
applied by Romanoff and Reddy [75]. Réthoré et al. [76] focused on the 
validation and identification study of honeycomb architectures from 

full-field experimental measurements. A numerical study on the topol-
ogy optimization of lattice structures, by adopting the SGT with a non- 
local numerical homogenization technique, was presented by Da et al. 
[77]. Very recently, Chowdhury and Reddy [79] presented a micropolar 
Timoshenko beam formulation for sandwich beams with architected 
lattice cores. Karttunen et al. [80] and Nampally et al. [81] focused on 
the development of a two-scale constitutive model for lattice core 
sandwich beams based on the micropolar theory. Besides, linear and 
geometrically nonlinear micropolar plate models were developed in 
[82,83] for the bending analysis of lattice core sandwich structures. 
Although [82,83] focus on modeling single-layer sandwich structures 
and rely on the micropolar theory, the section for conclusions and dis-
cussion in the end of the present article address some natural links be-
tween those studies and the present study which, in turn, relies on the 
SGT and aims at capturing the bending size effect observed in multi- 
layer (metamaterial) sandwich structures. In this context, it is still 
worth mentioning that in the vastly growing literature on generalized 
continuum theories, largely inspired by certain experimental observa-
tions for small-scale structures nearly 20 years ago (e.g., [21]), model 
validation seems to play a minor role – although some results from 
micro- or nano-scale experiments and molecular dynamics simulations 
are available as reviewed in [24]. Structures having a (man-made) 
microarchitecture offer, however, a natural option for model validation 
– not only through laboratory experiments at different scales [12,75,84] 
but through virtual experiments as well [7,12,70–83]: via analytical or 
computational homogenization relying on a set of given base material 
properties and reference models depicting every little detail of micro-
architectural geometries (as illustrated in Fig. 1, left). Additive 
manufacturing technologies, in particular, have paved the way to realize 
the corresponding laboratory experiments and it is expected to enable 
the production of future industrial applications of microarchitectural 
structures [84] – such as the multi-layer (metamaterial) sandwich 
structures considered in the present study. In the end, the development 
of multi-scale continuum models and solution methods for different 
microarchitectures gains quite general knowledge for the modeling of 
the somewhat analogous microstructural phenomena related to natural 
engineering materials. 

Although web core sandwich plates (typical in many industrial ap-
plications of today) can be seen as plate structures including single-layer 
lattice geometries – such structures been studied by classical (see, e.g., 
the review in [1]) and generalized [82,83] continuum models – the 
study of Khakalo and Niiranen [7] seems to be an exception focusing on 
multi-layer structures made of a periodic lattice which can be identified 
as a metamaterial: the article formulates anisotropic plate models 
following the Kirchhoff and FSDT theories within the thermomechanical 
SGT and proposes numerical homogenization procedures for the deter-
mination of the corresponding classical and higher-order constitutive 
parameters for multi-layer cellular plates having equitriangularly pris-
matic corrugated cores (as illustrated in Fig. 1, left, for one-, two- and 
three-layer structures as examples). It is crucial to notice, first, that the 
plate model (Fig. 1, right) sees the underlying equitriangularly prismatic 
configuration (further illustrated in Fig. 2 (I) in Section 2), made of a 
classical elastic base material, as a three-dimensional metamaterial with 
a representative unit cell (Fig. 2 (II) and (III)) and certain periodicity: 
stacking layers on top of each other, leads to a honeycomb structure with 
constant and uniform wall thickness, i.e., a homogeneous metamaterial. 
Second, by relying on the classical computational homogenization 
principles, the effective classical material properties following the three- 
dimensional transversal isotropy can be obtained. Third, and most 
importantly, a size effect comes into the picture when analyzing the 
bending of thin plate structures made of this metamaterial (see Fig. 1, 
left): the size of the unit cell becomes comparable to the thickness of the 
structure for small number of layers (cf. microplates made of natural 
materials; case (a) above). Classical unisotropic plate models, dimen-
sionally reduced from the classical three-dimensional continuum 
description with the material matrix of a proper transversal isotropy, do 
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not capture the bending bahavior of plates having only a few layers of 
triangles in the thickness direction. More precisely, with less than eight 
triangles in the thickness direction, error levels varied from a few 
percent to tens of percent within linear elasticity [7]. The corresponding 
strain gradient plate models, however, were shown to capture the size 
effect for linearly elastic structures: the generalized models correctly 
described the transition from the strongly non-classical bending 
behavior (of plates with one or two triangles in the thickness direction) 
to mildly non-classical and classical behavior (according to the increase 
in the number of triangles). Motivated by these results, the present study 
investigates the size effect of similar multi-layer cellular plates but 
within the geometrically nonlinear regime, coupling the bending and 
membrane states, by further developing the anisotropic plate model of 
the FSDT within the SGT. In addition, instead of adopting the con-
forming isogeometric (NURBS-based) FE method of [7] (having certain 
well-known practical restrictions), a quasi-conforming isoparametric 
(polynomial) FE method is introduced, implemented, verified and 
finally applied in the corresponding model validation. 

This article provides the following novel content: (1) a derivation for 
a geometrically nonlinear strain gradient plate model, coupling the 
bending and membrane states, with an application to multi-layer 
cellular plates; (2) the development of a quasi-C1-conforming 6-node 
triangular finite element; (3) a numerical method verification for the 
new finite element; (4) a numerical model validation for the new plate 
model. An appropriate strain energy functional is derived in Section 2 by 

following the anisotropic SGT and FSDT in conjunction with the von 
Kármán geometric nonlinearity. The anisotropic classical and strain 
gradient material properties for the bending terms of the plate model are 
taken from [7] and then modified for the stretching and mixed (bending- 
stretching) terms of the nonlinear formulation. Then, in order to to 
numerically analyze plates with various shapes and boundary condi-
tions, a corresponding FE formulation and a quasi-C1-continuous six- 
node triangular element are introduced in Section 3. 

In Section 4, convergence studies first confirm the reliability of the 
element. For the purposes of model validation, a (3D) full-field model of 
geometrically nonlinear classical elasticity – accounting for the geo-
metric details of the chosen cellular structures – is compared to the (2D) 
strain gradient plate model in order to investigate the accuracy of the 
proposed size-dependent but dimensionally reduced non-classical 
model. Finally, a diverse set of numerical examples for equitrian-
gularly prismatic cellular plates with various shapes (rectangular, skew, 
circular, elliptical, annular sector and polygon) and combinations of 
boundary conditions is presented for analyzing the microarchitecture- 
induced size effects in the nonlinear bending response of such structures. 

