
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Lukkarinen, Aleksi; Malmi, Lauri; Haaranen, Lassi
Event-driven Programming in Programming Education: A Mapping Review

Published in:
ACM Transactions on Computing Education

DOI:
10.1145/3423956

Published: 16/03/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Lukkarinen, A., Malmi, L., & Haaranen, L. (2021). Event-driven Programming in Programming Education: A
Mapping Review. ACM Transactions on Computing Education, 21(1), Article 1. https://doi.org/10.1145/3423956

https://doi.org/10.1145/3423956
https://doi.org/10.1145/3423956

Event-driven Programming in Programming Education
A Mapping Review

ALEKSI LUKKARINEN, LAURI MALMI, and LASSI HAARANEN

During the past two decades, event-driven programming (edp) has emerged as a central and almost ubiquitous
concept in modern software development: Graphical user interfaces are self-evident in most mobile and web-
based applications, as well as in many embedded systems, and they are most often based on reacting to events.
To facilitate both teaching practice and research in programming education, this mapping review seeks to
give an overview of the related knowledge that is already available in conference papers and journal articles.
Starting from early works of the 1990s, we identified 105 papers that address teaching practices, present
learning resources, software tools or libraries to support learning, and empirical studies related to edp. We
summarize the publications, their main content, and findings. While most studies focus on bachelor’s level
education in universities, there has been substantial work in K–12 level, as well. Few courses address edp as
their main content—rather it is most often integrated with cs1, cs2, or computer graphics courses. The most
common programming languages and environments addressed are Java, App Inventor, and Scratch. Moreover,
very little of deliberate experimental scientific research has been carried out to explicitly address teaching
and learning edp. Consequently, while so-called experience reports, tool papers, and anecdotal evidence have
been published, this theme offers a wide arena for empirical research in the future. At the end of the article,
we suggest a number of directions for future research.

CCS Concepts: • Social and professional topics → Computer science education; • Software and its
engineering → Publish-subscribe / event-based architectures.

Additional Key Words and Phrases: event-oriented, event-based, programming education, computer science
education, K–12, CS0, CS1, CS1.5, CS2, CS3

1 INTRODUCTION
Event-drivenness has become a common characteristic of modern computer applications from
productivity software and games to operating systems, embedded systems, remote services, and
distributed systems. This trend has resulted in the concept of event-driven1 programming (edp). Nat-
urally, the trend of growing importance of understanding edp has been noticed in the discipline of
1Also terms event-based and event-oriented have been used.

About the authors: Aleksi Lukkarinen, Master of Science (Software Technology), male, ORCID iD 0000-0002-3827-6243,
ResearcherID S-1254-2016, aleksi.lukkarinen@aalto.fi. Lauri Malmi, professor, male, ORCID iD 0000-0003-1064-796X, Re-
searcherID G-2346-2013, lauri.malmi@aalto.fi. Lassi Haaranen, Doctor of Science (Technology), male, ORCID iD 0000-
0002-6500-6425, ResearcherID AAZ-3031-2020, lassi.haaranen@aalto.fi. All authors are affiliated with Aalto University,
Department of Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland. All authors declare no external funding and
no conflicts of interest.

ACM Reference format:
Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. 2021. Event-driven Programming in Programming
Education: A Mapping Review. ACM Trans. Comput. Educ. 21, 1, Article 1 (March 2021), 31 pages.
https://doi.org/10.1145/3423956

Copyright © Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen 2021.

This is the authors' version ("final accepted manuscript") of the work. It is posted here for your
personal use. Not for redistribution. The formatting and the layout differ in the published version.

The definitive Version of Record was published in ACM Transactions on Computing Education
in March 2021 and is available at: https://doi.org/10.1145/3423956

https://orcid.org/0000-0002-3827-6243
https://publons.com/researcher/S-1254-2016
mailto:aleksi.lukkarinen@aalto.fi
https://orcid.org/0000-0003-1064-796X
https://publons.com/researcher/G-2346-2013
https://publons.com/researcher/G-2346-2013
mailto:lauri.malmi@aalto.fi
https://orcid.org/0000-0002-6500-6425
https://orcid.org/0000-0002-6500-6425
https://publons.com/researcher/AAZ-3031-2020
mailto:lassi.haaranen@aalto.fi
https://www.aalto.fi/
https://cs.aalto.fi/
https://doi.org/
https://doi.org/10.1145/3423956
https://doi.org/10.1145/3423956

computing education long ago; this has prompted educators and researchers to express their opin-
ions for the need to understand event-driven programming (edp) [e.g., Bergin et al. 1999, Hansen
and Fossum 2004, Bills and Biles 2005, Tchamgoue et al. 2011, Turbak et al. 2014]. Moreover, As-
sociation for Computing Machinery and IEEE Computer Society had included edp already into their
joint Computing Curricula 2001 as a core topic under the knowledge focus group Programming
Fundamentals, andmore recently, both Computing Science Curricula 2013 and Computer Engineer-
ing Curricula 2016 address edp under several knowledge areas. For instance, the former includes
knowledge unit Fundamental Programming Concepts under knowledge area Software Development
Fundamentals with the following description:

This knowledge unit builds the foundation for core concepts in the Programming
Languages Knowledge Area, most notably in the paradigm-specific units: Object-
Oriented Programming, Functional Programming, and Event-Driven & Reactive
Programming.

As can be seen from the above description, these model curricula treat edp as a programming
paradigm. Krishnamurthi and Fisler [2019] challenge this position and remind that the concept
of programming paradigm is not clearly defined. Procedural, object-oriented, and functional pro-
gramming are fundamentally organizational characteristics, that is, they define the overarching
method of arranging program code into manageable units. As Krishnamurthi and Fisler point out,
event-drivenness, in contrast, is a behavioural characteristic and as such, orthogonal to organiza-
tional ones. This makes it inherently a different type of concept to teach and learn.

In introductory programming education, edp usually relies on two central concepts. First, an
event denotes an occurrence of something in hardware or software, or a data chunk that represents
such an occurrence. Second, an event handler refers to a subprogram that is to be executed as a
reaction to one or more kinds of events. Thus, compared to the traditional idea of sequentially
executing a program from the beginning to the end, an event-driven program effectively waits
endlessly for events and reacts to any events received as appropriate. As Woodworth and Dann
[1999] note, this inversion of control, in the sense that the execution order significantly depends on
external events, is a significant difference to the traditional approach.

While the need to educate students about edp has been addressed, the educational practice has
revealed many challenges related to teaching and learning edp, starting from Bruce et al. [2001a],
Bishop and Horspool [2004], El-Nasr and Smith [2006], Dabney et al. [2013], and Gordon et al.
[2015] describing the concept as a whole as challenging or hard to understand. Some authors
describemore specific obstacles.Themost commonly reported one has been that relevant tools and
libraries, such as Java Abstract Window Toolkit (Awt) initially and Java Swing later, are difficult
to learn and use for novice programmers.2 This concern is not directly related to the concept of
edp itself and it can be alleviated with an appropriate scaffolding: either wrapping existing class
libraries inside simpler façades or creating simpler libraries from scratch.3

In addition to unfriendly programming environments, there are issues closer to edp itself. Al-
though event-drivenness is essentially about behaviour, using event handlers in organizing the
program code is a common practice. This, for instance, requires the student to grasp the whole-
ness of the functionality that is distributed across the event handlers. It might also require building
the program logic in a different way compared to a non-event-driven solution [e.g., Halland and
2For instance, Grissom [2000], Lambert and Osborne [2000], Bruce et al. [2001a], Alphonce and Ventura [2003], Bills and
Biles [2005], Schaub [2009], Pauca and Guy [2012], Turbak et al. [2014], and Russo [2017].
3For instance, Roberts and Picard [1998],Wolz andKoffman [1999], Lambert andOsborne [2000], Bruce et al. [2001b], Rasala
et al. [2001], Christensen and Caspersen [2002], Alphonce and Ventura [2003], Bishop andHorspool [2004], Murtagh [2007],
and Russo [2017].

MANUSCRIPT

Malan 2003, Reges 2006, Salanci 2006], and novices might have challenges in figuring out how to
design their code and how different parts of it work together [Jiang et al. 2004]. To properly under-
stand and design event-driven programs, yet another need is an understanding of concepts that
might not be covered until more advanced courses. For instance, a clear idea of origins and rout-
ing of events might require understanding of operating and windowing systems, device drivers,
and hardware devices as embedded systems. Furthermore, designing event-driven programs suc-
cessfully might require knowledge of design patterns, such as Observer, Model-View-Controller,
and State. In addition, a multi-threaded programming environment might require understanding
concerns and concepts related to concurrency.

The challenges related to event-driven programming (edp) are nothing new. For instance, an
early study from the beginning of the 2000s by Halland and Malan [2003] found out that several
Computer Studies teachers, who had been teaching programming using Pascal, had problems with
figuring out the layouts, including the main program and the place where the program would fi-
nally end, as well as the control flows of programs developed using Delphi. As the authors reflect,
possible reasons for this include both event-drivenness as a concept and the different way of or-
ganizing the program code. As a result, it was necessary for the “teachers to develop new ways of
thinking about – – how control works – –.” Also, the experience of Bills and Biles [2005] from the
end of the 1990s regarding teaching Visual Basic was that code “distributed across multiple objects
too early in the learning process tended to confuse some students.”

Halland and Malan as well as Bills and Biles observed also that some parts of the program
might be completely hidden by the development environment, which makes it impossible to trace
the program code from beginning to the end and thus hinders the understanding of the program.
Jiang et al. [2004] worries that this kind of hiding might be a factor “impeding students’ motivation
to discover and understand – –.” The hiding of code also contributes to the difficulty of debugging
event-driven programs in addition to, for instance, loose coupling of event sources and listeners
[Hansen and Fossum 2004]. Testing event-driven programs also has its own hindrances originating,
for instance, the combinations of events and states [Hansen and Fossum 2004] as well as the tools
needed to both send external events to the programs and observe their state. What is more, edp
has been associatedwith negative transfer effects observed between event-oriented and non-event-
oriented programming environments [e.g., Woodworth and Dann 1999, Dingle and Zander 2000,
Halland andMalan 2003, Ladd 2006]. Moreover, Halland andMalan express a concern that students
who learn to program in an event-driven fashion do not develop some algorithmic skills that other
programming students will have.

Despite that some challenges related to teaching and learning edp arewell known, there does not
seem to be much deliberate experimental research towards alleviating them. For instance, research
into the set of concepts that students should have to be able to successfully learn edp seems not
to exist. To find out the extent of missing edp-related knowledge and to alleviate the problem
as much as possible, we performed a mapping review of the topic. We systematically map out,
categorize, and synthesize an overview of what the scientific community has published in scientific
journals and conferences about teaching and learning edp in programming education. In terms of
Kitchenham, Budgen, and Brereton [2016, p. 34], we can classify this study as a mapping study:

The goal of a mapping study is to survey the available knowledge about a topic.
It is then possible to synthesize this by categorisation in order to identify where
there are ‘clusters’ of studies that could perhaps form the basis of a fuller review,
and also where there are ‘gaps’ indicating the need for more primary studies.

On the other hand, of the 14 review types of Grant and Booth [2009], this study conforms most
closely a cross of a systematized review and a mapping review/systematic map. Of the above four

MANUSCRIPT

terms, we have chosen to use the mapping review, because it most clearly conveys the intent of
our study: a review that maps literature.

In respect to the above study type, our study is exploratory in nature. Because it seems to be
difficult4 to find an exact general-level definition for event-driven programming (edp), we treat
it as a loosely-defined concept that the content of the publications relevant for the study will
characterize. Furthermore, concerning publications that (1) are made through scientific journals
and conferences and (2) are related to teaching and learning edp in programming education, we
pose the following broad research questions:

RQ 1 Who has written about teaching and learning event-driven
programming (edp), when, and where?

RQ 2 Which research methods have been used to study teaching and learning edp?
RQ 3 In which educational contexts has edp been discussed?
RQ 4 What kind of pedagogical approaches have been reported to support learning edp?
RQ 5 What kind of software tools have been developed to support learning edp?
RQ 6 What empirical results of learning edp have been reported?

From our search, we specifically exclude publications that address technical implementations of
edp without educational context, such as technical research on programming languages or operat-
ing systems, despite that such tools or techniques might be used in educational contexts. Using the
same principle, we exclude papers on design, implementation, or use of embedded systems with
hardware-generated events, if there is no explicit connection to an educational context.

The compiled results support computer science teachers in several ways. The review provides
references to a large number of studies where many types of pedagogical approaches and educa-
tional tools to support learning edp have been developed in different educational contexts. These
studies can inspire teachers to design better education for their own course contexts. Moreover,
we combine information about empirical studies in which the effects of various pedagogical ap-
proaches and tools have been investigated, which can support selection of approaches. Finally, we
hope to identify gaps in the literature where more research is needed.

This article is structured as follows. In Chapter 2, we discuss howwe analyzed the identified pool
of literature.This chapter is complemented by Appendix A, in which we detail our include/exclude
criteria as well as both the searching and the first phase of screening. We continue in Chapter 3 by
presenting the results, including summaries of various aspects of the literature as well as content
analysis of the identified publications. For this chapter, in turn, we provide a few supplemental
tables and a figure in Appendix B. Finally, we discuss the limitations of the study in Chapter 4 and
summarize our main conclusions in Chapter 5. The above two appendices have been published as
supplemental material alongside this article.

4Formulating an exact general-level definition for event-driven programming (edp) seems to be challenging because of
interpretational and demarcation issues, whose solutions seem to depend on the level of abstraction and the purpose
of the definition. These issues include (1) definitions for the terms programming and event, (2) events as data structures
(object/struct) versus sets of parameter values, (3) event-specific handlers versus one handler for all events, (4) real-time
versus played-back events, (5) loop-based polling (e.g., an “event loop”) of software-based queues versus hardware ports,
(6) events that are hidden from the programmer, (7) synchronization structures, (8) ReactiveX libraries (http://reactivex.io/,
accessed October 1, 2020), (9) interrupts, (10) programmable logic devices reacting to inbound signals, (11) calls of all
methods, procedures, and functions as events, (12) the start of program execution as an event, (13) edp as a programming
paradigm (e.g., Krishnamurthi and Fisler [2019]), (14) edp versus rule-based programming (e.g., de Paula et al. [2018]).

MANUSCRIPT

http://reactivex.io/

2 METHOD
In this section, we describe the process that we followed in this study. The process consists of five
phases, as Figure 1 below presents. It began by the first author (al) collecting the publications
to be reviewed (Searching; § A.2) and screening them quickly (Rapid Screening; § A.3). Next, all
authors participated in Detailed Screening (§ 2.1). After we confirmed the set of publications to be
included in the study, we further collaborated in Collecting & Analyzing Data (§ 2.2) and Reporting
our findings. The searching and screening process is summarized in Figure 2 and Figure 3 below.
We present here the two first phases in a short summary. Their details are given in Appendix A in
the supplemental material. We describe here the Detailed Screening phase accurately, because it is
more relevant for the results of this review.

Searching Rapid Screening Collecting  Analysing Data ReportingDetailed Screening

First Author All Authors

Fig. 1. Five phases of the review process followed in this study.

To find the included publications, we used eight search services: Acm Digital Library, Ieee Explore,
Elsevier ScienceDirect, Springer Nature SpringerLink, Wiley Online Library, Taylor & Francis On-
line, Education Research Information Center, and Google Scholar (see Figure 2). The search expres-
sions (see Table A2) were based on the following phrases: event-driven programming, event-based
programming, event-oriented programming, events-first programming, and event programming. The
search resulted in 858 documents, of which 643 were unique.

The unique search results were then screened based on, for instance, titles, content types, and
prior knowledge of them to ensure that they follow our inclusion/exclusion criteria, which were:
Publications (1) are accessible for free, (2) are published in journals or conference proceedings,
(3) are written in English, (4) are not an introduction to some primary content (e.g., editorial to
a journal special issue), (5) discuss events and programming in computer programming context,
(6) are concerned with teaching and learning event-driven programming, and (7) are rated high
enough in the publication rating system Jufo5 used in Finland. For details of the criteria, see
Appendix A in the supplemental material. During this process 327 search results were excluded
and the final document pool for detailed screening included 316 publications.

2.1 Detailed Screening
After Rapid Screening, the Detailed Screening phase (Figure 3) commenced. During it, we evaluated
search results by comparing their full content to the inclusion/exclusion criteria (Table A1). This
comparison was not limited to abstracts, because in many cases, event-driven programming (edp)
was not a central concept for the document in question and thus was not mentioned in its abstract.
As a part of this phase, the documents were routinely searched for the word event to quickly see,
if an edp-related term was being used in a relevant meaning and context. We categorized search
results in three major categories:

• Fully Included.These 104 publications comprise contentwhere edpwas researched or discussed
in an educational context, that is, confirming the inclusion/exclusion criterion 6 about teaching
and learning edp.The publication could include, for example, a description of a pedagogical context
where edp had some clear role, present a software tool or other learning resource which addresses
5The Jufo rating systems has levels 0–3 and from the lowest level, we excluded publications, for which we did not find
evidence of being peer reviewed. For more details, please see https://julkaisufoorumi.fi/en/publication-forum (accessed
October 1, 2020) as well as § A.3 in the supplemental material.

MANUSCRIPT

https://julkaisufoorumi.fi/en/publication-forum

Google
Scholar

SE
A

R
C

H
IN

G

ACM Digital
Library

IEEE Xplore

Elsevier
ScienceDirect

Springer Nature
SpringerLink

Wiley Online
Library

Taylor  Francis
Online

Education Resources
Information Center

228 results

373 results

15 results

34 results

103 results

53 results

50 results

2 results

858 results, of which 643 (74.9 %) unique results were downloaded.

130
57.0 %

320
85.8 %

1
6.7 %

23
67.6 %

83
80.6 %

46
86.8 %

39
78.0 %

1
50.0 %

R
A

P
ID

 S
C

R
E

E
N

IN
G

Excluded 280 results (32.6 %) that (1) most likely were not related
to teaching/learning event-driven programming in the context of
programming education or (2) were known—based on preliminary
searches—to be for instance patents, drafts, or formally unpub-
lished books.

Examples of titles of excluded documents:
- A Novel Framework for Hypervisor Design
- Elastic Component‐Based Applications in PaaS Clouds
- Linear Temporal Type Theory for Event-Based Reactive Programming
- Mutation Testing in Event Programming
- Patterns in Teaching Software Development
- Reactive Programming of Event-Driven Automotive Systems
- Software Design Guidelines for Event-Driven Programming
- Taxonomy of Distributed Event-Based Programming Systems
- Unified Event Programming and Queries
- Xoc, an Extension-Oriented Compiler for Systems Programming

down-
loaded

Excluded 44 results (5.1 %)

Breakdown by reason of exclusion:
- Technical report 10
- Description of a workshop 9
- Publication forum cannot be confirmed 5
- Description of a poster 4
- Description of a demonstration 3
- Thesis 3
- Language was not English 3
- Description of a panel discussion 2
- Patent 2
- Description of a doctoral consortium participant's research 1
- News article 1
- Preview of a resource that is subject to charge 1

Excluded 3 results (0.3 %)

Reason: Journal articles of JUFO level 0 without a formal peer review.

316 results (36.8 %) were included into a detailed screening.

Preliminary Review
focused on titles as

well as search results
known in advance

643 results (74.9 %)

Content Check

363 results (42.3 %)

JUFO Level Check

319 results (37.2 %)

Fig. 2. An overview of the Searching and Rapid Screening phases. Percentages in parentheses are of all found
results. These phases were performed by the first author.More details of the searches are provided in Table A2
and Table A3 in Appendix A. The process visualization continues in Figure 3 below.

MANUSCRIPT

858 search results in total, of which 316 results (36.8 %) were included into a detailed screening.

D
E

T
A

IL
E

D
 S

C
R

E
E

N
IN

G

Excluded 115 results (13.4 %)

108 results (12.6 %) were excluded for various reasons by a consensus
(2 of 3 reviewers).

The rest 7 results were excluded due to content type as follows:
- Description of an assignment 2
- Description of a demonstration 1
- Description of a poster 1
- Description of a tool 1
- Description of a workshop 1
- Informal event report 1

Fully Included 105 publications: 104 search results (12.1 %) + 1 publication suggested to us.

Marginally Included 97 results (11.3 %)

These publications typically contain only a few relevant sentences, while
the actual topics of the publications are not relevant for this study.

Inclusion:
Yes/Marginally/No?

316 results (36.8 %)

D
A

T
A Pedagogical Offerings:

• Approaches
• Tools
• Outcomes

ISCED 2011 Levels Course Context Reviewers’ Tags

Tools  TechnologiesHistorical?Research Methods

Fig. 3. An overview of theDetailed Screening andData Collection& Analysis phases (continues from Figure 2).
Percentages in parentheses are of all found results. These phases were performed by all authors together.

event-driven programming (edp), or discuss challenges in learning edp. We included publications
that focused on some wider theme, if edp was explicitly considered as a part of the bigger whole.
•Marginally Included.These 97 publications mentioned edp in an educational context, while the

main foci of them were clearly something quite different and not related to teaching or learning
edp. Most of themmentioned edp briefly, without giving further details—typically in 1–2 sentences
or as an item in a table as a topic of a curriculum or a course syllabus, or as a theme of an exercise.
We therefore considered these publications less relevant for our survey, and do not discuss their
content in more detail.

• Excluded. These 115 publications were not related to education at all or had clearly another
focus, such as merely presenting technology that was not directed for education. We also excluded
publications related to programming education, if closer investigation revealed that edp was not
considered in any relevant way.

Finally, we augmented the set of fully included publications by considering publications sug-
gested by reviewers. After a similar detailed screening, we decided to add one paper, which was
not captured among the initial search and was jointly deemed relevant for our survey.6 This left
us with the total of 105 publications to review.

All three authors participated in this phase, using the principle of majority vote. Two authors
considered each publication independently and assigned them one of the three categories above.
In case they agreed, the identified category became permanent. Otherwise, the third author read
the publication followed by a joint discussion where a consensus of the category was reached.
6 In the bibliography, we have included a number of publications, which were not accepted to the set of fully included
publications but include some relevant aspects of edp for discussion.

MANUSCRIPT

2.2 Collecting & Analyzing Data
After identifying the 105 fully included publications during Detailed Screening, we proceeded with
the Collecting & Analyzing Data phase (Figure 1). We collected both substantial data (§ 2.2.1) and
bibliometric data (§ 2.2.2), as we describe below.

2.2.1 Substantial Data

To collect the data necessary for analyzing the content of the fully included publications, we con-
sidered each publication regarding the following aspects (see Figure 3, Data section):
• Pedagogical Offerings. We identified content related to one or more of the three following sub-

categories: Pedagogical approach included a description of any form of teaching or learning practice
or learning resource, regardless where event-driven programming (edp) was involved as the main
focus of research or as some minor content of the publication. Tool implied that the publication
presented some software or hardware, which was specifically designed to support learning edp.
Typically, these were software frameworks that simplified learning some topic where edp had a
role, such as graphical user interface frameworks. Learning outcomes implied that the publication
had some empirical content where learning results or changes in students’ motivation, emotion,
or attitude was analyzed.

• Educational Levels.We identified the target groups that had been in focus of the publication, if
any, and used the International Standard Classification of Education7 (Isced 2011 version) to classify
the educational levels of the target groups. Several levels were recorded, if necessary. In some
publications, where no empirical data was involved, we concluded the level if it was implicit in
the context; for instance, a cs1 course was categorized as bachelors’ level education. For a small
number of publications, such as literature studies or mere descriptions of educational software
frameworks, we recorded educational level as N/A.

• Research Methods.The publications had a large variation of methodological approaches. To get
a broad picture of them, we assigned each publication into one or more of the following categories:

– Quantitative / Simple publications presented some empirical data with simple descriptive
statistics, such as summary tables, histograms, cross tabulations, simple correlations without
any statistical testing.

– Quantitative / Complex publications applied some statistical testing to compare variables,
or used exploratory statistical methods, such as clustering or factorial analysis. For these
publications, we did not recordQuantitative / Simple separately, even though they generally
included such methods as well.

– Qualitative / Simple publications presented some collected qualitative data without present-
ing any clear analysis method. Typically these included quotes from student feedback or
interviews, or observations on the target group, possibly presented with a simple catego-
rization.

– Qualitative / Complex presented analysis of qualitative data with some clearly described anal-
ysis method and results which exceeded simple categorization, such as grounded theories or
phenomenographical outcome spaces. For these publications, we did not record Qualitative
/ Simple separately, even though they generally included such actions/results as well.

– Publications which did not present any data were considered Descriptive. Typically, they
presented some technical innovation, such as a new tool or software framework, compared

7See: http://uis.unesco.org/en/topic/international-standard-classification-education-isced, accessed October 1, 2020.

MANUSCRIPT

http://uis.unesco.org/en/topic/international-standard-classification-education-isced

different technologies or presented new teachingmethods or learning resources without any
evaluation, expect possibly author’s own reflections.

– Literature reviews presented and summarized a selected sample of literature.
•Historicality. We tagged a publication as historical if it concerned tools or technologies which

are now practically obsolete, such as Java Applets.
•Course Context and Theme. Course names, such as cs1, cs2, or Computer Graphics, were re-

ported as the course context, if any. In many cases, we also identified a specific theme which was
in focus within the course context, such as developing games, building mobile apps, or working
with media. However, not all papers had a course context or theme.

• Tools & Technologies. Teaching tools and technologies that the publication focused on, if any.
• Reviewers’ Tags. Each reviewing author added some personal tags to identify any other possibly

relevant aspects of the publication, which could be helpful in describing our findings. No formal
categories were derived from the tags—they were considered simply auxiliary information.

We decided on pedagogical offerings, educational levels, research methods, and historicality
based on the same majority vote principle as in Detailed Screening earlier. On the other hand,
each reviewing author recorded course contexts, tools and technologies, individually because there
were typically clearly stated in the papers.

2.2.2 Bibliometric Data

For each of the 105 fully included publications, we collected bibliometric data including authors,
publication year, publication channel, page count, and citation count. Citations serve as approxima-
tions of the popularity and impact of a publication at some point of time. They are not universally
exact, are changing over time, and can be made for very different reasons, not all of which relate
to building on the ideas of the cited publications [Zupic and Čater 2015]. We did not, however,
extend our survey to investigate the citations further. For our purposes, they served as orders of
magnitude and can aid in high-level clustering and comparisons.

For this study, the citation counts represent mainly the viewpoint of Scopus8 database on Sep-
tember 3, 2020 (in a few cases, other databases were also queried; see below). Scopus was selected
as the source of citation data, because it might provide (1) more coverage thanWeb of Science9 and
(2) more accurate citation counts than Google Scholar [Falagas et al. 2007].

The interpretation of the results returned by Scopus was encumbered by some incoherence
in them. For titles of some documents, Scopus returned several entries for seemingly unrelated
publications; these entries were skipped, as were entries without a citation count. For these cases,
we tried to collect the citation count from other sources, such as publishers’ search engines and
Google Scholar; this might have induced some distortion to the numbers recorded.

In cases when some of the content had been published several times, the citation counts of
those publications were summed and the sum recorded. The same action was taken when Scopus
returned several entries for a seemingly same publication but with some inaccuracies, such as one
using the full name of a journal and the other one using its abbreviation, or both having the same
publication but one of them having erroneous authors, and so on.

In the end, interpreting and cleaning the raw data as described above might have resulted in
some ambiguity in the citation counts, and the authors acknowledge that some of the values might
not be exact even in terms of Scopus’ data. However, the possible error is usually quite small (such
as 1–5 citations) and does not affect the big picture, especially as citation counts change over time.

8See: https://www.scopus.com/, accessed October 1, 2020.
9See: http://www.webofknowledge.com/, accessed October 1, 2020.

MANUSCRIPT

https://www.scopus.com/
http://www.webofknowledge.com/

3 RESULTS AND DISCUSSION
We present the results of analysing the included publications in several sections, from several
quantitative overviews to more detailed discussions in the order of our research questions (see
Chapter 1). All sections are related to the fully included publications.

As an answer to our first research question, we present both bibliometrics (§ 3.1) as well as
publication streams (§ 3.2). The latter are publication sets, whose members have common authors.
We then briefly cover some historical publications (§ 3.3), which typically cover technologies, such
as Java Applets, that are not being used any more. Next, we answer to RQ 2 by summarizing the
research methods (§ 3.4) applied in the publications, and continue with RQ 3 by describing the
educational contexts (§ 3.5), which include educational levels and participants (§ 3.5.1) as well as
course contexts and themes (§ 3.5.2).

The more substantial results compiled from the analysis consist of answers to the rest of our
research questions: Pedagogical approaches and observations (RQ 4, § 3.6), tools and frameworks
(RQ 5, § 3.7), as well as learning outcomes (RQ 6, § 3.8), including any empirical results. Finally,
we briefly discuss some ways to order learning content (§ 3.9). Details of the included publications
are divided between the bibliography and Table B1 in the supplemental material.

3.1 Bibliometrics
As we stated earlier, the search process resulted in 858 search results, of which 643 unique ones
(74.9 %) were downloaded for analysis. Of these 643, we excluded 83.8 % (539 results) from the
study during the screening. This let us to include to the study 104 search results (16.2 %) and
one additional publication that was recommended to us later—105 publications in total. We begin
answering to our first research question below by summarizing bibliometrics describing the set
of fully included publications (§ 3.1.1) as a whole, as well as the most cited publications (§ 3.1.2).
Bibliometrics of the set of marginally included publications are omitted as being irrelevant. The
answer to RQ 1 continues in § 3.2 with a discussion of publication streams.

3.1.1 Included Publications in General

We present the numbers of included publications by the publication year of their first versions (re-
publications are omitted) in Figure 4. The publications were published during a continuous times-
pan of 26 years—from 1993 to 2018. As can be seen, the number of included publications per year
starts to increase approximately at the change of the millennium; earlier the numbers were only
marginal. From 1999 onward, there has been approximately 4.9 included publications per year.The
peak years were 2014 and 2018 with 10 and 8 included publications, respectively.

0
1
2
3
4
5
6
7
8
9

10

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

of

 P
ub

lic
at

io
ns

Year of First Publication

Fig. 4. Numbers of the included publications (see § 3.1.1) by the publication year of their first versions
(republications are omitted). The dotted line represents a three-year moving average.

MANUSCRIPT

Figure 5 below presents the citation counts of these 105 included publications on a linear number
line, and the 25 most cited publications are presented in Table B3. As can be seen, the publications
form five clear groups. The first three groups consist of one publication, each: Two from Cooper,
Dann, and Pausch [2000, 2003] with 297 and 248 citations, and one from El-Nasr and Smith [2006]
with 123 citations. Furthermore, the fourth group comprises publications of both Seiter and Fore-
man [2013] as well as McCauley et al. [2008], which have been cited 82 and 73 times, respectively.
Finally, the fifth group contains the other publications (95.2 %), which were cited up to 56 times.

0 40 80 120 160 200 240 280 320

Fig. 5. Citation counts of the 105 included publications, as well as the
five groups they form, on a linear number scale (see § 3.1.1).

The publications were authored by 252 unique authors, of which the most common one was Kim B.
Bruce, who was an author in 6 publications (5.7 %). Both Andrea P. Danyluk andThomas P. Murtagh
appeared as an author in five publications, each, and both Deborah A. Fields and Diana M. Franklin
in four publications, each. Finally, Alexandria K. Hansen, Danielle B. Harlow, Wanda Dann, and
Yasmin B. Kafai participated in authoring of three publications, each. The three publications with
most authors were those of Franklin et al. [2013] with 15 authors, Luxton-Reilly et al. [2017] with
10 authors, and Hodges et al. [2013] with 8 authors. 25 publications (23.8 %) had only one author,
each, whereas 29 publications (27.6 %) had 2 authors, each.

The five most represented publication channels among the first versions of the 105 publications
included to this study are presented in Table B2 (in Appendix B)—they cover 53.3 % (56) of the
included publications. These channels are Acm Sigcse Technical Symposium (Sigcse) with 26 publi-
cations (24.8 %), Innovation and Technology in Computer Science Education conference (Iticse;10 11;
10.5 %), Journal of Computing Sciences in Colleges (Jcsc;11 11; 10.5 %), Information Technology Educa-
tion Conference (Sigite;12 5; 4.8 %), andAcm Transactions on Computing Education (Toce;13 3; 2.9 %).
The other channels were represented by 1–3 publications, each. All in all, of the 40 unique channels,
23 (57.5 %) were conferences and the rest 17 (42.5 %) journals. These channels represented 9 unique
publishers, of which the most common one was by far Acm14 with 65 publications (61.9 %). The
second was Consortium for Computing Sciences in Colleges (Ccsc) with 12 publications (11.4 %), and
the third was Elsevier with 7 publications (6.7 %). Finally, the Lecture Notes in Computer Science15

(Lncs) publication series of Springer , as well as Taylor & Francis, had six publications, each.
A majority of the first published versions (75; 71.4 %) were quite short with 1–9 pages, but

18 (17.1 %) had 10–19 pages and the rest 12 (11.4 %) 20–29 pages. One likely reason for so many
short papers being present is the page limits generally imposed on conference papers. Focusing on
Jufo publication channel rating levels (see § A.3), most of the publications (77, 73.3 %) represented
publication channels that have been classified on level 1 (“Basic”).The secondmost common rating
10 Includes Iticse working group reports (Iticse-wgR).
11The proceedings of the conferences of Consortium for Computing Sciences in Colleges (http://www.ccsc.org/, accessed
October 1, 2020) have been published in Jcsc, which is interpreted as a series of conference proceedings.
12Conferences Citc4 and Citc5 belong to the Sigite conference series and thus have been calculated as parts of it.
13During our timespan, JeRic was renamed to Toce. Despite the change in the journal profile, we calculate both as Toce.
14While Acm hosts the publications of Jcsc, their publisher is Ccsc.The same applies to Ace publications, which have been
published by Australian Computer Society, Inc.
15 See: https://www.springer.com/gp/computer-science/lncs, accessed October 1, 2020.

MANUSCRIPT

http://www.ccsc.org/
https://www.springer.com/gp/computer-science/lncs

level was 0 with 18 (17.1 %) publications. Only ten publications (9.5 %) were from channels that
represent the higher rating levels: Eight of them (7.6 %) were of level 2 (“Leading”), and the rest two
(1.9 %) represented level 3 (“Highest”). Most of the rating levels (50; 47.6 %) were determined based
on the publisher, and 39 publications (37.1 %) got their levels directly based on their publication
channels. Four publications were assigned a rating level based on the Lecture Notes in Computer
Science publication series, in which they have been published. Finally, in twelve cases (11.4 %) we
had to use our own judgement to determine the appropriate level for the purposes of this study.

3.1.2 25 Most Cited Publications

Table B3 (in Appendix B) enumerates the 25most-cited publications amongst the 105 fully included
ones.Theywere written by 86 unique authors; 1–15 authors per publication. Only six authors were
represented by more than one publication: Deborah A. Fields, Kim B. Bruce, Randy Pausch, Stephen
Cooper, Wanda Dann, and Yasmin B. Kafai appeared as an author in two publications, each. The
citation counts listed in the table are presented on a linear number line in Figure 5 along with the
rest of the included publications. The groups are described above in § 3.1.1.