2. Anisotropic strain gradient plate model 

2.1. Mindlin’s strain gradient theory of elasticity 

Based on Mindlin’s SGT of elasticity [19], the functional of strain 

Fig. 1. The fundamental idea for the employment of classical and generalized homogenization techniques based on the three-dimensional classical and strain 
gradient elasticity to develop a computationally efficient model for capturing the bending size effect of cellular plate structures. 

Fig. 2. Schematic views of the triangularly cellular metamaterial (I) and the corresponding geometrical parameters of a unit cell (II and III).  
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energy is expressed on the basis of the classical strain and stress tensors 
(εij,Sij), and (non-classical) strain gradient and double stress tensors (κijk,

τijk) as 

F =

∫

V
(Sijεij + τijkκijk)dV (1)  

where V denotes the occupied volume of a three-dimensional solid body. 
The components of the nonlinear strain and strain gradient tensors are 
presented as 

εij =
1
2

(
u i,j + u j,i + uk,iuk,j

)
= εji, κijk = εij,k = κjik (2)  

where u i denotes the displacement along the coordinate direction i and 
the comma in the subscript stands for the differentiation in the coordi-
nate direction indicated by the subsequent subscript index. The conju-
gate variables for the strain and strain gradient, respectively, are given 
by the classical and higher-order constitutive relations for the stress and 
double stress tensors as follows: 

Sij = Cijklεkl (3)  

τijk = Aijklmnκlmn (4)  

where Cijkl and Aijklmn denote the classical fourth-order stiffness tensor 
and a (non-classical) sixth-order stiffness tensor, respectively. More 
details on the fundamentals of the SGT can be found in [7,34,47]. The 
strain gradient formulation following the nonlinear FSDT of plates is 
provided in the next section: the corresponding kinematical assumption 
is inserted into the three-dimensional energy formulation described by 
(1)–(4). 

2.2. First-order shear deformation plate model 

As explained in the Introduction, our final aim is to model plate-like 
cellular structures (see Fig. 1) made from a metamaterial formed by 
repeating the geometry of a triangular unit cell as the example one 
depicted in Fig. 2. For this purpose, we next derive a geometrically 
nonlinear FSDT plate model within the strain gradient theory of elas-
ticity briefly recalled in the previous Section 2.1. Within the derivation 
of the model, we address the crucial differences between the classical 
and strain gradient FSDT plates. These differences, first, bring a size 
dependency into the model and, second, require a nonstandard FE 
formulation due to the higher-order gradients involved in the model. 

The fundamental equations on the strain–displacement and consti-
tutive relations, and the corresponding strain energy functional, are 
derived in this section for the nonlinear strain gradient FSDT of plates by 
adopting von Kármán’s nonlinear kinematic relations. First, by consid-
ering ux, uy, uz and θx,θy, respectively, as the displacements and rotations 
of the mid-plane of a plate structure and by the use of the Cartesian 
coordinate system of (x,y,z), the nonlinear strain components read as 

ε =

{ ε1

ε2

}

ε1 =

⎧
⎪⎨

⎪⎩

εxx

εyy

γxy

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

ux,x

uy,y

ux,y + uy,x

⎫
⎪⎬

⎪⎭
+ 1/2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u2
z,x

u2
z,y

2uz,xuz,y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ z

⎧
⎪⎨

⎪⎩

θx,x

θy,y

θx,y + θy,x

⎫
⎪⎬

⎪⎭

ε2 =

{ γxz

γyz

}

=

{ θx + uz,x

θy + uz,y

}

(5)  

where ε1 and ε2 are the vectors of in-plane (membrane and bending) and 
transverse (shear) strains, respectively. By introducing the following 
linear (E1,E2) and nonlinear (En) matrix operators 

E1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂/∂x 0 0 0 0

0 ∂/∂y 0 0 0

∂/∂y ∂/∂x 0 0 0

0 0 0 ∂/∂x 0

0 0 0 0 ∂/∂y

0 0 0 ∂/∂y ∂/∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E2 =

[
0 0 ∂/∂x 1 0

0 0 ∂/∂y 0 1

]

En = 〈G1d〉G2 + 〈G2d〉G1

G1 =

⎡

⎢
⎢
⎣

∂/∂x

∂/∂y

∂/∂x

⎤

⎥
⎥
⎦ ⊗ [ 0 0 1 0 0 ], G2 =

1
2

⎡

⎢
⎢
⎣

∂/∂x

∂/∂y

2∂/∂y

⎤

⎥
⎥
⎦ ⊗ [ 0 0 1 0 0 ],

(6)  

the strain vectors can be expressed as 

ε1 =

(

L1E1 +
1
2

En

)

d, ε2 = E2d (7)  

where d =
[
uxuyuzθxθy

]T stands for the displacement vector and I3×3 in 
L1 = [ I3×3 zI3×3 ] denotes an identity matrix. Note that 〈〉 symbolizes 
the diag function and the symbol ⊗ stands for the Kronecker product. 

Next, in accordance with the strain gradient relation in Eq. (2) and by 
following the proposed strain vectors in Eq. (5), the strain gradient 
vector is expressed as 

κ =

⎧
⎪⎪⎨

⎪⎪⎩

κ1
κ2
κ3
κ4

⎫
⎪⎪⎬

⎪⎪⎭

, (8)  

κ1 =

⎧
⎨

⎩

κxxx
κyyx
κyxy

⎫
⎬

⎭
=

⎧
⎨

⎩

εxx,x
εyy,x
γyx,y

⎫
⎬

⎭

=

⎧
⎨

⎩

ux,xx
uy,xy

ux,yy + uy,xy

⎫
⎬

⎭
+

⎧
⎨

⎩

uz,xuz,xx
uz,yuz,xy

uz,xuz,yy + uz,yuz,xy

⎫
⎬

⎭
+ z

⎧
⎨

⎩

θx,xx
θy,xy

θx,yy + θy,xy

⎫
⎬

⎭
, (9)  

κ2 =

⎧
⎨

⎩

κyyy
κxxy
κxyx

⎫
⎬

⎭
=

⎧
⎨

⎩

εyy,y
εxx,y
γxy,x

⎫
⎬

⎭

=

⎧
⎨

⎩

uy,yy
ux,xy

ux,xy + uy,xx

⎫
⎬

⎭
+

⎧
⎨

⎩

uz,yuz,yy
uz,xuz,xy

uz,yuz,xx + uz,xuz,xy

⎫
⎬

⎭
+ z

⎧
⎨

⎩

θy,yy
θx,xy

θx,xy + θy,xx

⎫
⎬

⎭
, (10)  