The table also lists information about the first published versions of these 25 publications. They
were published during 15 individual years between 1997 and 2017 (that is, 6 individual years were
not represented among these 25 publications).The peak was in 2013 with 4 publications; otherwise,
there were 1–3 publications per year. The publications consist of 14 conference papers (56.0 %) and
11 journal articles (44.0 %), the former 1.3 times the latter. The publications were from 14 unique
publication channels, of which the most common were the Acm Sigcse Technical Symposium (7 pa-
pers, 28.0 %), Innovation and Technology in Computer Science Education (including working group
reports) conference (3 papers, 12.0 %), the Journal of Computing Sciences in Colleges (3 articles,
12.0 %), and Acm Transactions on Computing Education (2 articles, 8.0 %). The other ten channels
were represented by one publication, each.

The most frequent publishers were the Association for Computing Machinery (16 publications,
64.0 %), Taylor & Francis (4 publications, 16.0 %), and Consortium for Computing Sciences in Colleges
(3 publications, 12.0 %). Australian Computer Society and Elsevier were represented with one pub-
lication, each. Page counts varied between 5 and 29 as follows: 7 publications (28.0 %) had 20–29
pages, 5 (20.0 %) had 10–19 pages, and each of the rest 13 (52.0 %) consisted of 1–9 pages.

Concerning Jufo ratings, 17 (68.0 %) of the publications were on level 1 (“Basic”). In addition,
level 3 (“Highest”) had two publications (8.0 %), and levels 2 (“Leading”) and 0 (does not meet
the requirements of level 1) both had 3 publications (12.0 %) assigned to them. 8 (32.0 %) of these
classifications were given based on the publication channel, while 14 (56.0 %) got the rating level
assigned to their publisher. Moreover, the publication set included three publications that lacked
an official rating and that we had to, for the purposes of this study, classify ourselves.

3.2 Publication Streams
We continue answering to our first research question by presenting four author-based publication
streams that can be identified from the set of 105 fully included publications. They are publication
sets of at least four members that have common authors. Figure 6 presents an overview of these
streams; for more details, please see Figure B4 in the supplemental material.

The first publication stream includes publications authored by Kim B. Bruce, Andrea P. Danyluk,
and Thomas P. Murtagh. At first, they argue [Bruce et al. 2001a] in favor of including event-driven
programming (edp) into the introductory programming course from the beginning (an events-first
approach) and present an objects-first course that uses theirObjectDraw library [Bruce et al. 2001b]
as a scaffolding tool. Next, Bruce [2004] discusses the objects-early vs. objects-late debate and the
above course, and presents three pedagogical directions to choose from. Finally, in the context of

MANUSCRIPT

1 2

3

4

2001–2010
2013–2018

2014–2017

2014–2015
2000 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 2010 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18

Fig. 6. An overview of the four author-based publication streams having at least four publications (see § 3.2).
The first stream (red) is related mostly to ObjectDraw and Squint. The second and third streams are con-
cerned with Scratch (green) and LaPlaya (purple). Finally, the fourth stream (orange) is linked to App Inventor.
More detail is shown in Figure B4 in Appendix B.

the same course, the authors argue why structural recursion should be taught earlier than arrays
[Bruce et al. 2005] and how they introduce concurrency in the context of event-driven program-
ming (edp) [Bruce et al. 2010].

The second stream has four publications with Diana M. Franklin as the common author. First,
Franklin et al. [2013] describe a two-week Scratch-based summer camp for middle school students
and assess the shown competence of the students in areas such as edp. In 2016, Franklin et al.
investigate differences in state initialization between Scratch, C, and Java to make instruction to
produce more transferable skills.The last two publications, Harlow et al. [2018] andWeintrop et al.
[2018], discuss LaPlaya and Kids Engaged in Learning Programming and Computer Science (Kelp-
cs) curriculum that includes edp. The former publication explores mismatches between LaPlaya
and its users’ abilities, continuing with the initialization theme of Franklin et al. [2016] above. The
latter one presents such usage patterns of visual block-based languages that can be harmful from
the viewpoint of later computer science education.

The third stream is formed by four Scratch-related publications that have Deborah A. Fields as
the common author. In the first of them, Fields et al. [2014] identify programming profiles on
the basis of analyzing Scratch projects regarding used programming concepts, level of participa-
tion, gender, and account age. The second publication [Fields et al. 2015] discusses high school
students programming music videos as parts of collaborative communities, such as collectives of
3–6 students, the ongoing workshop, and the online Scratch community. Third, Fields et al. [2016]
research children’s learning trajectories by combining their social learning context with program-
ming project snapshots. They especially examine edp and parallelism as well as initialization, the
latter adding to the work presented in Franklin et al. [2016] and Harlow et al. [2018] above.The last
publication [Fields et al. 2017] is a journal article based on the first publication of this stream—a
conference paper of the same authors from 2014.

The fourth stream consists of five publications related to App Inventor , published during two
consecutive years.They do not have a single common author; however, they aremutually linked by
Mark Sherman, Andrey Soares, and Franklyn Turbak, each appearing as an author in more than one
of them. In the first publication, Soares [2014] reflects on topics that instructors should consider
when teaching with App Inventor. During the same year, Turbak et al. discuss both the event
model and some characteristics of App Inventor and event-drivenness. On the next year, Soares
and Martin [2015] describe the results of a survey that seeks to find out students’ opinions related
to an Android application development course. Furthermore, Kim and Turbak [2015] investigate
the usability of map, filter, reduce, and sort blocks in programming with App Inventor. Finally,
Sherman and Martin [2015] suggest a rubric for assessing some aspects of computational thinking
present in App Inventor projects.

MANUSCRIPT

3.3 Historical Publications
We categorized the 105 fully included publications according to whether the technology and the
core content was still relevant to contemporary programming education. We considered 21 publi-
cations (20.0 %) to be historical; in other words, they focus on obsolete technologies such as Java
Applets. Most of them were published in the 1990s or the early 2000s. In addition, we rated two
of the publications [Bruce et al. 2005; Gestwicki and Sun 2008] to be semi-historical, that is, the
technologies in focus are obsolete but the results or the analyses are still relevant. Finally, we
considered the remaining 82 publications to contain research or discussion that is of interest to
current practitioners and researches. However, it should be noted that the research contexts of
these historical and semi-historical publications might still be relevant, even though the software
presented might have to be adapted to contemporary technologies.

Software. Examples of what we considered as historical publications include discussions of ob-
solete platforms, such as X Window System [Pavlidis 1996], Windows 3.0 [Szuecs 1996], and Java
Applets [e.g., Christensen and Caspersen 2002; Tuttle 2001].These (and similar) early works sought
to resolve the same problem: While building interactive graphical applications and user interfaces
motivated students to learn programming, the available tools were complex with a high learning
curve. In 1996, Pavlidis starts his publication bluntly: “If you are teaching a graphics course with
programming assignments, you will probably agree that using X for that purpose can be a trouble-
some experience.” Similarly, Bruce et al. [2001b] write that “Our desire to use graphics extensively
in the course made it clear that we would need to develop a set of classes to simplify the use of
Java’s graphics facilities. Java Awt does not provide an interface that is appealing for an introduc-
tory course.” In the late 1990s and the early 2000s, many frameworks/libraries16 were implemented
to resolve this challenge of enabling students to start building graphical user interfaces (gui) on
cs1 or cs2 levels, or in introduction to computer graphics course.

In addition to guis, there are some other approaches worth of mentioning, as well. For instance,
Xdb [Arnow 1995] was an early library supporting learning distributed computing. ObjectDraw
library simplified building graphics in Java. While it may be obsolete at the moment, Bruce et al.
[2010] report about their 10-year long experience of giving a cs1 course, where event-driven pro-
gramming and concurrency were taught from the very beginning.They describe their pedagogical
planning and how the course proceeds week by week presenting concrete examples and assign-
ments what students should solve. Finally, while JavaScript is currently the core web technology,
it has gained its popularity during the last 10 years only. An interesting early publication by Ward
and Smith [1998] proposes using JavaScript as the first language for multimedia students, present-
ing their course implementation and reflections.

Hardware. Another branch of early work concerns pedagogical solutions involving both pro-
gramming and hardware. McNeill and Helm [1995] present a course on electronics and digital
hardware, explaining various laboratory exercises. They discuss events in the context of an as-
signment addressing hardware interrupts and how these should be managed with software. A bit
more recent publication of Tesser et al. [2000] presented a course directed for Integrated Science
and Technology students. As an essential component, their approach includes building software
which reads real instrument data using LabWorks Ⅱ Interface device. They describe in some detail
the laboratory exercises and their teaching approach, where teamworking and multi-science exer-
cises are combined. This allows them to combine three goals, preparing students to gain cs1/cs2

16 For instance: Alphonce and Ventura [2003]; Bruce and Danyluk [2004]; Bruce et al. [2001b]; Christensen and Caspersen
[2002]; Lambert and Osborne [2000]; Lang and Saacks-Giguette [1999]; Leutenegger [2006]; Pavlidis [1996]; Roberts et al.
[2006]; Szuecs [1996]; Tuttle [2001].

MANUSCRIPT

background, develop experience and skills appropriate to software engineering teams, and increase
the number of students with good scientific problem solving skills.

Software Engineering. Finally, it is worthwhile to mention an early publication of Purtilo
and Siegel [1994]. Related to software engineering education, it reports on several iterations of
a large-scale team project course, where the goal was to implement a user-programmable event
management environment.

3.4 Research Methods
We answer to our second research question by summarizing the research methods applied in the
105 fully included publications. 23 publications presented plain quantitative results—13 with sim-
ple methods and 10 with complex methods. Correspondingly, mere qualitative results were given
in 12 publications—6 using simple and 6 complex methods. Mixed methods were used in 16 publi-
cations, as shown in Table 1 below.

Table 1. Numbers of publications using mixed methods (see § 3.4).

Qualitative Simple Qualitative Complex

Quantitative Simple 8 5
Quantitative Complex 1 2

Almost half of the publications (52) were plain descriptive—there was no clear data collection nor
analysis. Many of these included authors’ or teachers’ reflections on the presented contribution,
but we did not count this as data collection. Finally, one publication was a literature review.

3.5 Educational Contexts
Our third research question concerned the educational contexts of research. As an answer, the
following two subsections discuss educational levels and participants (§ 3.5.1), as well as course
contexts and themes (§ 3.5.2). In terms of them both, the contexts were very diverse.

3.5.1 Educational Levels and Participants

We present the educational levels using the Isced categories (see § 2.2), which present educational
contexts ranging from early-childhood education to doctoral education.

A clear majority of the publications (66 %, 69 publications) discussed event-driven programming
at bachelor’s level (Isced level 6). K–12 level education was discussed in 38 % (40) of the publica-
tions, including 15 % (16) publications in high school level (Isced 3), 12 % (13) in lower secondary
level (Isced 2), 10 % (10) in primary level (Isced 1), and one publication in preschool level (Isced 0).
Seven publications discussed education at master’s level, one at doctoral level, and one in voca-
tional education. 10 publications did not relate to any specific level of education and they were
classified as N/A. In some cases, where the level of education was not explicitly mentioned, we
deduced it from the content. For example, an online course offered freely for all that covered top-
ics similar to cs1 courses would be classified as Isced level 6. A distribution of the Isced levels is
presented in Figure 7; for individual publications, please see Table B1 in the supplemental material.

Research had been carried out in multiple different courses with a large variety of course titles.
To simplify the big picture, we categorized the courses under more generic titles. A large majority
of publications (63 %, 66 publications) focused on a single (university level) course, and only four

MANUSCRIPT

publications discussed several different courses. School level education was reported in 27 publica-
tions (26 %). However, contrasting to university level education, these were not reported as clearly
as courses. In 15 publications, the context was high school or school level in general and we list
them as K–12 programming courses. If the context was clearly limited to primary education, we
list them as K–6 programming courses (4) or pre-school context (1). In addition, a group of seven
publications focused on school children, too, but in the context of various outreach activities in-
stead of regular school education. Two publications focused on complementary education. The
course contexts for each publication are included in Table B1.

10
1

10
13

16
0
1

697
1

N/A
0
1
2
3
4
5
6
7
8

of Publications

IS
C

ED
 L

ev
el

10 20 30 40 50 60

Fig. 7. Numbers of included publications per each Isced level (see § 3.5.1). The levels are not
exclusive: In many cases, one publication is included in several levels. The N/A group
includes publications, for which we were not able to assign a clear educational level.

In addition, a few publications listed separately some additional characteristics of the target group,
such as cs minors/non-cs-majors [Burns 2005; Kunkle and Allen 2016; Sherman and Martin 2015;
Whitehead 2008], multimedia students [Ward and Smith 1998], students in a young researcher
program [de Paula et al. 2018], mooc (massive open online course) students [Tang et al. 2014],
industrial design students [Alers and Hu 2009] or complementary education in arts, design and
architecture [Sadi and Maes 2007].

3.5.2 Course Contexts and Themes

With course context we denote the name of the educational unit (e.g., cs1, cs2, or Computer Graph-
ics) that was the target of research. On the other hand, often the more relevant context was the
theme that was discussed in the publication within the course context, for instance, web program-
ming in cs2 context, mobile programming in cs1, or games in K–12 programming. We present the
course contexts first followed by themes; for individual publications, please see Table B1.

On the university level, the most common course context was introductory programming—
typically called cs1—with 32 publications, followed by 7 contexts which discussed cs1 and cs2 ed-
ucation together. Computer graphics course was discussed in seven publications, where the main
covered topics were user interaction with graphical objects and building graphical user interfaces.
Four publications concerned specifically courses in mobile programming. The rest of the course
contexts discussed various advanced programming courses after cs2 level, or some specific topics,
which included artificial intelligence, programming languages, design patterns, event-driven pro-
gramming, formal methods, game design, mechanical engineering & microprocessors, operating
systems, network security, software engineering project, and web programming.

In five publications, there was no clear course context at all. These publications presented var-
ious tools, frameworks, or pedagogical approaches that support event-driven programming and
could be implemented in many different courses. We list them with a title CS curriculum. There

MANUSCRIPT

were also two publications that discuss complementary education. Finally, two publications (a lit-
erature review and a publication discussing JavaScript style) had no course context at all.

Many themes were addressed within the target courses. The most popular themes discussed in
the publications were mobile programming, typically using App Inventor, and graphics and gui
programming using various frameworks. Several publications addressed embedded programming
and web programming, or working with multimedia or robots. Other themes included games, pro-
cessing data from instruments, wireless sensors, parallelism, augmented or virtual reality, and
design patterns. Note that not all publications had a clear theme in focus.

3.6 Pedagogical Approaches and Observations
This section is the first one of those that discuss more substantial results of this review. In it, we
answer to our fourth research question about pedagogical approaches—the first category in our
categorization of pedagogical offerings (see § 2.2.1). In 74 publications (70.5 %), some pedagogical
approach was presented. We, however, found only a few publications that focus solely on teaching
and learning event-driven programming (edp). More commonly, edp is discussed as a part of some
wider context, such as graphical user interfaces (gui), other kinds of computer graphics, mobile
applications, games, or some other specific application areas.

Hansen and Fossum [2004], however, discuss an in-depth upper-division cs course in edp. The
course gives a comprehensive treatment of event-driven systems. It captures the significance of
event-drivenness and integrates concepts from several computing fields: programming languages,
operating systems, and software engineering.

Some authors explicitly mention the challenges of learning edp. For instance, Jiang et al. [2004]
discuss the challenges of teaching the first Visual Basic course. They write: “The biggest challenge
to students is to figure out what to be placed inside the event handler of each control and the under-
standing of the relationship among different gui objects. Students with little or no programming
knowledge can experience difficulties in placing syntactically and semantically correct statements
inside event handler procedures.” The authors note that their students acknowledged that learn-
ing oop helped them to learn gui programming. Ladd [2006], whose publication focused on using
games to motivate the Net Generation students to learn programming, also noted that “the change
from having control of the game loop to an event-driven program is a real challenge.” However,
he continues that “many students want to have a ‘pretty’ program when they are done.”

Hidalgo-Céspedes et al. [2018] discuss the effect of metaphors and allegories on learning pro-
gramming, and present several examples, how abstract event-related concepts can be explained by
using real life examples to concretize the concepts. On the other hand, when teaching high school
students, Salanci [2006] contrasts the implementation of traditional programs and event-driven ap-
plications, and discusses what is easy to do in traditional programs but is not easy to transform to
event-driven applications. Guo et al. [2016] followed children in six seventh-grade science classes,
and present a case study of two children, who were asked to design a program for a hypothetical
simulation of evolution. Comparing pre- and post-interviews they, interestingly, found that both
children shifted from an event-based programming approach to a rule-based approach.

Contextualizing edp—presumably making it more relevant (see, for instance, Lukkarinen and
Sorva [2016])—has been a common theme in the investigated pedagogical approaches. From 2009
onwards, teaching edp with web development was a common approach. de Raadt [2010] and
Schaub [2009] investigated web development as a context for cs1 courses, while Stepp et al. [2009]
researched the introduction to web programming as a bridge course between cs1 and cs2. Related
to web development, Passier et al. [2014] created an approach and guidelines for students on how
to create good code using JavaScript.

MANUSCRIPT

Wang [2014] presented a different context. He presented a novel course design, which adopted “the
wireless sensor motes as a pedagogical tool to provide more effective Computer Science education
on several complex topics, including the event-driven concurrency model in our Operating System
course and the secure network communication protocol implementation in our Network Security
course.” He presented two hands-on projects based on wireless sensors, an event-driven concur-
rency programming project and a secure communication protocol implementation project, which
were specifically designed for the two courses. He notes that “in the Operating System course,
the wireless sensor event-driven programming project helps our students clearly understand the
differences between the event-driven concurrency model and the multi-threading model.”

Incorporating event-driven programming (edp) into cs1 has been a common theme in research,
as well. The publication stream based on work done by Bruce et al. focusing on edp in cs1 was
already discussed in § 3.2. However, already in 1999, Woodworth and Dann reported integrating
event-driven approach in cs1, starting from console programs and moving onto gui programming.
A little later, Christensen and Caspersen [2002] published their Presenter framework as an alter-
native approach to teaching object-oriented and edp concepts in cs1. Wicentowski and Newhall
[2005] approached teaching cs1 and edp through assignments centered around image manipu-
lation. Their publication focused on describing their assignments but they also reported a posi-
tive response from students to this approach. Alphonce and Ventura [2003] approached teaching
object-oriented cs1 using graphics utilizing the Ngp library to avoid using Java Swing, which they
considered too complex for beginners. They go on to discuss their approach and how it enhances
teaching object-oriented concepts while taking care not to distract students from the core princi-
ples. Pecinovský et al. [2006] presents an approach to teach design patterns in cs1 and gives an
example, where edp is involved with the Observer design pattern.

Goldwasser and Letscher [2009] introduced cs1graphics—a tool for teaching graphics concepts
in introductory programming using Python. They describe its use from the first day of program-
ming to more intermediate topics, such as basic object-oriented programming (oop), recursion,
and events. Later on in the curriculum, Wolfe [1999] discussed various approaches they have for
introductory graphics course for cs majors. Similarly, Pavlidis [1996] discussed their approach to
teaching graphics using the X Window System. These discussions were considered historical in
our review—so was the publication by Hitchner and Sowizral who, in 2000, discussed adapting the
curricula to match changes in graphics programming, using Java 3d to build applets. Sung and
Shirley [2004] argued that teaching graphics top–down, rather than bottom–up, works better for
adult learners. They describe their course in computer graphics with this approach, depicting also
an application architecture used as a model to guide event-processing in students’ projects.

Mobile computing has been discussed in several publications. Research concerning the use
of App Inventor was already discussed in § 3.2. Isolated from the presented publication stream,
Perdikuri [2014] presented their experiences of using App Inventor and what concepts of edp
were involved in learning.

More general work in the mobile computing context include [Stuurman et al. 2014]. They used
Android as an example and describe an anatomy of mobile apps, where edp has an obvious role.
Based on this anatomy, they present a selection of modeling techniques that can be applied to de-
sign mobile apps. On the other hand, Kumar [2018] presents how to incorporate mobile computing
into the projects of two upper-level courses: Organization of Programming Languages and Artifi-
cial Intelligence. He discusses how to carry out the transition from oop to event-driven Java and
what aspects need to be covered. The publication continues to present further transition to using
Android framework. After building the mobile programming competencies, he discusses projects
in the upper level courses and evaluates student feedback.

MANUSCRIPT

Adding games or game-related topics to courses was also investigated in multiple publications.
Gestwicki and Sun [2008] presented a case study of using games as a context for learning design
patterns, arguing that not only they are motivating to students but they also naturally include
many opportunities to use design patterns. Similarly, Dolgopolovas et al. [2018] as well as El-Nasr
and Smith [2006] presented case studies related to motivation and use of games in programming
classrooms. Dolgopolovas et al. [2018] introduced C programming through App Inventor with
projects related to creating games, while El-Nasr and Smith [2006] use game modding (modifying
existing games) as a way to teach principles of cs and event-driven programming.

Event-driven programming (edp) has been discussed in various other educational contexts, as
well. Liu [2008] wrote, how they used Robocode in teaching programming, and how edp was in-
cluded in tasks. Esteves et al. [2008], on the other hand, reported on experiences of using Second
Life in programming education, and how also edp was addressed. Chaytor and Leung [2003] pre-
sented examples how .Net technologies can be integrated in courses and covered several aspects
of edp. The publication by Goadrich [2014] demonstrated the integration of three different types
of tangibles into the classroom: Arduino microcontrollers, Android phones, and Sifteo Cubes. They
explained their laboratory assignments and lessons learned for each device. Finally, Tarkan and
Sazawal [2009] presented event-driven development with the specification language Alloy, includ-
ing a tutorial for Z-to-Alloy transition with concrete examples.

Some research projects focused on teaching non-majors cs skills that are related to edp. White-
head [2008] presented an experience report of a game design course for non-majors and reported
a high rate of student satisfaction on the course. Burns [2005] proposed new courses for liberal
arts students that would introduce the breadth of cs in one or two semesters while covering intro-
ductory programming. For teaching cs to multimedia students, Ward and Smith [1998] proposed
using JavaScript as their first language. They report positive experiences from the course and de-
scribe their approach in detail. CS skills and programming are increasingly needed in mechanical
engineering, as well. As early as in 1995,McNeill andHelm [1995] reported on a course inmicropro-
cessors targeted for mechanical engineering students, in which students implemented a capstone
project where their software had to process various hardware interrupts.

Regarding assessment, Seiter and Foreman [2013] have developed a model called Progression of
Early ComputationalThinking (pect) for primary school children.Themodel assesses event-driven
programming in the forms of, for instance, broadcasts, user interface events, and parallelization.

3.7 Tools and Frameworks
Thesecond category of our categorization of pedagogical offerings (see § 2.2.1) was pedagogical tool.
As 34 publications (32.4 %) discussed some pedagogical tools, it was the second-largest pedagogical
offering amongst the 105 fully included publications. In this section, we answer to our fifth research
question by discussing teaching and learning tool offerings related to event-driven programming
(edp), many of which are targeted for cs1 or K–12 education. We begin, however, by summarizing
the programming languages represented by the fully included publications.

Programming Languages. Out of the 105 publications we looked into, we identified 37 pro-
gramming languages17 that were central to the topic of the publication. 25 of these languages were
mentioned in individual publications only. Ten languages (27.0 %), by contrast, were used in more

17The counts related to programming languages depend on interpretations, including: What is “essential” considering the
publications? Should we count Visual Basic 6, Visual Basic .Net, and Visual Basic for Applications as different languages?
How about Scratch, Snap!, and LaPlaya, or C and C++? Should sql (the Structured Query Language) and specification
languages such as Alloy and Z be included even if they might not be considered to be programming languages? Does a
tiny bespoke language for a small chat application count? With different decisions, the results will vary.

MANUSCRIPT

than two publications—they have been summarized in Figure 8. The most popular language was
Java with 30 publications (28.6 %), followed by App Inventor and C++ with 10 publications (9.5 %)
each. Scratch took the fourth place with 8 publications (7.6 %). We note here that even though App
Inventor and Scratch are clearly more popular now than Alice, which was used in 5 papers, they
actually build much on the previous research on Alice. Alice, for example, introduced important
ideas of drag&drop editor and storytelling with interaction into programming education. For more
information on design principles of Alice, see Cooper [2010].

3010
10

8
6
6

5
5
5
5

Java
App Inventor

C++
Scratch

JavaScript
C

Visual Basic
Python

C#
Alice

of Publications

Pr
og

ra
m

m
in

g
La

ng
ua

ge

10 20 30

Fig. 8. Programming languages that were used in more than two publications.

Graphical User Interfaces / Computer Graphics. As we presented in the context of historical
publications (§ 3.3), there is a significant branch of work that addresses the challenge on building
interactive graphical user interfaces (gui) and applications; we do not repeat it here. Also, the
publication stream based on work done by Bruce et al. was discussed earlier (§ 3.2).

In cs1, Lambert andOsborne [2000] discussed a tool for cs1 to enable learning guis on the course
using Java. Also using Java, Russo [2017] introduced DoodlePad aimed at cs1 to enable creation of
graphics-related event-driven programming (edp) assignments. Murtagh [2007] developed Squint
library for Java, also for teaching edp as well as concepts related to network applications.

Similar solutions have been later developed for Python, for instance, Goldwasser and Letscher
[2009] present cs1graphics, “a new Python drawing package designed with pedagogy in mind. The
intermediate and advanced lessons enabled by our graphics package involve flow of control, con-
tainer classes, object-oriented principles, inheritance, recursion, and event-driven programming.”
The publication mainly focuses on teaching various Python features, but it also presents some
example codes for teaching concepts of edp.

A more advanced approach is Views [Bishop and Horspool 2004] tool, which “features an xml-
based gui description notation coupled with an engine that shields the programmer from much of
the intricate complexity associated with events, listeners and handlers.” The publication includes
several examples how to use the framework in coding, including event handling and callbacks.
Robotics. Another group of tools, aimed at K–12 learners, were related to robots and teaching

cs skills both in general and in event-driven programming. Magnenat et al. [2015] introduced
Thymio, a robotics programming platform for cs education that also included augmented reality.
Patten et al. [2000] introduced tangible interface for creating event-driven programs for controlling
robots. For non-major university education, Alers and Hu [2009] presented AdMoVeo, a platform
where the focus is on teaching programming concepts for designers.

MANUSCRIPT

3.8 Learning Outcomes
Here we address our sixth research question concerning empirical research on teaching event-
driven programming. These results belong into the third category of our categorization of peda-
gogical offerings (see § 2.2.1)—learning outcomes. Unfortunately, the publications that we acknowl-
edged to discuss learning outcomes and offer results about teaching or learning event-driven pro-
gramming (edp) formed only a subset of the 105 fully included publications (27, 25.7 %; see Table B1
in the supplemental material). Furthermore, there were virtually no experiment-based results that
would indicate that one pedagogical method or tool is better than another and thus advice educa-
tors clearly and based on evidence.

Some authors describe characteristics and advantages/disadvantages of edp and might list sta-
tistics about, for instance, the numbers of event handlers present in some sample of students’
projects. Some authors present their personal opinions for or against edp itself or some tool re-
lated to it. However, most of the publications treat learning of edp as an automatic consequence
of using some specific learning environment instead of experimentally researching into the actual
learning outcomes. The publications that we briefly introduce below discuss teaching or learning
edp more than merely (1) claiming in passing that some method or tool caused students to learn
and (2) giving some counts as statistics. The results are scattered tiny fragments, but the theme of
visual block-based languages (vbbl) connects some of them together. Some of these publications
we already introduced in § 3.2 and § 3.6.

Scratch and LaPlaya. Franklin et al. [2016] found out that some students initialized their
projects in wrong types of events. Similarly, Harlow et al. [2018] report that some students “used
unusual starting events but did not convey this to a user.” Fields et al. [2016] analyze the usage
of three event-driven concepts in projects of one student on the basis of both quantitative and
qualitative data. Fields et al. [2017], in turn, analyze the numbers of block types used and identify
a group of people who use edp, in the form of broadcasts, more than others. Finally, Weintrop
et al. [2018] remind us that teachers of students who might have been studying Scratch-like vbbls
earlier should acknowledge the inherent parallelism present in those languages and advice their
students in sequential programming strategies accordingly. This is necessary, because with text-
based languages in later education, parallelism is not necessarily introduced as an introductory
topic, and some programming strategies that students learn with vbbls, such as binding multiple
actions to a single event, may not be applicable in non-parallel contexts.

App Inventor. Soares and Martin [2015] describe a survey of students who had participated in
a course based on App Inventor. According to the survey, about 82.5 % of the students agreed or
strongly agreed on a five-step Likert scale that developing mobile applications with App Inventor
had “helped them to learn about” edp. Naturally, this tells nothing about breadth or quality of
the learning, and the students might not be knowledgeable enough to assess their own learning
in the first place, yet. Dolgopolovas et al. [2018] discuss a method of exploiting (event-driven)
App Inventor for motivating students to learn structured programming. They present a case study
concerning one student, whose report was favourable for App Inventor.

Other Programming Languages.We described the finding of Guo et al. [2016] already in § 3.6.
Liu [2008] discusses using Robocode programming game as a Java programming assignment and
gives excerpts of students’ reports, one of which demonstrates some understanding of edp. Kunkle
and Allen [2016] (see § 3.6) describe how the performance of students on a course using Visual
Basic not only was poorer than that of students on Java and C++ courses, but actually declined
between pre- and post-tests. As an explanation for the decline, they suggest that “tenuous grasp
of fundamental concepts in combination with the emphasis on designing interfaces and handling
events might have caused the students to forget what they had learned in the previous course.”

MANUSCRIPT

Finally, a historical study of Sheetz et al. [1997] found that in students’ opinion, event-driven
programming (edp) “strongly affect the perceived difficulty of using Smalltalk, which in turn affects
the difficulty of understanding object-oriented concepts.”

Miscellaneous Publications. Two other studies are worth mentioning. First, Garner et al.
[2005] categorized students’ problems during laboratory sessions of an introductory programming
course and had both event-driven programming and user interface programming as two separate
problem categories. However, these two topics were introduced only in the very end of the course,
so unfortunately the collected problem counts are not very representative compared to the other
problem categories. Second, a study by Hidalgo-Céspedes et al. [2018] on the effects of teaching
concepts related to event-driven programming using metaphors and allegories did not find signif-
icant differences between those two teaching approaches.

3.9 Orderings of Learning Content
In addition to covering varying aspects of teaching event-driven programming (edp), a significant
share of the publications in this study discuss pedagogical approaches regarding the order of the
content to be taught on the introductory programming course. The approaches most frequently
referred were objects-first and objects-early (e.g., Krishnamurthi and Fisler [2019]).

From the viewpoint of this review, the most interesting pedagogical approach is naturally the
events-first approach; we already covered a significant thread of development related to it and its
folloups [Bruce 2004; Bruce et al. 2001a,b, 2005, 2010] in the publication streams.

In addition to the above line of work, many other publications participate in the discussion.
The workshop report published by Angster et al. [1999] discusses both teaching object-oriented
programming (oop; including objects-first) as well as more general aspects of teaching. Lambert
and Osborne [2000] propose graphical user interfaces (guis) as being useful for demonstrating
objects in an early phase of an introductory programming course, and provide their BreezyGUI
library as the scaffolding tool. Cooper et al. [2003] discuss both the challenges of the objects-first
approach and the development environment Alice as a means to overcome them.

Pecinovský et al. [2006] exemplifymodifying objects-first teaching into design-patterns-first, and
Utting [2006] compares the Standard and Micro Editions of Java 2 as teaching tools and suggests
the latter for objects-first teaching. Mullins et al. [2009] discuss using Alice 2.0 as a programming
environment in objects-first fashion, whereas Schaub [2009] highlights the complication of oop
not being suitable for small programs. Kunkle and Allen [2016] give examples of differing ap-
proaches (objects-early with BlueJ , objects-early with Alice, and imperative-first using Python),
and report an experimental study on how the teaching approach and programming language af-
fect learning. Finally, Dolgopolovas et al. [2018] consider with reservation the suitability of the
objects-first approach for novices with the lowest programming skills.

In addition, two other approaches were mentioned. Burns [2005] present a breath-first course
aimed for students not majoring in computer science. Guo et al. [2016] discuss how students’ think-
ing changes to be based on rules instead of events after they had used a code-first programming
environment called Frog Pond (see § 3.6).

4 LIMITATIONS
The aim of this study is to systematically map out, categorize, and synthesize an overview of what
is published in scientific journals and conferences about teaching and learning event-driven pro-
gramming (edp). Despite our efforts, we recognize that our study has a number of limitations. First,
there is no general consensus on the terminology used in the context of edp. We used several dif-
ferent search terms to mitigate this problem. Second, edp is relevant for many areas, not only in

MANUSCRIPT

software technology but also in embedded systems and various hardware-oriented applications.
The scope of full-text search results was too large to be manageable as a whole and thus we had to
limit the search to titles, abstracts, and keywords Some relevant work may have been missed. Still,
it seems reasonable to assume that publications focusing on or addressing teaching and learning
event-driven programming (edp) mainly appear in the context of programming education, and
advanced application areas are likely to be less relevant for our search. Third, we accepted publica-
tions written in English only—this may exclude some relevant work as well. However, we consider
the risk here to be small.

Rapid Screening of the search resultswas carried out by one person only.Most inclusion/exclusion
criteria can be clearly defined, causing little threat to the results. The only criterion where the risk
onmisjudgement is larger, concerns decisions on whether documents are concerned with teaching
or learning edp. Many publications focus on advancing software technology, for instance, present-
ing novel features in programming languages. These may have educational aspects as well, which
may have been missed by one person alone. We deem this risk low, however, because abstracts
generally report in some way, if the publication covers also some educational aspect.
Detailed Screening was carried out by three people using a majority vote: If two reviewers dis-
agreed, a third researched considered the case and the final result was negotiated with consensus.

An obvious limitation is that we had to decide on a date limit for the search, after which we
did not include more publications on the data pool. Thus our search pool presents the work that
was available in the search services roughly till the middle of September 2018. A similar limitation
concerns citation counts, as they increase over time.

5 DISCUSSION AND CONCLUSIONS
In this article, we have presented amapping review concerning teaching and learning event-driven
programming (edp). To the review, we included 104 publications (12.1 %) from 858 search results,
as well as one additional article that was suggested to us. These 105 publications concern a wide
range of educational contexts, research methods, and pedagogical offerings. Most of the publica-
tions were related to some kinds of pedagogical approaches. Pedagogical tools and outcomes were
discussed in a bit over one quarter of the publications, each.

It is clear that the majority of the research in this area has focused on university-level education.
In the recent years, however, K–12 level education has been increasingly addressed; this is related
to the increasing use of visual block-based programming languages. There has been some discus-
sion and debate on the phase of the curriculum, in which edp could or should be introduced and
this discussed in intertwined with the discussion on how object-oriented programming should be
introduced. Obviously, this depends on whether educational context is based on using traditional
text-based languages, such as Java, Python, C++, and C#, or visual block-based programming lan-
guages, such as Scratch and App Inventor.