κ3 =

⎧
⎪⎪⎨

⎪⎪⎩

κxxz
κxzx
κyyz
κyzy

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

εxx,z
γxz,x
εyy,z
γyz,y

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

θx,x
θx,x + uz,xx

θy,y
θy,y + uz,yy

⎫
⎪⎪⎬

⎪⎪⎭

, κ4 =

⎧
⎨

⎩

κxyz
κyzx
κzxy

⎫
⎬

⎭
=

⎧
⎨

⎩

γxy,z
γyz,x
γzx,y

⎫
⎬

⎭

=

⎧
⎨

⎩

θx,y + θy,x
θy,x + uz,xy
θx,y + uz,xy

⎫
⎬

⎭

(11) 

It should be noticed here that the derivatives of displacement and 
rotation components of strain gradients κ1 and κ2 are of a higher order, 
which holds true for some of the components of κ3 and κ4 as well. The 
strain gradient components of κ3 and κ4 in (11) having z as the last 
subscript produce the most crucial terms of the formulation, however: z 
as the last subscript, meaning differentiating with respect to z, results in 
first-order derivatives of rotation components (e.g, θx,x in κ3) which are 
analogous to the ones of strain ε1 in (5) (including, e.g, θx,x) but in (11) 
they appear without z as a multiplier. The crucial implication of this will 
be further addressed in what follows. 

By introducing the linear matrix operators (analogous to E1 and E2 
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above including first-order partial derivatives) 

H1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2
/∂x2 0 0 0 0
0 ∂2

/∂x∂y 0 0 0
∂2

/∂y2 ∂2
/∂x∂y 0 0 0

0 0 ∂2
/∂x2 0 0

0 0 0 0 ∂2
/∂x∂y

0 0 ∂2
/∂y2 0 ∂2

/∂x∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12)  

H2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ∂2
/∂y2 0 0 0

∂2
/∂x∂y 0 0 0 0

∂2
/∂x∂y ∂2

/∂x2 0 0 0
0 0 0 0 ∂2

/∂y2

0 0 0 ∂2
/∂x∂y 0

0 0 0 ∂2
/∂x∂y ∂2

/∂x2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

H3 =

⎡

⎢
⎢
⎣

0 0 0 ∂/∂x 0
0 0 ∂2

/∂x2 ∂/∂x 0
0 0 0 0 ∂/∂y
0 0 ∂2

/∂y2 0 ∂/∂y

⎤

⎥
⎥
⎦, H4

=

⎡

⎣
0 0 0 ∂/∂y ∂/∂x
0 0 ∂2

/∂x∂y 0 ∂/∂x
0 0 ∂2

/∂x∂y ∂/∂y 0

⎤

⎦

and the nonlinear operators (analogous to En and Gibove including 
first-order partial derivatives) 

Hn = 〈Q1d〉Q2 + 〈Q2d〉Q1, Hn = 〈Q3d〉Q4 + 〈Q4d〉Q3,

Q1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

∂
∂y

∂/∂x

∂
∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊗ [ 0 0 1 0 0 ], Q2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2
/∂x2

∂2
/∂x∂y

∂2
/∂y2

∂2
/∂x∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⊗ [ 0 0 1 0 0 ],

Q3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂/∂y

∂/∂x

∂/∂y

∂/∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⊗ [ 0 0 1 0 0 ], Q4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2
/∂y2

∂2
/∂x∂y

∂2
/∂x2

∂2
/∂x∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⊗ [ 0 0 1 0 0 ],

(13)  

the strain gradient vectors given in Eqs. (9)–(11) are rewritten as 
follows: 

κ1 =

(

L1H1 +
1
2
L2Hn

)

d, κ2 =

(

L1H2 +
1
2

L2Hn

)

d, κ3 = H3d, κ4 = H4d,

(14)  

in which one has 

L2 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦ (15) 

In addition, by using the Voigt notation in the constitutive relations 
of Eqs. (3) and (4) and by following the strain and strain gradient vectors 
of Eq. (5) and (8)–(11), respectively, the classical and higher-order stress 
vectors are expressed by the following relations: 

S =

{
S1
S2

}

=

[
𝒞1 0
0 𝒞2

]{
ε1
ε2

}

(16)  

τ =

⎧
⎪⎪⎨

⎪⎪⎩

τ1
τ2
τ3
τ4

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

𝒜1 0 0 0
0 𝒜2 0 0
0 0 𝒜3 0
0 0 0 𝒜4

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

κ1
κ2
κ3
κ4

⎫
⎪⎪⎬

⎪⎪⎭

(17)  

in which one has the in-plane (x, y) and transverse (z) stress 
contributions 

S1 =

⎧
⎨

⎩

Sxx
Syy
Sxy

⎫
⎬

⎭
, S2 =

{
Sxz
Syz

}

, 𝒞1 =

⎡

⎣
C 11 C 12 0
C 22 0
C 66

⎤

⎦, 𝒞2 =

[
C 55 0

0 C 44

]

(18) 

for the classical stresses, with the corresponding classical material 
parameters of anisotropy organized in 𝒞1, and 𝒞2, respectively, whereas 
the corresponding higher-order stress quantities are given as 

τ1 =

⎧
⎨

⎩

τxxx
τyyx
τyxy

⎫
⎬

⎭
, τ2 =

⎧
⎨

⎩

τyyy
τxxy
τxyx

⎫
⎬

⎭
, τ3 =

⎧
⎪⎪⎨

⎪⎪⎩

τxxz
τxzx
τyyz
τyzy

⎫
⎪⎪⎬

⎪⎪⎭

, τ4 =

⎧
⎨

⎩

τxyz
τyzx
τzxy

⎫
⎬

⎭
, (19)  

𝒜1 =

⎡

⎢
⎢
⎣

c1
11 c1

12 c1
13

c1
22 c1

23

c1
33

⎤

⎥
⎥
⎦, 𝒜2 =

⎡

⎢
⎢
⎣

c2
11 c2

12 c2
13

c2
22 c2

23

c2
33

⎤

⎥
⎥
⎦, 𝒜3

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c3
11 c3

12 c3
13 c3

14

c3
22 c3

23 c3
24

c1
33 c3

34

c3
44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, 𝒜4 =

⎡

⎢
⎢
⎣

c4
11 c4

12 c4
13

c1
22 c4

23

c4
33

⎤

⎥
⎥
⎦ (20) 

with the corresponding non-classical (strain gradient) material pa-
rameters organized in 𝒜i. It should be noticed that the higher-order 
stress components in τ3 and τ4 with z as the last subscript are con-
nected to the most crucial terms of the formulation as addressed above 
and in what follows. 