Noticeably, despite a number of personal reflections on the challenge of learning edp, there was
no consensus that learning the topic per se is difficult. More often the challenges were related to
the actual tools available. Thus, a substantial share of research in university level education has
focused on developing tools and frameworks that enable easier building of graphical user inter-
faces and interaction, thus hiding the inherent complexity of available (at the time) professional
libraries and frameworks. This was discussed already in § 3.3. One important tool, not reported
earlier in this work, was the acm.graphics package, initially published in Acm Java Task Force Final
Report [Roberts et al. 2006]. This library obviously has had a wide impact on programming edu-
cation, as it was particularly designed to simplify creating graphics applications for programming
education in Java [e.g., Mertz et al. 2008]. It has been used as a model for graphics libraries for

MANUSCRIPT

other programming languages. For example, Roberts and Schwarz [2013] presented a correspond-
ing graphics library for C/C++, and Goldwasser and Letscher [2009] presented the cs1graphics
library for Python. On the other hand, for some educational settings, it has been considered too
complex, and simpler solutions have been proposed, such the Terminal Window Graphics for C,
proposed by Hovemeyer and Babcock [2009].

Much work of software tools and libraries has gotten dated due to some technologies, such as
Java Applets, becoming obsolete. On the other hand, surprisingly little work has been published
on learning event-driven programming (edp) in web programming context with modern tools and
languages, such as JavaScript.

Edp has became important in many software application areas. However, our major observation
was that there is little empirical research that focuses on how students learn edp and related con-
cepts. Even these results are tiny and scattered fragments of information. Usually, edp is discussed
either in passing or on the side of some primary subject, such as a pedagogical tool or approach.
Many publications present authors’ personal reflections, anecdotal evidence of how students ex-
perienced some tool or educational setting, or treat learning edp as an inherent property of being
subjected to some tool or teaching approach. While such results can be valuable in communicat-
ing ideas, their generalizability is questionable at the best. Practical advice based on experimental
research seems to be rare or missing altogether.

More generally, from the viewpoints of many subareas of Computing Education Research, edp-
related results did not exist among the publications we analyzed. We did not find any work related
to students’ misconceptions of edp concepts, neither any systematic qualitative studies of their
conceptions. Some qualitative studies focused on analyzing students’ code and how certain struc-
tures, like initialization, had been used, while comprehensive analysis of students’ thinking—when
building event-driven programs—was missing. We therefore would like to see future research to
evaluate teaching and learning edp experimentally and more comprehensively. We propose some
research ideas below.

•Concepts and Skills. What exact concepts and skills of edp have really been learned, if any?
How do students identify and understand central concepts or actions like events, event handlers or
triggering events? This could imply, for example, interviewing students, allowing them to explain
their own or an example program, and carrying out a phenomenographical or grounded theory
analysis of the interview data.

•Misconceptions.What kind of misconceptions students may have on the basic concepts in edp?
Could we develop instruments to capture their understanding of edp concepts, such that would
augment the set of available instruments for investigating students’ programming knowledge (see
Margulieux et al. [2019]).

•Notional Machines. What would be an appropriate notional machine related to teaching edp?
How does it augment—or differ from—notional machines used for object-oriented programming?

• Software Development. How do students design, program, and debug their programs including
edp? What kind of practices and strategies they have? What difficulties, if any, do they encounter
when designing and implementing programs with edp? Here we could apply observation studies
where they code exercise programs, or analyze their reflections on their programming projects
possibly incorporated with interviews. This analyses could be used to build recommendations for
teachers, how edp should be taught in classes and presented in learning resources.

•Methods and Tools. How teaching methods and tools compare to each other in the results that
can be achieved with them? How much a new teaching method or tool—or an alteration of an
existing one—actually improves learning in different settings? Various research settings could be
used here, to evaluate students’ learning results, in terms of conceptual understanding or imple-
mentation of edp. Are these result related to their other progress in learning programming?

MANUSCRIPT

• Programming Languages. How does teaching and learning event-driven programming (edp)
happen with different programming languages? What differences there are when learning edp
with Java, Python, C++, or some other languages? Obviously, block-based languages have a differ-
ent learning process. Can students transfer what they have learned, for instance, in App Inventor
or Scratch into implementing edp using text-based languages?
• Functional Languages. How does learning edp differ, if students use a functional language for

building interactive applications?
•Visualization. How could software visualization support learning edp-related concepts? What

concepts should be visualized and how? What is the impact of using the visualization on students’
understanding of edp?

REFERENCES
Sjriek Alers and Jun Hu. 2009. AdMoVeo: A Robotic Platform for Teaching Creative Programming to Designers. In

Learning by Playing. Game-based Education System Design and Development, Edutainment 2009 (LNCS, vol. 5670),
Maiga Chang, Rita Kuo, Kinshuk, Gwo-Dong Chen, and Michitaka Hirose (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, DE, 410–421. https://doi.org/10.1007/978-3-642-03364-3_49

Carl Alphonce and Phil Ventura. 2003. Using Graphics to Support the Teaching of Fundamental Object-Oriented
Principles in CS1. In Proc. 18th OOPSLA (Anaheim, CA, USA). ACM, New York, NY, USA, 156–161.
https://doi.org/10.1145/949344.949391

Erzsébet Angster, Joseph Bergin, and László Böszörményi. 1999. Introducing OO Design and Programming with Special
Emphasis on Concrete Examples. In Object-Oriented Technology ECOOP’99 Workshop Reader (LNCS, vol. 1743), Ana
Moreira (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, DE, 338–361. https://doi.org/10.1007/11915355_17

David M. Arnow. 1995. XDP: A Simple Library for Teaching a Distributed Programming Module. In Proc. 26th SIGCSE
(Nashville, TN, USA). ACM, New York, NY, USA, 82–86. https://doi.org/10.1145/199688.199732

Owen Astrachan, Kim B. Bruce, Elliot Koffman, Michael Kölling, and Stuart Reges. 2005. Resolved: Objects Early Has
Failed. In Proc. 36th SIGCSE (St. Louis, MO, USA). ACM, New York, NY, USA, 451–452.
https://doi.org/10.1145/1047344.1047359

Richard Austing, Robert D. Campbell, C. Fay Cover, Elizabeth K. Hawthorne, and Karl J. Klee. 2002. Guidelines for
Associate-Degree Programs in Computer Science. Technical Report. ACM, New York, NY, USA. Retrieved Oct. 1, 2020
from https://dl.acm.org/doi/book/10.1145/2593245

Martin L. Barrett. 1993. A Hypertext Module for Teaching User Interface Design. In Proc. 24th SIGCSE (Indianapolis, IN,
USA). ACM, New York, NY, USA, 107–111. https://doi.org/10.1145/169070.169359

Joseph Bergin, Amruth Kumar, Viera K. Proulx, Myles McNally, Alyce Faulstich Brady, David Mutchler, Stephen Hartley,
Richard Rasala, Charles Kelemen, Rocky Ross, and Frank Klassner. 1999. Resources for Next Generation Introductory
CS Courses: Report of the ITiCSE’99 Working Group on Resources for the Next Generation CS 1 Course. In
ITiCSE-WGR ’99 (Cracow, PL). ACM, New York, NY, USA, 101–105. https://doi.org/10.1145/349316.571916

Dianne P. Bills and John A. Biles. 2005. The Role of Programming in IT. In Proc. 6th SIGITE (Newark, NJ, USA). ACM, New
York, NY, USA, 43–49. https://doi.org/10.1145/1095714.1095727

Judith Bishop and Nigel Horspool. 2004. Developing Principles of GUI Programming Using Views. In Proc. 35th SIGCSE
(Norfolk, VA, USA). ACM, New York, NY, USA, 373–377. https://doi.org/10.1145/971300.971429

Corey Brady, David Weintrop, Ken Gracey, Gabby Anton, and Uri Wilensky. 2015. The CCL-Parallax Programmable
Badge: Learning with Low-Cost, Communicative Wearable Computers. In Proc. 16th SIGITE (Chicago, IL, USA). ACM,
New York, NY, USA, 139–144. https://doi.org/10.1145/2808006.2808039

Kim B. Bruce. 2004. Controversy on How to Teach CS 1: A Discussion on the SIGCSE-Members Mailing List. In Proc.
ITiCSE-WGR (Leeds, UK). ACM, New York, NY, USA, 29–34. https://doi.org/10.1145/1044550.1041652

Kim B. Bruce and Andrea P. Danyluk. 2004. Event-driven Programming Facilitates Learning Standard Programming
Concepts. In Companion 19th OOPSLA (Vancouver, BC, CA). ACM, New York, NY, USA, 96–100.
https://doi.org/10.1145/1028664.1028704

Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2001a. Event-Driven Programming Is Simple Enough for CS1.
In Proc. 6th ITiCSE (Canterbury, UK). ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/377435.377440

Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2001b. A Library to Support a Graphics-Based Object-First
Approach to CS 1. In Proc. 32nd SIGCSE (Charlotte, NC, USA). ACM, New York, NY, USA, 6–10.
https://doi.org/10.1145/364447.364527

Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2005. Why Structural Recursion Should Be Taught before
Arrays in CS 1. In Proc. 36th SIGCSE (St. Louis, MO, USA). ACM, New York, NY, USA, 246–250.

MANUSCRIPT

https://doi.org/10.1007/978-3-642-03364-3_49
https://doi.org/10.1145/949344.949391
https://doi.org/10.1007/11915355_17
https://doi.org/10.1145/199688.199732
https://doi.org/10.1145/1047344.1047359
https://dl.acm.org/doi/book/10.1145/2593245
https://doi.org/10.1145/169070.169359
https://doi.org/10.1145/349316.571916
https://doi.org/10.1145/1095714.1095727
https://doi.org/10.1145/971300.971429
https://doi.org/10.1145/2808006.2808039
https://doi.org/10.1145/1044550.1041652
https://doi.org/10.1145/1028664.1028704
https://doi.org/10.1145/377435.377440
https://doi.org/10.1145/364447.364527

https://doi.org/10.1145/1047344.1047430
Kim B. Bruce, Andrea P. Danyluk, and Thomas P. Murtagh. 2010. Introducing Concurrency in CS 1. In Proc. 41st SIGCSE

(Milwaukee, WI, USA). ACM, New York, NY, USA, 224–228. https://doi.org/10.1145/1734263.1734341
Barry Burd, João Paulo Barros, Chris Johnson, Stan Kurkovsky, Arnold Rosenbloom, and Nikolai Tillman. 2012.

Educating for Mobile Computing: Addressing the New Challenges. In Proc. ITiCSE-WGR (Haifa, IL). ACM, New York,
NY, USA, 51–63. https://doi.org/10.1145/2426636.2426641

Brendan Burns. 2005. A New Approach to Computer Science in the Liberal Arts. J. Comput. Sci. Coll. 20, 5 (May 2005),
154–162. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/1059888.1059943

Peter Chalk. 1999. Java in the Computing Curricula. ACM SIGPLAN Notices 34, 12 (Dec. 1999), 9–11.
https://doi.org/10.1145/344283.344284

Louise Chaytor and Soleda Leung. 2003. How to Creatively Communicate Microsoft.NET Technologies in the IT
Curriculum. In Proc. 4th CITC (CITC4) (Lafayette, IN, USA). ACM, New York, NY, USA, 168–173.
https://doi.org/10.1145/947121.947160

Henrik Bærbak Christensen and Michael E. Caspersen. 2002. Frameworks in CS1 – A Different Way of Introducing
Event-Driven Programming. In Proc. 7th ITiCSE (Aarhus, DK). ACM, New York, NY, USA, 75–79.
https://doi.org/10.1145/544414.544438

Robert Coe, Michael Waring, Larry V. Hedges, and James Arthur (Eds.). 2017. Research Methods and Methodologies in
Education (2nd ed.). SAGE Publications, London, UK.

Stephen Cooper. 2010. The Design of Alice. ACM Trans. Comput. Educ. 10, 4, Article 15 (Nov. 2010), 16 pages.
https://doi.org/10.1145/1868358.1868362

Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: A 3-D Tool for Introductory Programming Concepts.
J. Comput. Sci. Coll. 15, 5 (2000), 108–117. Retrieved Oct. 1, 2020 from https://dl.acm.org/doi/10.5555/364133.364161

Stephen Cooper, Wanda Dann, and Randy Pausch. 2003. Teaching Objects-First in Introductory Computer Science. In
Proc. 34th SIGCSE (Reno, NV, USA). ACM, New York, NY, USA, 191–195. https://doi.org/10.1145/611892.611966

Matthew H. Dabney, Brian C. Dean, and Tom Rogers. 2013. No Sensor Left Behind: Enriching Computing Education with
Mobile Devices. In Proc. 44th SIGCSE (Denver, CO, USA). ACM, New York, NY, USA, 627–632.
https://doi.org/10.1145/2445196.2445378

James Devine, Joe Finney, Peli de Halleux, Michał Moskal, Thomas Ball, and Steve Hodges. 2019. MakeCode and CODAL:
Intuitive and Efficient Embedded Systems Programming for Education. J. Syst. Archit. 98 (2019), 468–483.
https://doi.org/10.1016/j.sysarc.2019.05.005

Jill P. Dimond, Sarita Yardi, and Mark Guzdial. 2009. Mediating Programming through Chat for the OLPC. In CHI EA
(Boston, MA, USA). ACM, New York, NY, USA, 4465–4470. https://doi.org/10.1145/1520340.1520684

Adair Dingle and Carol Zander. 2000. Assessing the Ripple Effect of CS1 Language Choice. J. Comput. Sci. Coll. 16, 2 (Oct.
2000), 85–93. Retrieved Oct. 1, 2020 from https://dl.acm.org/doi/abs/10.5555/369279.369331

Vladimiras Dolgopolovas, Tatjana Jevsikova, and Valentina Dagienė. 2018. From Android games to coding in C—An
approach to motivate novice engineering students to learn programming: A case study. Comput. Appl. Eng. Educ. 26, 1
(2018), 75–90. https://doi.org/10.1002/cae.21862

Magy Seif El-Nasr and Brian K. Smith. 2006. Learning through Game Modding. Comput. Entertain. 4, 1, Article 7 (Jan.
2006), 20 pages. https://doi.org/10.1145/1111293.1111301

Micaela Esteves, Ricardo Antunes, Benjamim Fonseca, Leonel Morgado, and Paulo Martins. 2008. Using Second Life in
Programming’s Communities of Practice. In Groupware: Design, Implementation, and Use, CRIWG 2008 (LNCS,
vol. 5411), Robert O. Briggs, Pedro Antunes, Gert-Jan de Vreede, and Aaron S. Read (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, DE, 99–106. https://doi.org/10.1007/978-3-540-92831-7_9

Matthew E. Falagas, Eleni I. Pitsouni, George A. Malietzis, and Georgios Pappas. 2007. Comparison of PubMed, Scopus,
Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 22, 2 (Sept. 2007), 338–342.
https://doi.org/10.1096/fj.07-9492LSF

Annette Feng, Mark Gardner, and Wu-Chun Feng. 2017. Parallel Programming with Pictures is a Snap! J. Parallel and
Distrib. Comput. 105 (2017), 150–162. https://doi.org/10.1016/j.jpdc.2017.01.018

Deborah A. Fields, Michael Giang, and Yasmin B. Kafai. 2014. Programming in the Wild: Trends in Youth Computational
Participation in the Online Scratch Community. In Proc. 9th WiPSCE (Berlin, DE). ACM, New York, NY, USA, 2–11.
https://doi.org/10.1145/2670757.2670768

Deborah A. Fields, Yasmin B. Kafai, and Michael T. Giang. 2017. Youth Computational Participation in the Wild:
Understanding Experience and Equity in Participating and Programming in the Online Scratch Community. ACM
Trans. Comput. Educ. 17, 3, Article 15 (Aug. 2017), 22 pages. https://doi.org/10.1145/3123815

Deborah A. Fields, Lisa Quirke, Janell Amely, and Jason Maughan. 2016. Combining Big Data and Thick Data Analyses
for Understanding Youth Learning Trajectories in a Summer Coding Camp. In Proc. 47th SIGCSE (Memphis, TN, USA).
ACM, New York, NY, USA, 150–155. https://doi.org/10.1145/2839509.2844631

MANUSCRIPT

https://doi.org/10.1145/1047344.1047430
https://doi.org/10.1145/1734263.1734341
https://doi.org/10.1145/2426636.2426641
http://dl.acm.org/doi/10.5555/1059888.1059943
https://doi.org/10.1145/344283.344284
https://doi.org/10.1145/947121.947160
https://doi.org/10.1145/544414.544438
https://doi.org/10.1145/1868358.1868362
https://dl.acm.org/doi/10.5555/364133.364161
https://doi.org/10.1145/611892.611966
https://doi.org/10.1145/2445196.2445378
https://doi.org/10.1016/j.sysarc.2019.05.005
https://doi.org/10.1145/1520340.1520684
https://dl.acm.org/doi/abs/10.5555/369279.369331
https://doi.org/10.1002/cae.21862
https://doi.org/10.1145/1111293.1111301
https://doi.org/10.1007/978-3-540-92831-7_9
https://doi.org/10.1096/fj.07-9492LSF
https://doi.org/10.1016/j.jpdc.2017.01.018
https://doi.org/10.1145/2670757.2670768
https://doi.org/10.1145/3123815
https://doi.org/10.1145/2839509.2844631

Deborah A. Fields, Veena Vasudevan, and Yasmin B. Kafai. 2015. The Programmers’ Collective: Fostering Participatory
Culture by Making Music Videos in a High School Scratch Coding Workshop. Interact. Learn. Environ. 23, 5 (2015),
613–633. https://doi.org/10.1080/10494820.2015.1065892

Alice E. Fischer. 2011. That’s Neat – How Do I Do It?: Demonstration. J. Comput. Sci. Coll. 26, 6 (June 2011), 61–63.
Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/1968521.1968537

Diana M. Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte Hill, Michelle Len, Greg Dreschler, Gerardo Aldana,
Paulo Almeida-Tanaka, Brynn Kiefer, Chelsea Laird, Felicia Lopez, Christine Pham, Jessica Suarez, and Robert Waite.
2013. Assessment of Computer Science Learning in a Scratch-based Outreach Program. In Proc. 44th SIGCSE (Denver,
CO, USA). ACM, New York, NY, USA, 371–376. https://doi.org/10.1145/2445196.2445304

Diana M. Franklin, Charlotte Hill, Hilary A. Dwyer, Alexandria K. Hansen, Ashley O. Iveland, and Danielle B. Harlow.
2016. Initialization in Scratch: Seeking Knowledge Transfer. In Proc. 47th SIGCSE (Memphis, TN, USA). ACM, New
York, NY, USA, 217–222. https://doi.org/10.1145/2839509.2844569

Ilenia Fronza, Nabil El Ioini, and Luis Corral. 2016. Teaching Software Design Engineering Across the K–12 Curriculum:
Using Visual Thinking and Computational Thinking. In Proc. 17th SIGITE (Boston, MA, USA). ACM, New York, NY,
USA, 97–101. https://doi.org/10.1145/2978192.2978220

Sandy Garner, Patricia Haden, and Anthony V. Robins. 2005. My Program Is Correct But It Doesn’t Run: A Preliminary
Investigation of Novice Programmers’ Problems. In Proc. 7th ACE (Vol. 42) (Newcastle, NSW, AU). ACS, Darlinghurst,
NSW, AU, 173–180. Retrieved Oct. 1, 2020 from https://dl.acm.org/doi/10.5555/1082424.1082446

Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques Noyé. 2011. EScala: Modular Event-Driven
Object Interactions in Scala. In Proc. 10th AOSD (Porto de Galinhas, BR). ACM, New York, NY, USA, 227–240.
https://doi.org/10.1145/1960275.1960303

Paul Gestwicki and Fu-Shing Sun. 2008. Teaching Design Patterns through Computer Game Development. J. Educ. Resour.
Comput. 8, 1, Article 2 (March 2008), 22 pages. https://doi.org/10.1145/1348713.1348715

Mark Goadrich. 2014. Incorporating Tangible Computing Devices into CS1. J. Comput. Sci. Coll. 29, 5 (May 2014), 23–31.
Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/2600623.2600627

Michael H. Goldwasser and David Letscher. 2009. A Graphics Package for the First Day and Beyond. In Proc. 40th SIGCSE
(Chattanooga, TN, USA). ACM, New York, NY, USA, 206–210. https://doi.org/10.1145/1508865.1508945

Michal Gordon, Eileen Rivera, Edith Ackermann, and Cynthia Breazeal. 2015. Designing a Relational Social Robot Toolkit
for Preschool Children to Explore Computational Concepts. In Proc. 14th IDC (Boston, MA, USA). ACM, New York, NY,
USA, 355–358. https://doi.org/10.1145/2771839.2771915

Maria J. Grant and Andrew Booth. 2009. A typology of reviews: an analysis of 14 review types and associated
methodologies. Health Info Libr J 26, 2 (June 2009), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

Chris Gregg, Luther Tychonievich, James Cohoon, and Kim Hazelwood. 2012. EcoSim: A Language and Experience
Teaching Parallel Programming in Elementary School. In Proc. 43rd SIGCSE (Raleigh, NC, USA). ACM, New York, NY,
USA, 51–56. https://doi.org/10.1145/2157136.2157155

Scott Grissom. 2000. A Pedagogical Framework for Introducing Java I/O in CS1. SIGCSE Bull. 32, 4 (Dec. 2000), 57–59.
https://doi.org/10.1145/369295.369326

Shuchi Grover and Roy Pea. 2013. Using a Discourse-Intensive Pedagogy and Android’s App Inventor for Introducing
Computational Concepts to Middle School Students. In Proc. 44th SIGCSE (Denver, CO, USA). ACM, New York, NY,
USA, 723–728. https://doi.org/10.1145/2445196.2445404

Yu Guo, Aditi Wagh, Corey Brady, Sharona T. Levy, Michael S. Horn, and Uri Wilensky. 2016. Frogs to Think with:
Improving Students’ Computational Thinking and Understanding of Evolution in a Code-First Learning Environment.
In Proc. 15th IDC (Manchester, UK). ACM, New York, NY, USA, 246–254. https://doi.org/10.1145/2930674.2930724

Ken Halland and Katherine Malan. 2003. Reflections by Teachers Learning to Program. In SAICSIT 2003 (Johannesburg,
ZA). South African Institute for Computer Scientists and Information Technologists, ZA, 165–172. Retrieved Oct. 1,
2020 from https://dl.acm.org/doi/abs/10.5555/954014.954032

Stuart Hansen and Timothy Fossum. 2004. Events Not Equal to GUIs. In Proc. 35th SIGCSE (Norfolk, VA, USA). ACM, New
York, NY, USA, 378–381. https://doi.org/10.1145/971300.971430

Danielle B. Harlow, Hilary A. Dwyer, Alexandria K. Hansen, Ashley O. Iveland, and Diana M. Franklin. 2018. Ecological
Design-Based Research for Computer Science Education: Affordances and Effectivities for Elementary School
Students. Cogn. Instr. 36, 3 (2018), 224–246. https://doi.org/10.1080/07370008.2018.1475390

Jeisson Hidalgo-Céspedes, Gabriela Marín-Raventós, Vladimir Lara-Villagrán, and Luis Villalobos-Fernández. 2018.
Effects of oral metaphors and allegories on programming problem solving. Comput. Appl. Eng. Educ. 26, 4 (2018),
852–871. https://doi.org/10.1002/cae.21927

Lewis E. Hitchner and Henry A. Sowizral. 2000. Adapting computer graphics curricula to changes in graphics. Comput.
Graph. 24, 2 (2000), 283–288. https://doi.org/10.1016/S0097-8493(99)00162-4

MANUSCRIPT

https://doi.org/10.1080/10494820.2015.1065892
http://dl.acm.org/doi/10.5555/1968521.1968537
https://doi.org/10.1145/2445196.2445304
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1145/2978192.2978220
https://dl.acm.org/doi/10.5555/1082424.1082446
https://doi.org/10.1145/1960275.1960303
https://doi.org/10.1145/1348713.1348715
http://dl.acm.org/doi/10.5555/2600623.2600627
https://doi.org/10.1145/1508865.1508945
https://doi.org/10.1145/2771839.2771915
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://doi.org/10.1145/2157136.2157155
https://doi.org/10.1145/369295.369326
https://doi.org/10.1145/2445196.2445404
https://doi.org/10.1145/2930674.2930724
https://dl.acm.org/doi/abs/10.5555/954014.954032
https://doi.org/10.1145/971300.971430
https://doi.org/10.1080/07370008.2018.1475390
https://doi.org/10.1002/cae.21927
https://doi.org/10.1016/S0097-8493(99)00162-4

Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas Villar, Scarlet Schwiderski-Grosche, Kerry Hammil, and
Steven Johnston. 2013. .NET Gadgeteer: A New Platform for K–12 Computer Science Education. In Proc. 44th SIGCSE
(Denver, CO, USA). ACM, New York, NY, USA, 391–396. https://doi.org/10.1145/2445196.2445315

David Hovemeyer and David Babcock. 2009. Using Terminal Window Graphics in CS1. J. Comput. Sci. Coll. 24, 3 (Jan.
2009), 151–158. Retrieved Oct. 1, 2020 from https://dl.acm.org/doi/10.5555/1409873.1409902

Keyuan Jiang, John Maniotes, and Reza Kamali. 2004. A Different Approach of Teaching Introductory Visual Basic
Course. In Proc. 5th CITC (CITC5) (Salt Lake City, UT, USA). ACM, New York, NY, USA, 219–223.
https://doi.org/10.1145/1029533.1029586

Ricardo Jiménez-Peris, Sami Khuri, and Marta Patiño-Martínez. 1999. Adding Breadth to CS1 and CS2 Courses through
Visual and Interactive Programming Projects. In Proc. 30th SIGCSE (New Orleans, LA, USA). ACM, New York, NY, USA,
252–256. https://doi.org/10.1145/299649.299774

Joint Task Group on Computer Engineering Curricula, ACM, and IEEE-CS. 2016. Computer Engineering Curricula 2016:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering. ACM, New York, NY, USA.
Retrieved Oct. 1, 2020 from https://www.acm.org/education/curricula-recommendations

Annie Kelly, Lila Finch, Monica Bolles, and R. Benjamin Shapiro. 2018. BlockyTalky: New programmable tools to enable
students’ learning networks. Int. J. Child Comput. Interact. 18 (2018), 8–18. https://doi.org/10.1016/j.ijcci.2018.03.004

Soojin Kim and Franklyn Turbak. 2015. Adapting higher-order list operators for blocks programming. In Proc. VL/HCC
(IEEE Cat. No. CFP 15060-ART) (Atlanta, GA, USA). IEEE, Piscataway, NJ, USA, 213–217.
https://doi.org/10.1109/VLHCC.2015.7357219

Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2016. Evidence-Based Software Engineering and Systematic
Reviews. CRC Press (Taylor & Francis Group), Boca Raton, FL, USA.

Shriram Krishnamurthi and Kathi Fisler. 2019. Programming Paradigms and Beyond. In The Cambridge Handbook of
Computing Education Research, Sally A. Fincher and Anthony V. Robins (Eds.). Cambridge University Press,
Cambridge, UK, Chapter 13, 377–413. https://doi.org/10.1017/9781108654555.014

Amruth N. Kumar. 2018. Collateral Learning of Mobile Computing: An Experience Report. In Proc. 23rd ITiCSE (Larnaca,
CY). ACM, New York, NY, USA, 27–32. https://doi.org/10.1145/3197091.3197106

Wanda M. Kunkle and Robert B. Allen. 2016. The Impact of Different Teaching Approaches and Languages on Student
Learning of Introductory Programming Concepts. ACM Trans. Comput. Educ. 16, 1, Article 3 (Jan. 2016), 26 pages.
https://doi.org/10.1145/2785807

Brian C. Ladd. 2006. The Curse of Monkey Island: Holding the Attention of Students Weaned on Computer Games.
J. Comput. Sci. Coll. 21, 6 (June 2006), 162–174. Retrieved Oct. 1, 2020 from
http://dl.acm.org/doi/10.5555/1127442.1127464

Ken Lambert and Martin Osborne. 2000. Easy, Realistic GUIs with Java in CS1. In Proc. 2nd Annual CCSC Northwestern
Conference (Oregon Graduate Institute, Beaverton, OR, USA). Consortium for Computing Sciences in Colleges, USA,
209–215. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/369279.369358

R. Raymond Lang and Marguerite Saacks-Giguette. 1999. Introducing High School Students to Event Driven
Programming. In Proc. 29th FIE (IEEE Cat. No. 99CH37011) (San Juan, PR, USA), Vol. 1. IEEE, Piscataway, NJ, USA,
11B5/9–11B514. https://doi.org/10.1109/FIE.1999.839233

Scott T. Leutenegger. 2006. A CS1 to CS2 Bridge Class Using 2D Game Programming. J. Comput. Sci. Coll. 21, 5 (May
2006), 76–83. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/1127351.1127366

Peter L. Liu. 2008. Using Open-Source Robocode as a Java Programming Assignment. ACM SIGCSE Bull. 40, 4 (Nov. 2008),
63–67. https://doi.org/10.1145/1473195.1473222

Aleksi Lukkarinen and Juha Sorva. 2016. Classifying the Tools of Contextualized Programming Education and Forms of
Media Computation. In Proc. 16th Koli Calling (Koli National Park, Lieksa, FI). ACM, New York, NY, USA, 51–60.
https://doi.org/10.1145/2999541.2999551

Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio Mirolo, Andreas Mühling, Andrew
Petersen, Kate Sanders, Simon, and Jacqueline Whalley. 2017. Developing Assessments to Determine Mastery of
Programming Fundamentals. In Proc. ITiCSE-WGR (Bologna, IT). ACM, New York, NY, USA, 47–69.
https://doi.org/10.1145/3174781.3174784

Stéphane Magnenat, Morderchai Ben-Ari, Severin Klinger, and Robert W. Sumner. 2015. Enhancing Robot Programming
with Visual Feedback and Augmented Reality. In Proc. 20th ITiCSE (Vilnius, LT). ACM, New York, NY, USA, 153–158.
https://doi.org/10.1145/2729094.2742585

Lauren Margulieux, Tuba Ayer Ketenci, and Adrienne Decker. 2019. Review of measurements used in computing
education research and suggestions for increasing standardization. Comput. Sci. Educ. 29, 1 (2019), 49–78.
https://doi.org/10.1080/08993408.2018.1562145

Lee McCauley, Jim Greer, David Mills, Jeff Robertson, and Allen Thomas. 2006. Teaching Objects First Using Lego Robots:
A Tri-P-LETS Initiative. J. Comput. Sci. Coll. 21, 5 (May 2006), 183–185. Retrieved Oct. 1, 2020 from

MANUSCRIPT

https://doi.org/10.1145/2445196.2445315
https://dl.acm.org/doi/10.5555/1409873.1409902
https://doi.org/10.1145/1029533.1029586
https://doi.org/10.1145/299649.299774
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1016/j.ijcci.2018.03.004
https://doi.org/10.1109/VLHCC.2015.7357219
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/3197091.3197106
https://doi.org/10.1145/2785807
http://dl.acm.org/doi/10.5555/1127442.1127464
http://dl.acm.org/doi/10.5555/369279.369358
https://doi.org/10.1109/FIE.1999.839233
http://dl.acm.org/doi/10.5555/1127351.1127366
https://doi.org/10.1145/1473195.1473222
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/2729094.2742585
https://doi.org/10.1080/08993408.2018.1562145

http://dl.acm.org/doi/10.5555/1127351.1127384
Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon, Lynda Thomas, and Carol Zander. 2008.

Debugging: a review of the literature from an educational perspective. Comput. Sci. Educ. 18, 2 (2008), 67–92.
https://doi.org/10.1080/08993400802114581

Myles F. McNally. 1998. Using Image Processing as a Laboratory Theme in CS1 and CS2 (Poster). In Proc. 3rd ITiCSE
(Dublin City Univ., IE). ACM, New York, NY, USA, 292. https://doi.org/10.1145/282991.283622

Stephen R. McNeill and Jeffrey D. Helm. 1995. A required mechanical engineering course in microprocessors.
Mechatronics 5, 7 (1995), 763–774. https://doi.org/10.1016/0957-4158(95)00047-9

Andrew Mertz, William Slough, and Nancy Van Cleave. 2008. Using the ACM Java Libraries in CS 1. J. Comput. Sci. Coll.
24, 1 (Oct. 2008), 16–26. Retrieved Oct. 1, 2020 from https://dl.acm.org/doi/10.5555/1409763.1409769

Paul M. Mullins and Michael Conlon. 2008. Engaging Students in Programming Fundamentals Using Alice 2.0. In Proc.
9th SIGITE (Cincinnati, OH, USA). ACM, New York, NY, USA, 81–88. https://doi.org/10.1145/1414558.1414584

Paul M. Mullins, Deborah Whitfield, and Michael Conlon. 2009. Using Alice 2.0 as a First Language. J. Comput. Sci. Coll.
24, 3 (Jan. 2009), 136–143. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/1409873.1409900

Jogesh K. Muppala. 2011. Teaching Embedded Software Concepts Using Android. In Proc. 6th WESE (Taipei, TW). ACM,
New York, NY, USA, 32–37. https://doi.org/10.1145/2077370.2077375

Thomas P. Murtagh. 2007. Squint: Barely Visible Library Support for CS1. In Proc. 38th SIGCSE (Covington, KY, USA).
ACM, New York, NY, USA, 526–530. https://doi.org/10.1145/1227310.1227489

Gwen Nugent, Leen-Kiat Soh, Ashok Samal, and Jeff Lang. 2006. A Placement Test for Computer Science: Design,
Implementation, and Analysis. Comput. Sci. Educ. 16, 1 (2006), 19–36. https://doi.org/10.1080/13803610500298094

Jackie O’Kelly and J. Paul Gibson. 2006. RoboCode & Problem-Based Learning: A Non-Prescriptive Approach to Teaching
Programming. ACM SIGCSE Bull. 38, 3 (June 2006), 217–221. https://doi.org/10.1145/1140123.1140182

Samatios J. Papadakis and Vasileios Orfanakis. 2015. Οι εκπαιδευτικοί από καταναλωτές σε δημιουργούς ψηφιακού
περιεχομένου μέσω του προγραμματιστικού περιβάλλοντος App Inventor for Android. In Proc. 1o Πανελλήνιο
Επιστημονικό Συνέδριο, Πρακτικά Β Τόμος (Heraklion, Crete, GR). Institute of Humanities and Social Sciences (I.A.K.E.),
Heraklion, Crete, GR, 666–674. Retrieved Oct. 1, 2020 from https://iake.weebly.com/praktika2015.html

Sofia Papavlasopoulou, Kshitij Sharma, Michail Giannakos, and Letizia Jaccheri. 2017. Using Eye-Tracking to Unveil
Differences Between Kids and Teens in Coding Activities. In Proc. 2017 IDC (Stanford, CA, USA). ACM, New York, NY,
USA, 171–181. https://doi.org/10.1145/3078072.3079740

Harrie J. M. Passier, Sylvia Stuurman, and Harold Pootjes. 2014. Beautiful JavaScript: How to Guide Students to Create
Good and Elegant Code. In Proc. CSERC (Berlin, DE). ACM, New York, NY, USA, 65–76.
https://doi.org/10.1145/2691352.2691358

James Patten, Laurie Griffith, and Hiroshi Ishii. 2000. A Tangible Interface for Controlling Robotic Toys. In CHI EA (The
Hague, NL). ACM, New York, NY, USA, 277–278. https://doi.org/10.1145/633292.633454