2.3. Principle of virtual work 

By considering W as the work done by the external forces and F as 
the total strain energy, the principle of virtual work is given as 
δF +δW = 0 where δ denotes the first variation. In accordance with the 
proposed relations for the strain, stress, strain gradient and double stress 
vectors, the first variation of the total strain energy reads as 

δF =

∫

V

(
δεTS + δκTτ

)
dV =

∫

V

(

δεT
1 𝒞1ε1 + δεT

2 𝒞2ε2 +
∑4

m=1
δκT

m𝒜mκm

)

dV

(21) 

By taking the linear and nonlinear operators defined in Eqs. (6), (12) 
and (13) and according to Eqs. (7) and (14), the first variation of the (ε1 

and ε2) strain and strain gradient vectors (κ1, κ2, κ3 and κ4) are given as 

δε1 = (L1E1 + En)δd, δε2 = E2δd, (22)  

δκ1 = (L1H1 + L2Hn)δd, δκ2 =
(

L1H2 + L2Hn

)
δd, δκ3 = H3δd, δκ4

= H4δd. (23) 

It is crucial to notice that it is the combination of the strain gradient 
terms and the classical terms of the variational formulation (21) that is 
responsible for capturing the size effect and the microarchitecture- 
dependent response, in general. These terms, respectively, include the 
non-classical material tensors 𝒜i (specific to the microarchitecture and 
obtained by a generalized homogenization procedure [7]) and the 
classical material parameters of transversal isotropy 𝒞i (obtained by a 
classical homogenization procedure [7]). As already noticed in the 
previous subsection, first, the strain gradients κ1 and κ2 and some of the 
components of κ3 and κ4 are composed of second-order displacement 
and rotation derivatives, which leads to the requirement of C1-contin-
uous finite elements (or to non-conforming elements). Second, some 
components of the strain gradients κ3 and κ4 are composed of the first- 
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order derivatives of rotation components analogously to the ones of 
strain ε1. Accordingly, the classical bending energy of the plate related 
to the rotations of ε1, gets augmented by the analogous strain gradient 
contributions. However, since the components of ε1 have z as a multi-
plier the corresponding bending rigidities are of the classical form “in-
tegral of 𝒞1z2 across the thickness”, finally proportional to 𝒞1h3 with 
thickness h, whereas the bending rigidities of the corresponding com-
ponents of gradients κ3 and κ4 are of the form “integral of 𝒜m across the 
thickness”, finally proportional to 𝒜mh. This leads to a crucial stiffening 
effect for the small values of thickness h. For linear plates [22,7], and 
beams especially [59,70], this feature of strain gradient (and some 
other) models is easy to demonstrate explicitly. 

By introducing f as the vector of surface forces and by neglecting the 
body forces, the work done by the external forces is given as 

δW =

∫

A
δdTfdA (24) 

In what follows, the detailed finite element formulation is provided 
by following the proposed energy functional for the nonlinear FSDT 
within the SGT. 

3. Finite element method 

3.1. Finite element formulation 

As the first step in the FE discretization procedure, the vector of 
displacement components are approximated within the elements by the 
use of appropriate shape functions as follows: 

d =

⎡

⎢
⎢
⎢
⎢
⎣

ux
uy
uz
θx
θy

⎤

⎥
⎥
⎥
⎥
⎦

= Nd (25)  

N =

⎡

⎢
⎢
⎢
⎢
⎣

N 1 0 0 0 0 N n 0 0 0 0
0 N 1 0 0 0 0 N n 0 0 0
0 0 N 1 0 0 ⋯ 0 0 N n 0 0
0 0 0 N 1 0 0 0 0 N n 0
0 0 0 0 N 1 0 0 0 0 N n

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

Ne ⊗ e1
Ne ⊗ e2
Ne ⊗ e3
Ne ⊗ e4
Ne ⊗ e5

⎤

⎥
⎥
⎥
⎥
⎦

(26)  

in which Ne = [N 1N 2⋯N n] is the vector of shape functions for each 
displacement component, N i(i = 1, 2, ⋯, n) are the shape functions, n 
stands for the number of degrees of freedom (DOFs) per element for each 
displacement component and em = [ δm1 δm2 δm3 δm4 δm5 ] where 
δmi(i = 1, 2, ⋯, 5) is the Kronecker delta. Also, d is the vector of un-
knowns. Next, by substituting the approximation of displacement vector 

into strain and strain gradient vectors, one can write 

ε1 =

(

L1ℰ1 +
1
2
ℰn

)

d, ε2 = ℰ2d, (27)  

κ1 =

(

L1ℋ1 +
1
2
L2ℋn

)

d, κ2 =

(

L1ℋ2 +
1
2
L2ℋn

)

d, κ3 = ℋ3d, κ4 = ℋ4d,

(28) 

with the following matrices: 

ℰi = Eiℕ(i = 1, 2), ℰn = 〈𝒢1d〉𝒢2 + 〈𝒢2d〉𝒢1, 𝒢i = Giℕ(i = 1, 2), (29)  

ℋi = Hiℕ(i = 1, 2, 3, 4), ℋn = 〈𝒬1d〉𝒬2 + 〈𝒬2d〉𝒬1, ℋn

= 〈𝒬3d〉𝒬4 + 〈𝒬4d〉𝒬3, 𝒬i = Qiℕ(i = 1, 2, 3, 4) (30) 

Finally, by substituting Eqs. (25), (27) and (28) into (21) and (24), 
and integration through the thickness direction, the discretized FE 
version of the energy functional is represented as 
∫

A
δd

T

(

ℰT
1 𝒞*

1ℰ1 + ℰT
2 𝒞*

2ℰ2 +
1
2
ℰT

1 𝒞*
3ℰn + ℰT

n 𝒞*
4ℰ1 +

1
2
ℰT

n 𝒞*
5ℰn +

∑4

m=1
ℋT

m𝒜
*
mℋm

+
1
2
ℋT

1 𝒜
*
5ℋn +

1
2
ℋT

2 𝒜
*
6ℋn + ℋT

n 𝒜
*
7ℋ1 + HT

n 𝒜
*
8ℋ2 +

1
2

ℋT
n 𝒜

*
9ℋn

+
1
2
ℋ

T
n 𝒜

*
10ℋn

)

ddA +

∫

A
δd

TℕTfdA

= 0
(31) 

in which the following classical and higher-order material matrices 
are considered: 