Victor Paul Pauca and Richard T. Guy. 2012. Mobile Apps for the Greater Good: A Socially Relevant Approach to
Software Engineering. In Proc. 43rd SIGCSE (Raleigh, NC, USA). Association for Computing Machinery, New York, NY,
USA, 535–540. https://doi.org/10.1145/2157136.2157291

Bruno Henrique de Paula, Andrew Burn, Richard Noss, and José Armando Valente. 2018. Playing Beowulf: Bridging
Computational Thinking, Arts and Literature through Game-Making. Int. J. Child Comput. Interact. 16 (2018), 39–46.
https://doi.org/10.1016/j.ijcci.2017.11.003

Theo Pavlidis. 1996. How to Teach Graphics Using X (and Live to Tell About It). ACM SIGGRAPH Comput. Graph. 30, 3
(Aug. 1996), 41–42. https://doi.org/10.1145/232301.232336

Rudolf Pecinovský, Jarmila Pavlíčková, and Luboš Pavlíček. 2006. Let’s Modify the Objects-First Approach into
Design-Patterns-First. In Proc. 11th ITiCSE (Bologna, IT). ACM, New York, NY, USA, 188–192.
https://doi.org/10.1145/1140124.1140175

Katerina Perdikuri. 2014. Students’ Experiences from the Use of MIT App Inventor in Classroom. In Proc. 18th PCI
(Athens, GR). ACM, New York, NY, USA, Article 41, 6 pages. https://doi.org/10.1145/2645791.2645835

James Purtilo and Stan Siegel. 1994. Experiences with CCB-directed projects in the classroom. In Software Engineering
Education, CSEE 1994 (LNCS, vol. 750), Jorge L. Díaz-Herrera (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, DE,
283–302. https://doi.org/10.1007/BFb0017621

Michael de Raadt. 2010. Introductory Programming in a Web Context. In Proc. 12th ACE (Vol. 103) (Brisbane, AU). ACS,
Darlinghurst, AU, 79–86. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/1862219.1862232

Richard Rasala, Jeff Raab, and Viera K. Proulx. 2001. Java Power Tools: Model Software for Teaching Object-Oriented
Design. In Proc. 32nd SIGCSE (Charlotte, NC, USA). ACM, New York, NY, USA, 297–301.
https://doi.org/10.1145/364447.364606

Stuart Reges. 2006. Back to Basics in CS1 and CS2. In Proc. 37th SIGCSE (Houston, TX, USA). ACM, New York, NY, USA,
293–297. https://doi.org/10.1145/1121341.1121432

MANUSCRIPT

http://dl.acm.org/doi/10.5555/1127351.1127384
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/282991.283622
https://doi.org/10.1016/0957-4158(95)00047-9
https://dl.acm.org/doi/10.5555/1409763.1409769
https://doi.org/10.1145/1414558.1414584
http://dl.acm.org/doi/10.5555/1409873.1409900
https://doi.org/10.1145/2077370.2077375
https://doi.org/10.1145/1227310.1227489
https://doi.org/10.1080/13803610500298094
https://doi.org/10.1145/1140123.1140182
https://iake.weebly.com/praktika2015.html
https://doi.org/10.1145/3078072.3079740
https://doi.org/10.1145/2691352.2691358
https://doi.org/10.1145/633292.633454
https://doi.org/10.1145/2157136.2157291
https://doi.org/10.1016/j.ijcci.2017.11.003
https://doi.org/10.1145/232301.232336
https://doi.org/10.1145/1140124.1140175
https://doi.org/10.1145/2645791.2645835
https://doi.org/10.1007/BFb0017621
http://dl.acm.org/doi/10.5555/1862219.1862232
https://doi.org/10.1145/364447.364606
https://doi.org/10.1145/1121341.1121432

Derek Riley. 2012. Using Mobile Phone Programming to Teach Java and Advanced Programming to Computer Scientists.
In Proc. 43rd SIGCSE (Raleigh, NC, USA). ACM, New York, NY, USA, 541–546. https://doi.org/10.1145/2157136.2157292

Eric Roberts, Kim Bruce, James H. Cross, Robb Cutler, Scott Grissom, Karl Klee, Susan Rodger, Fran Trees, Ian Utting, and
Frank Yellin. 2006. The ACM Java Task Force: Final Report. In Proc. 37th SIGCSE (Houston, TX, USA). ACM, New York,
NY, USA, 131–132. https://doi.org/10.1145/1121341.1121384

Eric Roberts and Antoine Picard. 1998. Designing a Java Graphics Library for CS 1. In Proc. 6th ITiCSE (Dublin City Univ.,
IE). ACM, New York, NY, USA, 213–218. https://doi.org/10.1145/282991.283129

Eric Roberts and Keith Schwarz. 2013. A Portable Graphics Library for Introductory CS. In Proc. 18th ITiCSE (Canterbury,
England, UK). ACM, New York, NY, USA, 153–158. https://doi.org/10.1145/2462476.2465590

José María Rodríguez Corral, Antón Civit Balcells, Arturo Morgado Estévez, Gabriel Jiménez Moreno, and María José
Ferreiro Ramos. 2014. A game-based approach to the teaching of object-oriented programming languages. Comput.
Educ. 73 (2014), 83–92. https://doi.org/10.1016/j.compedu.2013.12.013

Mark F. Russo. 2017. DoodlePad: Next-gen Event-driven Programming for CS1. J. Comput. Sci. Coll. 32, 4 (April 2017),
99–105. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/3055338.3055356

Sajid Sadi and Pattie Maes. 2007. subTextile: Reduced event-oriented programming system for sensate actuated materials.
In Proc. VL/HCC (IEEE Comput. Soc. Order No. P2987) (Coeur d’Alene, ID, USA). IEEE, Piscataway, NJ, USA, 171–174.
https://doi.org/10.1109/VLHCC.2007.37

Lubomir Salanci. 2006. Object-Oriented Programming at Upper Secondary School for Advanced Students. In Informatics
Education – The Bridge between Using and Understanding Computers, ISSEP 2006 (LNCS, vol. 4226), Roland T. Mittermeir
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, DE, 179–188. https://doi.org/10.1007/11915355_17

Christopher Scaffidi and Christopher Chambers. 2012. Skill Progression Demonstrated by Users in the Scratch Animation
Environment. Int. J. Hum. Comput. Interact. 28, 6 (2012), 383–398. https://doi.org/10.1080/10447318.2011.595621

Stephen Schaub. 2009. Teaching CS1 with Web Applications and Test-driven Development. ACM SIGCSE Bull. 41, 2 (June
2009), 113–117. https://doi.org/10.1145/1595453.1595487

Barry Edward Schliesmann, Christopher William Weiland, and Timothy Wise. 2004. System and Method for Event
Driven Programming. US Patent Application 20040205698, Filed December 28, 2001.

Linda Seiter and Brendan Foreman. 2013. Modeling the Learning Progressions of Computational Thinking of Primary
Grade Students. In Proc. 9th ICER (San Diego, CA, USA). ACM, New York, NY, USA, 59–66.
https://doi.org/10.1145/2493394.2493403

Steven D. Sheetz, Gretchen Irwin, David P. Tegarden, H. James Nelson, and David E. Monarchi. 1997. Exploring the
Difficulties of Learning Object-Oriented Techniques. J. Manag. Inf. Syst. 14, 2 (1997), 103–131.
https://doi.org/10.1080/07421222.1997.11518167

Mark Sherman. 2014. User Models of Reasoning and Understanding in App Inventor. In Proc. 10th ICER (Glasgow,
Scotland, UK). ACM, New York, NY, USA, 171–172. https://doi.org/10.1145/2632320.2632340

Mark Sherman and Fred Martin. 2015. The Assessment of Mobile Computational Thinking. J. Comput. Sci. Coll. 30, 6
(June 2015), 53–59. Retrieved Oct. 1 2020 from http://dl.acm.org/doi/10.5555/2753024.2753037

Marian Sherwood. 1996. Access in Seattle. 3C ON-LINE 3, 1 (Jan. 1996), 7–8. https://doi.org/10.1145/218806.218809
Andrey Soares. 2014. Reflections on Teaching App Inventor for Non-Beginner Programmers: Issues, Challenges and

Opportunities. Inf. Syst. Educ. J. 12, 4 (July 2014), 56–65. Retrieved Oct. 1, 2020 from
http://isedj.org/2014-12/n4/ISEDJv12n4p56.html

Andrey Soares and Nancy L. Martin. 2015. Teaching Non-Beginner Programmers with App Inventor: Survey Results and
Implications. Inf. Syst. Educ. J. 13, 5 (Sept. 2015), 24–36. Retrieved Oct. 1, 2020 from
http://isedj.org/2015-13/n5/ISEDJv13n5p24.html

Mary Stepp, Jessica Miller, and Victoria Kirst. 2009. A “CS 1.5” Introduction to Web Programming. In Proc. 40th SIGCSE
(Chattanooga, TN, USA). ACM, New York, NY, USA, 121–125. https://doi.org/10.1145/1508865.1508908

Sylvia Stuurman, Bernard E. van Gastel, and Harrie J. M. Passier. 2014. The Design of Mobile Apps: What and How to
Teach?. In Proc. 4th CSERC (Berlin, DE). ACM, New York, NY, USA, 93–100. https://doi.org/10.1145/2691352.2691360

Kelvin Sung and Peter Shirley. 2004. A top-down approach to teaching introductory computer graphics. Comput. Graph.
28, 3 (June 2004), 383–391. https://doi.org/10.1016/j.cag.2004.03.005

Kelvin Sung, Peter Shirley, and Becky Reed Rosenberg. 2007. Experiencing Aspects of Games Programming in an
Introductory Computer Graphics Class. In Proc. 38th SIGCSE (Covington, KY, USA). ACM, New York, NY, USA,
249–253. https://doi.org/10.1145/1227310.1227400

Kim Sungkyung and Kim Sangchul. 2018. Middle-School Programming Classes Utilizing Game Creation and the Analysis
of their Educational Outcomes. Journal of Korea Game Society 18, 3 (June 2018), 49–60.
https://doi.org/10.7583/JKGS.2018.18.3.49

Laszlo Szuecs. 1996. Creating Windows Applications Using Borland’s OWL Classes. In Proc. 27th SIGCSE (Philadelphia,
PA, USA). ACM, New York, NY, USA, 145–149. https://doi.org/10.1145/236452.236528

MANUSCRIPT

https://doi.org/10.1145/2157136.2157292
https://doi.org/10.1145/1121341.1121384
https://doi.org/10.1145/282991.283129
https://doi.org/10.1145/2462476.2465590
https://doi.org/10.1016/j.compedu.2013.12.013
http://dl.acm.org/doi/10.5555/3055338.3055356
https://doi.org/10.1109/VLHCC.2007.37
https://doi.org/10.1007/11915355_17
https://doi.org/10.1080/10447318.2011.595621
https://doi.org/10.1145/1595453.1595487
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1080/07421222.1997.11518167
https://doi.org/10.1145/2632320.2632340
http://dl.acm.org/doi/10.5555/2753024.2753037
https://doi.org/10.1145/218806.218809
http://isedj.org/2014-12/n4/ISEDJv12n4p56.html
http://isedj.org/2015-13/n5/ISEDJv13n5p24.html
https://doi.org/10.1145/1508865.1508908
https://doi.org/10.1145/2691352.2691360
https://doi.org/10.1016/j.cag.2004.03.005
https://doi.org/10.1145/1227310.1227400
https://doi.org/10.7583/JKGS.2018.18.3.49
https://doi.org/10.1145/236452.236528

Nour Tabet, Huda Gedawy, Hanan Alshikhabobakr, and Saquib Razak. 2016. From Alice to Python. Introducing
Text-based Programming in Middle Schools. In Proc. ITiCSE (Arequipa, PE). ACM, New York, NY, USA, 124–129.
https://doi.org/10.1145/2899415.2899462

Terry Tang, Scott Rixner, and Joe Warren. 2014. An Environment for Learning Interactive Programming. In Proc. 45th
SIGCSE (Atlanta, GA, USA). ACM, New York, NY, USA, 671–676. https://doi.org/10.1145/2538862.2538908

Sureyya Tarkan and Vibha Sazawal. 2009. Chief Chefs of Z to Alloy: Using a Kitchen Example to Teach Alloy with Z. In
Teaching Formal Methods, TFM 2009 (LNCS, vol. 5846), Jeremy Gibbons and José Nuno Oliveira (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, DE, 72–91. https://doi.org/10.1007/978-3-642-04912-5_6

Guy Martin Tchamgoue, Ok-Kyoon Ha, Kyong-Hoon Kim, and Yong-Kee Jun. 2011. A Taxonomy of Concurrency Bugs in
Event-Driven Programs. In Software Engineering, Business Continuity, and Education, ASEA 2011 (CCIS, vol. 257),
Tai-hoon Kim, Hojjat Adeli, Haeng-kon Kim, Heau-jo Kang, Kyung Jung Kim, Akingbehin Kiumi, and Byeong-Ho
Kang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, DE, 437–450.
https://doi.org/10.1007/978-3-642-27207-3_48

Herbert Tesser, Hisham Al-Haddad, and Gary Anderson. 2000. Instrumentation: A Multi-science Integrated Sequence. In
Proc. 31st SIGCSE (Austin, TX, USA). ACM, New York, NY, USA, 232–236. https://doi.org/10.1145/330908.331861

The Joint Task Force on Computing Curricula, ACM, and IEEE-CS. 2013. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. ACM, New York, NY, USA. Retrieved Oct. 1, 2020
from https://www.acm.org/education/curricula-recommendations

The Joint Task Force on Computing Curricula, IEEE-CS, and ACM. 2001. Computing Curricula 2001 Computer Science:
Final Report. ACM, New York, NY, USA. Retrieved Oct. 1, 2020 from
https://www.acm.org/education/curricula-recommendations

Franklyn Turbak, Mark Sherman, Fred Martin, David Wolber, and Shaileen Crawford Pokress. 2014. Events-First
Programming in APP Inventor. J. Comput. Sci. Coll. 29, 6 (June 2014), 81–89. Retrieved Oct. 1, 2020 from
http://dl.acm.org/doi/10.5555/2602724.2602739

Sharon M. Tuttle. 2001. ¡YO Quiero Java!: Teaching Java as a Second Programming Language. J. Comput. Sci. Coll. 17, 2
(Dec. 2001), 34–45. Retrieved Oct. 1, 2020 from http://dl.acm.org/doi/10.5555/775339.775348

Ian Utting. 2006. Problems in the Initial Teaching of Programming Using Java: The Case for Replacing J2SE with J2ME. In
Proc. 11th ITiCSE (Bologna, IT). ACM, New York, NY, USA, 193–196. https://doi.org/10.1145/1140124.1140176

Haodong Wang. 2014. Engendering Excitement and Interest in Computer Science Courses by Using Emerging Wireless
Sensors. J. Comput. Sci. Coll. 30, 1 (Oct. 2014), 61–69. Retrieved Oct. 1, 2020 from
http://dl.acm.org/doi/10.5555/2667369.2667380

Robert Ward and Martin Smith. 1998. JavaScript as a First Programming Language for Multimedia Students. In Proc.
ITiCSE (Dublin, IE). ACM, New York, NY, USA, 249–253. https://doi.org/10.1145/282991.283557

David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and Diana M. Franklin. 2018. Starting from Scratch:
Outcomes of Early Computer Science Learning Experiences and Implications for What Comes Next. In Proc. 2018 ICER
(Espoo, FI). ACM, New York, NY, USA, 142–150. https://doi.org/10.1145/3230977.3230988

Jim Whitehead. 2008. Introduction to Game Design in the Large Classroom. In Proc. 3rd GDCSE (Miami, FL, USA). ACM,
New York, NY, USA, 61–65. https://doi.org/10.1145/1463673.1463686

Richard Wicentowski and Tia Newhall. 2005. Using Image Processing Projects to Teach CS1 Topics. In Proc. 36th SIGCSE
(St. Louis, MO, USA). ACM, New York, NY, USA, 287–291. https://doi.org/10.1145/1047344.1047445

Rosalee Wolfe. 1999. New Possibilities in the Introductory Graphics Course for Computer Science Majors. ACM
SIGGRAPH Comput. Graph. 33, 2 (May 1999), 35–39. https://doi.org/10.1145/326460.326489

Ursula Wolz and Elliot Koffman. 1999. SimpleIO: A Java Package for Novice Interactive and Graphics Programming. In
Proc. 4th ITiCSE (Cracow, PL). Association for Computing Machinery, New York, NY, USA, 139–142.
https://doi.org/10.1145/305786.305896

Pat Woodworth and Wanda Dann. 1999. Integrating Console and Event-Driven Models in CS1. In Proc. 30th SIGCSE (New
Orleans, LA, USA). ACM, New York, NY, USA, 132–135. https://doi.org/10.1145/299649.299720

Benjamin Xiang-Yu Xie. 2016. Progression of Computational Thinking Skills Demonstrated by App Inventor Users. Master’s
thesis. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MA, USA.
Retrieved Oct. 1, 2020 from http://hdl.handle.net/1721.1/106395

Ivan Zupic and Tomaž Čater. 2015. Bibliometric Methods in Management and Organization. Organ. Res. Methods 18, 3
(July 2015), 429–472. https://doi.org/10.1177/1094428114562629

MANUSCRIPT

https://doi.org/10.1145/2899415.2899462
https://doi.org/10.1145/2538862.2538908
https://doi.org/10.1007/978-3-642-04912-5_6
https://doi.org/10.1007/978-3-642-27207-3_48
https://doi.org/10.1145/330908.331861
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
http://dl.acm.org/doi/10.5555/2602724.2602739
http://dl.acm.org/doi/10.5555/775339.775348
https://doi.org/10.1145/1140124.1140176
http://dl.acm.org/doi/10.5555/2667369.2667380
https://doi.org/10.1145/282991.283557
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/1463673.1463686
https://doi.org/10.1145/1047344.1047445
https://doi.org/10.1145/326460.326489
https://doi.org/10.1145/305786.305896
https://doi.org/10.1145/299649.299720
http://hdl.handle.net/1721.1/106395
https://doi.org/10.1177/1094428114562629

APPENDICES
The appendices A and B contain a more detailed description of the research methodology as well
as the tables and the figure referenced from the main text. These appendices have been published
as supplemental material alongside this article.