𝒞*
1 =

∫h/2

−h/2

LT
1 𝒞1L1dz, 𝒞*

2 = ks

∫h/2

−h/2

𝒞2dz, 𝒞*
3 =

∫h/2

−h/2

LT
1 𝒞1dz = 𝒞*

4
T
, 𝒞*

5 =

∫h/2

−h/2

𝒞1dz

𝒜
*
1 =

∫h/2

−h/2

LT
1 𝒜1L1dz, 𝒜

*
2 =

∫h/2

−h/2

LT
1 𝒜2L1dz, 𝒜

*
3 =

∫h/2

−h/2

𝒜3dz

(32)  

𝒜
*
4 =

∫h/2

−h/2

𝒜4dz, 𝒜
*
5 =

∫h/2

−h/2

LT
1 𝒜1L2dz = 𝒜

*
7

T
, 𝒜

*
6 =

∫h/2

−h/2

LT
1 𝒜2L2dz = 𝒜

*
8

T
𝒜

*
9

=

∫h/2

−h/2

LT
2 𝒜1L2dz, 𝒜

*
10 =

∫h/2

−h/2

LT
2 𝒜2L2dz 

Accordingly, the energy functional of Eq. (31) results in the following 
nonlinear discretized governing equations: 
(

Kl +
1
2

Knl +
1
3
K*

nl

)

d + F = 0 (33)  

with the stiffness matrices  

Kl =

∫

A

(

ℰT
1 𝒞*

1ℰ1 + ℰT
2 𝒞*

2ℰ2 +
∑4

m=1
ℋT

m𝒜
*
mℋm

)

dA,

Knl =

∫

A

(
ℰT

1 𝒞*
3ℰn + 2ℰT

n 𝒞*
4ℰ1 + ℋT

1 𝒜
*
5ℋn + ℋT

2 𝒜
*
6ℋn + 2ℋT

n 𝒜
*
7ℋ1 + 2HT

n 𝒜
*
8ℋ2

)
dA,

K*
nl =

3
2

∫

A

(
ℰT

n 𝒞*
5ℰn + ℋT

n 𝒜
*
9ℋn + HT

n 𝒜
*
10ℋn

)
dA

(34)   
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in which subscripts l and nl denote the linear and nonlinear parts, 
respectively, whereas superscript * stands for the purely nonlinear 
terms. The force vector is also defined as 

F =

∫

A
NTfdA (35) 

The linear part Kl of the stiffness matrix, defined in Eq. (34), includes 
strain gradient components (the sum from 1 to 4 in the integrand of Kl)

which are either of higher-order or of the same order as the components 
of the classical terms (the first two terms in the integrand of Kl). These 
different non-classical terms can be traced from (30) and (28) via (20) 
back to the strain gradients defined in Eqs. (9)–(11) and then compared 
to their classical counterparts (forming the first two terms of Kl) which, 
in turn, can be traced from (29) and (27) via (20) back to (5). Analogous 
pairs appear in the nonlinear parts of the stiffness matrix (coupling the 
in-plane and transversal deformations) but tracing them is more 
cumbersome. 

Finally, it should be noticed that the non-standard finite element 
method introduced next, in turn, aims at being loyal to the governing 
variational formulation although it is not conforming but only quasi- 
conforming. 

3.2. Quasi-C1-continuous six-node triangular element 

The FE formulation for the nonlinear strain gradient FSDT was 
formulated in the previous subsection. As can be seen, the strain energy 
functional is presented by using the first- and second-order derivatives of 
the displacement field. Owing to the presence of the second-order de-
rivatives, the standard C0-continuous Lagrangian elements cannot be 
utilized to approximate the field variables. Hence, a quasi-C1-continuous 
six-node triangular element is introduced herein to perform a quasi- 
conforming FE discretization and, accordingly, an accurate FE anal-
ysis. The element formulation is derived in terms of a local area coor-
dinate (LAC) system (L1, L2, L3). As shown in Fig. 3, to respond to the 
higher-order continuity requirements, the first-order derivatives of the 
field variable are also exhibited as the nodal values, in addition to the 
classical field variable values. 

By introducing ψ as a sample scalar field, Ψi as the values of the 
scalar field at nodes and Ψx

i , Ψy
i as the values of the first-order derivatives 

of the scalar field, one can write the following relations: 

ψ(Li) = Ψi,
∂ψ
∂x

| L = Li
= Ψx

i ,
∂ψ
∂y

| L = Li
= Ψy

i , (i = 1, 2, 3, 4, 5, 6) (36)  

in which L = [L1L2L3] is the vector of the LACs and Li =
[
Li

1Li
2Li

3
]

de-
notes the vector of the LACs at node i which can be found in Table 1. 

Since the 6-node triangular element has been considered and each node 
has three nodal values (for each variable) including the field variable 
(Ψi) and its first-order derivatives (Ψx

i ,Ψy
i ), it is figured out that the 

proposed triangular element has 18 DOFs for each scalar field. As an 
element with higher-order polynomial basis functions, this element is 
not considered to be prone to the so-called numerical locking known be 
a critical issue for low-order beam, plate and shell elements of the FSDT 
(cf. [58,83]). 

Now, by introducing the row vector Γ(L)1×18 as the vector of basis 
functions in the form   

and the column vector C18×1 of unknowns as 

C = [ c1 c2 ⋯ c18 ]
T
, (38) 

the approximation of the scalar field within the element is 

ψ(L) = Γ(L)C. (39) 

Then, substituting Eq. (39) into (36) results in the set of algebraic 
equations for the unknown vector C as 

Ψ = VC, (40)  

with 

Ψ =
[

Ψ1 Ψx
1 Ψy

1 Ψ2 Ψx
2 Ψy

2 ⋯ Ψ6 Ψx
6 Ψy

6
]T

, (41)  

V =

⎡

⎢
⎢
⎣

Γ*(L1)

Γ*(L2)

⋮
Γ*(L6)

⎤

⎥
⎥
⎦

18×18

, Γ*(Li) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ(Li)

∂Γ(L)

∂x

⃒
⃒
⃒
⃒ L = Li

∂Γ(L)

∂y

⃒
⃒
⃒
⃒ L = Li

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3×18

(42) 

Fig. 3. Description of the higher-order 6-node triangular plate element.  

Table 1 
The local area coordinates of the six-node triangular 
plate element.   

Li = [Li
1Li

2Li
3]

Node 1 (i = 1)  [100] 
Node 2 (i = 2)  [010] 
Node 3 (i = 3)  [001] 
Node 4 (i = 4)  [1/2 1/2 0] 
Node 5 (i = 5)  [0 1/2 1/2] 
Node 6 (i = 6)  [1/2 0 1/2]  

Γ(L) =
[
L1L2L3L1L2L2L3L1L3L2

1L2L2
2L3L2

3L1L2
1L2

2L2
2L2

3L2
3L2

1L3
1L2L3

2L3L3
3L1L4

1L2L4
2L3L4

3L1
]
, (37)   
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which can be solved as C = V−1Ψ. Substituting this into Eq. (39) leads to 
the following relation: 

ψ(L) = Γ(L)V
−1Ψ = NeΨ, (43)  

where 

Ne = Γ(L)V−1 (44)  

is the vector of shape functions for the proposed triangular element used 
in Eq. (26). The details of how to differentiate the vector of basis func-
tions with respect to the global coordinates (x,y) can be found in [55]. 

4. Numerical results and discussions 

In the previous section, by introducing the quasi-C1-continuous six- 
node triangular element, the FE governing equations of the nonlinear 
bending analysis were derived based on the nonlinear strain gradient 
FSDT of plates. The stiffness matrices and force vector can be calculated 
via the numerical Gauss quadrature integration technique through Eqs. 
(34) and (35). The total governing equations can be obtained by using an 
appropriate assembly procedure. Finally, the Newton-Raphson iteration 
technique is employed to find the nonlinear bending response. 

As explained, in this study the nonlinear bending analysis of cellular 
plates is presented by following the nonlinear plate model of the SGT. 
Indeed, the transversally isotropic 3D cellular plates having equitrian-
gularly prismatic cores are modeled by using the size-dependent plate 
theory in which the classical and higher-order material properties are 
determined through a numerical homogenization technique by 
comparing the results of the (reference) 3D full-field and the (proposed) 
2D plate models. In the present study, cellular plates made of steel are 
considered as shown in Fig. 4 with the geometrical parameters presented 
in Table 2. The number of the layers and related geometrical parameters 
of the plate such as the length-to-thickness ratio and the aspect ratio are 

presented for all numerical results. Based on the number of layers and 
the thickness of each layer (i.e. a3/2 = 4.33 based on Table 2), the total 
thickness of the plate (h) can be obtained. Then, namely for rectangular 
plates, the length-to-thickness ratio (a/h) is used to determine the length 
of the plate and the aspect ratio (a/b) can be also used to give the width 
of the plate. The results corresponding to the 3D full-field model are 

Fig. 4. Schematic views and geometrical parameters for different plate domains.  

Table 2 
The geometrical parameters of the triangular unit cell of Fig. 3.  

a1(mm) a2(mm) a3(mm) a4(mm) αb0  

5 5 8.66 0.5 60  

Table 3 
The classical effective constitutive parameters for transversally isotropic clas-
sical elasticity (GPa) [7].  

C 11  C 12  C 22  C 44  C 55  C 66  

26.27 6.57 64.96 14.43 9.76 14.43  

Table 4 
The non-classical constitutive parameters for the SG plate model (kN) [7].  

c1
11 = c2

22 = c3
11  63.96  

c1
12 = c2

12 = c3
13  17.59 

c1
22 = c2

11 = c3
33  50.30 

c1
33 = c2

33 = c4
11  17.78 

c3
22 = c4

33  12.02 

c3
44 = c4

22  17.78 

c1
13 = c1

23 = c2
13 = c2

23 = c3
12 = c3

14 = c3
23 = c3

24 = c3
34 = c4

12 = c4
13 = c4

23 = 0   
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based on using 10-node tetrahedral elements of type C3D10 of the 
commercial Abaqus FE software. The classical and strain gradient 
constitutive parameters for this kind of cellular structure are presented 
in Tables 3 and 4 according to the work of Kakalo and Niiranen [7]. It 
should be noted that constitutively reduced strain gradient plate models 
(of both the Kirchhoff and FSDT types) were considered in [7], whereas 
a full SGT plate model is employed in this study to accurately present the 
geometrically nonlinear analysis coupling the bending and membrane 
terms of deformation. 

The numerical results for the nonlinear bending analysis of cellular 
structures are presented for different shapes of plate mid-surfaces: 
rectangular, skew, circular, elliptical, annularly sectorial, polygonal 

and L-shaped. The schematic view and the corresponding geometrical 
parameters can be found in Fig. 4. In order to investigate the size effect 
in cellular structures, plates with different numbers (N) of micro-
architectural layers are considered: plates with one, two, three and four 
layers are depicted as examples in Fig. 5. Clamped (C), simply supported 
(S) and free (F) boundaries are considered with the following 
constraints: 

clamped : un = us = uz = Θn = Θs = 0,

simply supported :

{
immovable : un = us = uz = Θs = 0,

movable : us = uz = Θs = 0,

(45)  

Fig. 5. Representations of rectangular cellular plates with different numbers (N) of layers.  

Fig. 6. Convergence studies with respect to the total strain energy of the strain gradient FSDT plate model cellular square plates (corresponding to the single-layer 
case N = 1) with different length-to-thickness ratios a/h (loading Q = 500). 
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with un = cxux +cyuy, us = −cyux +cxuy, Θn = cxθx +cyθy and Θs =

−cyθx +cxθy in which cx and cy denote the components of the outward 
unit normal vector of the boundary curve. If not otherwise stated, the 
movable simply supported boundary condition is used. 

As the first result, a convergence study of the total strain energy in a 
nonlinear bending problem is demonstrated in Fig. 6 for square plates 
(corresponding to the single-layer plate indicated by N = 1 in Fig. 5) 
with fully clamped (CCCC) and fully simply supported (SSSS) edges with 
two length-to-thickness ratios, i.e., a/h = 15, 50. It is obviously shown 
that increasing the number of elements (NE) leads to fairly quick 
convergence (with strain energy as a measure) for both boundary con-
ditions types and for both aspect ratios. 

Next, in order to compare the (proposed) strain gradient plate theory 
and the (reference) 3D full-field model, the linear and nonlinear bending 
responses for the same (CCCC and SSSS) plates are demonstrated in 
Fig. 7 (with the maximum deflection as a measure). 

As another set of comparison studies, the normalized distributions of 

the transverse displacement of one- and two-layer rectangular plates 
obtained with the 3D model and the strain gradient plate model are 
compared in Fig. 8. To give more details, the non-dimensional deflection 
of square and skew (α = 30) plates along the bottom edge (path AB as 
shown in Fig. 8) are illustrated in Fig. 9. Although small deviations from 
the reference curves can be seen for the CCCC plate, the overall agree-
ment of the results in Figs. 7–9 demonstrates the accuracy of the SG plate 
model up to the non-linear regime. 

For demonstrating the size-effect related to the microarchitecture, 
described in the Introduction with Figs. 1 and 2, the bending response 
for a series of plates with different numbers of layers (for N = 1, 2,…,8) 
is analyzed within the geometrically nonlinear regime. For highlighting 
the impacts of the microarchitecture and the number of layers, and for 
emphasizing the importance of the strain gradient theory, the bending 
rigidity – now defined as qa2/Wmaxt for a fully clamped and uniformly 
loaded square plate (with load level q and side length a) – is presented in 
Fig. 10 for both strain gradient and classical FSDT plates and with both 

Fig. 7. A comparison of the (proposed) strain gradient FSDT and (the reference) 3D models of classical elasticity with respect to the maximum deflection for linear 
and nonlinear bending of one- and two-layer cellular square plates (a = b = 100mm). 

Fig. 8. A comparison of the normalized distribution of the transverse displacement of one- and two-layer rectangular cellular plates based on (the reference) 3D 
models of classical elasticity (left) and the (proposed) strain gradient FSDT (right) with the FCFC boundary condition (a = b = 100). 
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geometrically linear and nonlinear analysis. For comparison, the nu-
merical results of the corresponding 3D full-field models are also 
included for N = 1, 2, 3 (circles and squares). As can be seen, the results 
based on the 2D strain gradient plate model are fairly consistent with the 
results of the 3D model, whereas the classical FSDT cannot capture the 
microarchitectured-dependent mechanical behavior. 

In what follows, detailed numerical examples are presented for the 

nonlinear bending analysis of different plate domains, with the variation 
of the ratio between the non-dimensional deflection (Wmax/h = umax

z /h) 
and the non-dimensional transverse load (Q = qa4/C11h4) reported as a 
measure of the nonlinear bending response. Fig. 11 demonstrates the 
nonlinear bending responses of fully clamped cellular plates of several 
shapes for a different number of cellular layers (N = 1, 2, 3) in order to 
highlight the impact of the number of layers considered as a size-effect – 
as the solutions converge towards the corresponding classical plate so-
lutions as the number of layers increases. Accordingly, it is observed that 
despite the constant length-to-thickness ratio, the plates with one layer 
(N = 1) show relatively stiffer bending behavior due to the size effect 
captured by the SG plate model. On the other hand, one can see that the 
results corresponding to the three-layer (N = 3) plates are quite close to 
the corresponding results of the classical FSDT. In accordance with this 
observation, in [7] considering the linear regime, it was shown that with 
eight layers (N = 8) the difference between the classical and strain 
gradient models is very small. To further illustrate this bending analysis, 
deflection distributions for the different plate geometries are repre-
sented in Fig. 12. 

The effect of the length-to-thickness ratio on the size-dependent 
nonlinear bending response of the different shapes of plates with fully 
clamped boundaries is investigated in Fig. 13: the nonlinear bending 
responses (with the maximum deflection as a measure) are presented for 
two different length-to-thickness ratios (thin, thick) for one- and two- 
layer plates (N = 1, 2). Comparing the results for the thin and thick 
plates reveals that the cellular microstructure has a more considerable 
size effect for the thin plates than for the thick ones. One can see, for 
instance, that in the case of the rectangular plate and for Q = 400, the 

Fig. 9. Model validation for the non-dimensional deflection of one- and two-layer cellular square and skew (α = 30) plates along the bottom edge (path AB as shown 
in Fig. 7) for the FCFC boundary condition (a = b = 100mm). 

Fig. 10. Bending rigidities of clamped cellular square plates (a/h = 11.55,q =

1500MPa). 
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difference in the maximum non-dimensional deflection of one- and two- 
layer plates is 6.7% for a/h = 10 (thick), while the corresponding value 
for a/h = 50 (thin) is 12.8%. 

Demonstrated in Fig. 14 are the nonlinear bending responses of 
rectangular and skew one-layer cellular plates for different sets of 
boundary conditions. In the case of the skew plate, the skew angle is α =

30 and for both cases the length-to-thickness ratio is a/h = 20. The 
notation for the boundary conditions is the following: CCSS implies that 
the left and right edges are clamped and the other two edges are simply 
supported. As expected, the fully clamped supports lead to the stiffest 
structure. On the other hand, the fully simply supported SSSS plate has 
the most flexible bending behavior and gives even larger deflection 

Fig. 11. The nonlinear bending responses of fully clamped cellular plates of different geometries with different number of layers.  
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values than the FFCC boundary condition, whereas the results for CCSS 
and CSCS are quite close to each other. 

The impact of the aspect ratio (a/b) on the nonlinear bending 
response of fully clamped one-layer square and skew (α = 30) plates are 
studied in Fig. 15. Since the cellular plates are orthotropic, aspect ratios 
from the range of a/b = 0.6 to a/b = 4 are considered. The results 
indicate that increasing the a/b ratio makes the plates more flexible and 
decreases the influence of the terms related to the geometrical nonlin-
earity. Note that for larger aspect ratios, there is larger deflection, 
however, it can be seen that for reasonable deflection ratios, i.e., 
Wmax/h < 2, the differences between the linear and nonlinear responses 
are more considerable for smaller aspect ratios. 

Fig. 16 provides the nonlinear bending responses of skew plates for 
different skew angles with clamped and simply supported edges. As can 

be observed, for plates with larger skew angles the deflection values are 
smaller as the effect of nonlinear strains is more remarkable. Indeed, a 
larger skew angle makes the plate more stable and decreases the 
deflection. 

The nonlinear bending responses of one-layer elliptical plates with 
clamped and immovably simply supported edges are illustrated in 
Fig. 17 for several aspect ratios. One can see that an increase in the 
aspect ratio makes the plate more flexible and increases the value of the 
non-dimensional deflection. On the other hand, it is concluded that 
elliptical plates of smaller aspect ratios are most affected by geometric 
nonlinearity. 

The normalized distributions of the transversal displacement 
component for one- and two-layer annular sector plates are depicted in 
Fig. 18: for the (reference) 3D model (left) and for the (proposed) strain 

Fig. 12. Deflection distributions for cellular plates of different geometries with fully clamped boundary conditions (with the same geometrical parameters as 
in Fig. 9). 
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gradient plate model (right). Besides, the distributions of the non- 
dimensional deflection along the longer curved edge (path AB as 
depicted in Fig. 18) are plotted in Fig. 19 for both models. It can be 
generally seen that the classical shear deformable plate model essen-
tially underestimates the bending rigidity of cellular plates. 

The effect of the sector angle ((α = 90, 150, 210) and the small-to- 
large ratio of the annular radii (R1/R2 = 0.1, 0.3,0.5) on the nonlinear 
bending response of fully clamped one-layer annular sector plates are 
investigated in Fig. 20. It is found that the results for α = 90, 150 are 
quite close to each other, whereas α = 210 results in larger deflection 

Fig. 13. The impact of the length-to-thickness ratio a/h on the nonlinear bending behavior of fully clamped cellular one- and two-layer cellular plates of 
different shapes. 
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Fig. 14. The effect of boundary conditions on the nonlinear bending response of one-layer cellular square and skew (α = 30) plates (a/h = 20, a/b = 1).  

Fig. 15. The effect of the aspect ratio on the nonlinear bending response of fully clamped one-layer cellular rectangular and skew (α = 30) plates (a/h = 20).  

Fig. 16. The effect of the skew angle on the nonlinear bending response of one-layer cellular skew plates (a/h = 20, a/b = 1).  
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values. In fact, by the increase of the sector angle, the plate exhibits a 
more flexible deformation regime. On the other hand, it is apparent that 
increasing the radius ratio makes the plate stiffer and decreases the 
values of the non-dimensional deflection. 

5. Conclusions and discussion 

The size-dependent geometrically nonlinear bending behavior of 
cellular plates with equitriangularly prismatic microstructures, or better 
microarchitectures, was studied within the first-order shear deformation 
plate theory within the anisotropic strain gradient elasticity theory by 
employing a higher-order finite element method. Accordingly, this 
article provided the following novel content: (1) a model derivation, (2) 
a method development, (3) a method verification, (4) a model 
validation. 

Regarding the theoretical derivations, a matrix–vector form of the 
appropriate energy functional based on the FSDT plate model and the 

von Kármán strains within the anisotropic strain gradient elasticity 
theory was derived. In order to respond to the higher-order continuity 
requirements resulting from the strain gradient theory, a quasi- 
C1-continuous six-node triangular element was developed and the cor-
responding finite element formulation was presented. 

Regarding the computational investigations, in the sense of method 
verification, the reliability of the proposed finite element method was 
first confirmed through a numerical convergence study showing the 
nonstandard method possessing good convergence properties. Then, in 
the sense of model validation, a variety of comparative results for 
(reference) 3D full-field models of classical nonlinear elasticity and the 
(proposed) 2D strain gradient shear deformation plate model was pro-
vided in order to approve the accuracy of the proposed approach in case 
of multi-layer cellular plates with equitriangularly prismatic micro-
structures. A set of model problems was provided in order to focus, in 
particular, on the nonlinear size-dependent bending characteristics of 
the chosen cellular multi-layer plates: it was shown that for small 

Fig. 17. The effect of the aspect ratio on the nonlinear bending response of one-layer cellular elliptical plates (a/h = 12) with fully clamped and fully simply 
supported boundaries (with the immovable version of the simply supported condition). 

Fig. 18. The normalized distribution of the transversal displacement component of one- and two-layer annular sector plates based on the 3D (reference) model of 
classical elasticity (left) and the (proposed) strain gradient FSDT (right) with the CCCF boundary condition (R2 = 100mm, R1/R2 = 0.3, α = 90). 
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numbers of layers, the solutions remarkably differ from the corre-
sponding classical plate solutions but converge towards the classical 
ones as the number of layers increases. Accordingly, on one hand, the 
results show a strong interplay between the neighboring scales making 
the classical plate models useless due to the size effect – or a separate 
classical model needs to be developed for each layer stack. On the other 
hand, it was observed that this size effect, or stiffening effect, captured 
by the proposed strain gradient FSDT for any number of layers, can be 
relatively small already for three-layer plates, i.e., the results can be 
quite close to the corresponding results of the classical FSDT. This in-
dicates, perhaps somewhat surprisingly, that the separation of scales 
does not need to be fully valid for applying the classical continuum 
theory with rough accuracy. The stiffening effect turned out to be more 
significant for thinner plates. 

As the present study confirms, the proposed model applies within 
both linear and geometrically nonlinear elasticity for cellular plate 
structures having an equitriangular lattice core, but we expect the 
bending phenomenon to be common to other multilayer lattice config-
urations as well. Indeed, the corresponding beam analyses have been 
accomplished first for stretching-dominated multilayer triangular lattice 
beams in [70,71] but very recently for the corresponding bending- 
dominated square lattice beams in [74]. Therefore, in the subsequent 

studies, other than equitriangular microarchitectural plates and shells 
could be investigated, within both linear and geometrically nonlinear 
regimes. However, when considering the endless possibilities for unit 
cell geometries it becomes evident that one single generalized model 
might not be able to cover every possible microarchitecture: even the 
simplest bending-dominated and stretching-dominated lattice structures 
might behave differently, not to mention more exotic configurations 
forming auxetic metamaterials, for instance [59,70,84]. 

Interestingly, for single-layer sandwich beams and plates the 
micropolar theory has been applied and calibrated in [80,81] and 
[82,83], respectively: for single-layer quadrangular (web core) lattice 
geometries but also for single-layer hexagonal [83], Y-shaped [83], 
triangular [83] and pyramidic [81] ones – including hence both 
stretching- and bending-dominated microarchitectures. The corre-
sponding sandwich structures are, however, single-layer structures and 
repetitions (stacking) of the lattice unit cells do not necessarily produce 
uniform multi-layer structures made of a periodic lattice metamaterial 
investigated in the present study and in [7,70–72,74,76,77] – which 
means that the view of [80–83] is a bit narrower and focuses on specific 
industrially relevant sandwich configurations. Finally, an interesting 
study on a single-layer web-core sandwich beam similar to the ones in 
[80,81] has been accomplished by Barchiesi and Khakalo [85]: in a 

Fig. 19. The non-dimensional maximum deflection of one- and two-layer annular sector plates (left for N = 1; right for N = 2) along the longer curved edge AB for 
the CCCF boundary condition (R2 = 100mm, R1/R2 = 0.3, α = 90). 

Fig. 20. The effect of the small-to-large ratio of the annular radii (left) and the sector angle (right) on the nonlinear bending response of a fully clamped one-layer (N 
= 1) annular sector plate (R2/h = 20). 
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global sense, the homogenization procedure therein results, after a 
condensation, in the classical FSDT beam model which is sometimes 
considered as a generalized 1D continuum model as such as it already 
has a rotation degree of freedom. 

Regarding other analysis types, already for the present micro-
architecture efficient theoretical and numerical modeling for the size 
effects within elasto-plasticity would open a door to a plethora of ap-
plications. Before that, however, free vibration analysis and linear 
buckling analysis would be natural extensions for the present study, 
analogously to the corresponding analyses for beam models accom-
plished in [70] (in this sense, the mathematical form of the strain 
gradient plate model does not differ from the corresponding classical 
plate model). In addition, nonlinear thermomechanical bending could 
be studied by following the linear analyses for beams and plates in [71] 
and [7], respectively. 
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