MANUSCRIPT

Event-driven Programming in Programming Education
A Mapping Review

ALEKSI LUKKARINEN, LAURI MALMI, and LASSI HAARANEN

APPENDIX A METHODOLOGY: SEARCHING AND RAPID SCREENING

In this appendix, we detail the first two phases of our research method more deeply than we did
in Chapter 2 of the base article: We consider the inclusion/exclusion criteria (§ A.1), discuss the
Searching phase (§ A.2), and conclude by describing the Rapid Screening phase (§ A.3). We list all
references in the bibliography of the base article.

A.1 Inclusion/Exclusion Criteria
Table A1 below presents the inclusion/exclusion criteria that we followed to constrain the pub-
lications that this mapping review covers. The criteria impose restrictions on availability, type,
language, publication ranking level (jufo1), and content of the documents to be included to the
study. Six of these seven criteria require further elaboration.

• First Criterion. Restricting a study to include only sources that are freely available for a specific
organization may obviously introduce some biasing, depending on the number and providers of
the sources missed because of the restriction. However, as this limitation is not easily circumvented
in the scope of this study, it can only be accepted as a part of the limitations of the study.
• Second Criterion. Because this study aims to focus on publications that report formal research,

the second inclusion/exclusion criterion restricts the study to consider the content from two pub-
lication channel types of the formal and strict end of the spectrum of scientific publications in the
field of computing education research: journal articles as well as papers in proceedings of confer-
ence series. As it is probable that all key results in this discipline of research are published in those
two types of publication channels, they will become included to the search results of this study
regardless of the exclusion of book chapters and theses, for instance. Moreover, textbooks have
a tendency to be written from a specific perspective as well as to simplify and omit information,
which is why we do not consider them as suitable sources in this study.
•Third Criterion. Restricting a study to sources that are expressed in certain languages may

introduce language bias [e.g., Coe et al. 2017, p. 174]. Still, as with the first criterion that was
1A Finnish classification system that measures the quality of scientific publication channels; see § A.3 for more details.

Copyright © Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen 2021.

This is the authors' version ("final accepted manuscript") of the work. It is posted here for your
personal use. Not for redistribution. The formatting and the layout differ in the published version.

The definitive Version of Record was published in ACM Transactions on Computing Education
in March 2021 and is available at: https://doi.org/10.1145/3423956

ACM Reference format:
Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. 2021. Event-driven Programming in Programming
Education: A Mapping Review. ACM Trans. Comput. Educ. 21, 1, Article 1 (March 2021), 31 pages.
https://doi.org/10.1145/3423956

https://doi.org/10.1145/3423956
https://doi.org/10.1145/3423956

ID Topic Inclusion Criterion Exclusion Criterion

1 Availability Documents that are immediately
accessible from Aalto University for free.

Documents that have to be requested for or are subject to charge when accessed from Aalto
University.

2 Document type Documents that are journal articles or
papers in proceedings of conference
series.

Documents that are neither journal articles nor papers in proceedings of conference series.
Examples: Austing et al. [2002] (technical report), Xie [2016] (thesis), Schliesmann et al. [2004]
(patent), Sherwood [1996] (news article), books, presentation slides, and drafts.

3 Language Documents that are written essentially
in English.

Documents that are written essentially in other languages than English.
Examples: Sungkyung and Sangchul [2018] (only the abstract of a document is written in
English) and Papadakis and Orfanakis [2015] (the whole document is written in Greek).

4 Not an introduction Documents that are not introductions to
some primary content.

Documents that only introduce some primary content.
Examples: Astrachan et al. [2005] (panel discussion), McCauley et al. [2006] (workshop), Fischer
[2011] (demonstration), McNally [1998] (poster), and Sherman [2014] (research project of a
doctoral consortium participant).

5 About event-driven
programming (edp)

Documents that explicitly use some
variant of the term event-driven
programming in the sense of a computer
programming style.

Documents that are not related to edp in the sense relevant for this study.
Examples: Documents that are concerned with scheduling social occasions or television
broadcasts.

6 About teaching or
learning edp

Documents that are concerned with
teaching or learning edp.

Documents that are not concerned with teaching and learning edp.
Examples: Gasiunas et al. [2011] (extension of a programming language), O’Kelly and Gibson
[2006] (edp as an implementation technique of a tool), and Papavlasopoulou et al. [2017] (only
background literature is mentioned in relation to events).

7 Journals: Jufo level
Conferences:
Continuity
(see § A.3)

Journals: On at least jufo level 1 OR
other knowledge about a formal peer
review.
Conferences: Has more than a single
occurrence.

Journals: Articles in journals at jufo level 0 (assigned either officially or—in case an official
classification is missing—by the author for the purposes of this study) AND no knowledge about
a formal peer review exist.
Conferences: Has occurred only once.
Examples: Chalk [1999] (classified as jufo 0).

Note: In the seventh criterion, the abbreviation jufo refers to a Finnish classification to measure the quality of scientific publication channels; see § A.3 for more details.

Table A1. Inclusion/Exclusion Criteria.

MANUSCRIPT

discussed above, this limitation cannot be easily evaded (as using commercial translators is out of
the question) and thus can only be accepted as it is.

• Fifth Criterion.This criterion requires two things. First, the term event-driven programming, or
its variant, has to be explicitly mentioned in every included publication. This requirement follows
from observing that there are two important sets of resources that concern event-driven program-
ming (edp): (1) Those that explicitly use some variant of the term edp, and (2) those that do not
explicitly mention edp but implicitly deal with it. The latter set would contain all even vaguely
suitable content ever produced and thus would be difficult to define exactly (e.g., the meaning of
suitability depends on context), quite large in size, as well as next to impossible to acquire and deal
with in practice. Consequently, this study is limited to the former category.

Second, the included publication has to be related to computer programming, that is, creating
instruction sequences for computers to execute. However, the word programming has also other
meanings, such as scheduling television broadcasts and social occasions. Obviously, we excluded
such publications.

• Sixth Criterion. In case of a publication that showcases computer software or hardware as a
teaching tool (a “tool paper”), in that same document, the tool in question has to be mentioned in
relation to event-driven programming (edp).
• Seventh Criterion. In parallel with the second criterion (see above), this restriction is imple-

mented to intentionally introduce database bias in order to focus this study on publication chan-
nels in the higher end (as defined by the criterion of and classified by the expert panels maintaining
the jufo publication rankings; see § A.3) of the quality spectrum.

A.2 Searching for Publications
To find publications to review, we decided to use only automatic searches and omit manual system-
atical skimming and reading through publication channels. The search expressions (see Table A2
below) were based on the following phrases: event-driven programming, event-based programming,
event-oriented programming, events-first programming, and event programming. Based on few quick
preliminary searches, we assumed the number of directly relevant search results to be in the or-
der of several dozens at the most. With that assumption and given the exploratory nature of our
study, everything related to event-driven programming in programming education was of interest
without the need to further restrict the scope.

An issue with the most of the above phrases is the sheer multiplicity of search results: There
is a multitude of publications about topics related to event-driven programming (edp), but only
small portion of that is directly related to teaching or learning edp in programming education. For
instance, the search expression +”event-driven programming” in Google Scholar (a full-text search
including patents and citations) resulted in an approximation of over 7000 search results on the
first result page. Similarly, a search using the variant event-based programming approximated over
2000 results. Any number of results of this magnitude would have been impossible to deal with.

To limit the scope, we experimented with additional search terms related to teaching and learn-
ing programming in general. However, we did not find a justifiable approach to limit the number
of full-text search results in respect to the above goal of not restricting the scope to a single narrow
subtopic. Consequently, we had to restrict several actual searches to document titles.

With an estimate of potential search expressions, we chose eight search services (see Table A3)
for searching publications. The first author (al) performed the searches (see Table A2) during
five consecutive days (September 18th–22nd, 2018). As we expected Google Scholar to index the
content of several other relevant search services, such as Association for Computing Machinery

MANUSCRIPT

ID Date Service Restrictions Expression Total
Downloaded # of Excluded Included

% S T C J #M # F % Sf %Df

S1 Sep. 18, 2018 Google Scholar Including patents +”events-first programming” 28 26 92.9 1 16 0 5 4 14.3 0.6
S2 " " and citations +”event programming paradigm” 18 17 94.4 13 4 — — — — —
S3 " " " allintitle: +”event-oriented programming” 5 4 80.0 3 0 0 0 1 20.0 0.2
S4 " " " allintitle: +”event-based programming” 33 23 69.7 21 2 — — — — —
S5 Sep. 19, 2018 " " allintitle: +”event-driven programming” 105 46 43.8 34 7 0 0 5 4.8 0.8
S6 " " " allintitle: +”event programming” 39 14 35.9 12 2 — — — — —

S7 " ACM Digital In all fields of meta- (+”event-driven programming”) 111 91 82.0 55 20 0 3 13 11.7 2.0
S8 " Library data, restricted to (+”event-based programming”) 37 27 73.0 19 2 0 0 6 16.2 0.9
S9 " " the ACM Full-Text (+”event-oriented programming”) 2 1 50.0 1 — — — — — —
S10 " " Collection (+”events-first programming”) 1 0 — — — — — — — —
S11 " " " (+”event programming paradigm”) 0 — — — — — — — — —
S12 " " " (+”event programming”) 8 8 100.0 6 2 — — — — —

S13 " IEEE Xplore In conferences,
journals & magazines,
books, early access
articles, and standards

(((((”Document Title”:”event-driven programming”) or ”Document Title”:”event-based
programming”) or ”Document Title”:”event-oriented programming”) or ”Document
Title”:”event programming”) or ”Document Title”:”events-first programming”)

15 1 6.7 1 — — — — — —

S14 " Elsevier
ScienceDirect

In full text of every-
thing except books and
book reviews

introductory and (”event-driven programming” or ”event-based programming” or
”event-oriented programming”)

14 14 100.0 3 3 0 3 5 35.7 0.8

S15 Sep. 20, 2018 " " (curriculum or curricula or syllabus or syllabi) and (”event-driven programming” or
”event-based programming” or ”event-oriented programming”)

20 9 45.0 2 4 0 1 2 10.0 0.3

S16 " Springer
Nature
SpringerLink

In full text of
everything, excluding
preview-only content

introductory and (”event-driven programming” or
”event-based programming” or ”event-oriented programming”)

23 14 60.9 4 5 0 3 2 8.7 0.3

S17 " " " education and (”event-driven programming” or
”event-based programming” or ”event-oriented programming”)

80 69 86.3 48 17 0 0 4 5.0 0.6

S18 " Wiley Online
Library

In full text of journals (course or novice or introductory or education or taxonomy or syllabus or
curriculum) and (”event-driven programming” or ”event-based programming” or
”event-oriented programming” or ”event-programming paradigm” or ”events-first
programming”)

53 46 86.8 33 8 0 3 2 3.8 0.3

S19 " Taylor &
Francis Online

In full text of
everything

”event-driven programming” or ”event-based programming” or
”event-oriented programming” or ”event-programming paradigm” or ”events-first
programming”

50 39 78.0 20 8 0 5 6 12.0 0.9

S20 Sep. 21, 2018 ACM Digital
Library

In the ACM Full-Text
Collection

content.ftsec:(”event-driven programming” ”event-based programming”
”event-oriented programming” ”event programming paradigm” ”events-first
programming”) and acmdlCCS:(education)

214 193 90.2 4 59 3 74 53 24.8 8.2

S21 Sep. 22, 2018 ERIC — ”event-driven programming” or ”event-based programming” or ”event-oriented
programming” or ”event programming paradigm” or ”events-first programming”

2 1 50.0 0 0 0 0 1 50.0 0.2

Totals 5 days 8 services 858 643 280 159 3 97 104 16.2

Notes: % S = percentage in total results of the search in question; T / C / J = excluded results by title, by content, and by jufo (see § A.3) level; #M / # F = number of marginally/fully included results;
% Sf = percentage of fully included results in total results of the search in question; %Df = percentage of fully included results in downloaded results of all searches combined.

Table A2. Automated searches and the numbers of their results (see § A.2).

MANUSCRIPT

(Acm) and Institute of Electrical and Electronics Engineers (Ieee), we decided to start with it and
complement the results from other services.

Table A3. Numbers of search results by search service (see § A.2).

Service Total
Downloaded # of Excluded Included

% S T C J #M # F % Sf %Df

ACM Digital Library
https://dl.acm.org/

373 320 85.8 85 83 3 77 72 19.3 11.2

Google Scholar
https://scholar.google.com/

228 130 57.0 84 31 0 5 10 4.4 2.0

Elsevier ScienceDirect
https://www.sciencedirect.com/

34 23 67.6 5 7 0 4 7 20.6 1.1

Springer Nature SpringerLink
https://link.springer.com/

103 83 80.6 52 22 0 3 6 5.8 0.9

Taylor & Francis Online
https://www.tandfonline.com/

50 39 78.0 20 8 0 5 6 12.0 0.9

Wiley Online Library
https://onlinelibrary.wiley.com/

53 46 86.8 33 8 0 3 2 3.8 0.3

ERIC
https://eric.ed.gov/

2 1 50.0 0 0 0 0 1 50.0 0.2

IEEE Xplore
https://ieeexplore.ieee.org/

15 1 6.7 1 — — — — — —

Totals 858 643 280 159 3 97 104 16.2

Notes: % S = percentage in total results returned by the search service in question
T / C / J = excluded results by title, by content, and by jufo level (see § A.3)
M / # F = number of marginally/fully included results
% Sf = percentage of fully included results in total results returned by the search service in question
%Df = percentage of fully included results in downloaded results of all searches services combined

For each search service, we tried different combinations of search expressions and targeted data
fields from the more general to the more restricted, while we observed the number of results to
limit it to approximately 300 results per search. We recorded a search run when a quick glance at a
search result page with an acceptable number of results revealed resources with relevant-looking
titles. We skipped over citations as well as commercial books and book chapters, but accepted
other resources that were immediately accessible and not discovered yet during these searches.

For storing data about the search runs, the first author used a Microsoft Excel workbook as a
relational database: One spreadsheet contained general characteristics of each recorded search
run,2 and second one had information of all search results3 that he accepted as candidates for
inclusion. After completing the whole search process, he exploited PowerQuery in Excel to develop
queries based on the above data model to derive statistics and charts for the search runs.
2Details recorded for each recorded search run were: Identification number, Date, Search service, Restrictions, Search
expression, and Number of total results.
3Details recorded for each accepted search result were: ID number of the related search run, Hyperlink, and Notes.

MANUSCRIPT

With the above procedure, the actual searches produced a large number of results (858 in total;
643 (74.9 %) downloaded and screened) compared to the number of publications that we finally
included to the study (104; 12.1 % of the total). As we judged both the total number of search
results and the number of included search results to be high considering the scope of this study,
we did not want to increase the number of results by searching [e.g., Kitchenham et al. 2016, p. 64]
for publications that cite or are referenced by the included publications.

From Table A2, it can be seen that of all the search runs recorded, S20 returned the largest
number of included results (n=53, 51.0 % of the 104 included results) while the number of results
returned was still manageable for this study. The most obvious reason for this is the incorporation
of the Acm Computing Classification System4 (ccs) into the search expression, which enabled the
search engine to perform a full-text search while focusing on the documents whose authors had
classified them as education-related. Thus, as a hindsight, it would have been better to start by
searching Acm Digital Library with this sort of search expression, and continue to complement
those results with the other search services. Google Scholar seems to be worthwhile in finding
grey literature, but it lacks either the extensive metadata offered, for instance, by many publishers’
own search engines or just the ability to restrict the search to some parts of it.

Another matter visible in Table A2 is that at first, search expressions contained only one single
phrase at a time (S1–S12), whereas the latter searches (S13–S21) combined several phrases into
one search. This was due to the higher numbers of results returned by Google Scholar, but after
noticing the smaller result numbers returned by the next search service (S7–S12), it was decided
to try combining the phrases together to simplify the search process by grouping search results
and thus reducing the amount of search runs that had to be recorded. This practice was continued
through the rest of the searches.

A.3 Rapid Screening
The Rapid Screening phase consisted of three stages: Preliminary Review, Content Check, and Jufo
publication ranking level check (see below). During these stages, we enforced the include/exclude
criteria (see above) on the downloaded search results and recorded the decisions about exclusion.

• Preliminary Review. During this first stage, we excluded search results that either (1) we knew
to be unacceptable in advance on the basis of checking them during the preliminary searches or
(2) had a title that clearly looked irrelevant in respect to the goals of this study. If we could not
reach a decision based on the title or prior knowledge, we left the result in question to be handled
later in the screening process. The inclusion/exclusion criteria (see Table A1 above) were not yet
developed into their final forms, but the decisions about excluding search results were roughly
based on the same criteria. A few examples of titles representing excluded results are listed in
Figure 2 in the base article. On this stage, 280 search results were excluded, which consists of
32.6 % of the total 858 results found. This left 363 results (42.3 % of the total) for the next stage.

•Content Check. On this stage, we quickly checked the publications for inappropriate content
types, such as technical reports, abstracts, theses, patents, and unknown languages. As a result,
we excluded 44 search results (5.1 % of the total of 858); a breakdown of reasons for exclusion
is presented with the related result counts in Figure 2 in the base article. In total, 319 results
(37.2 %) were left for the third and last Rapid Screening stage. Not all inappropriate publications
were detected during this screening stage, however, and a few more publications were excluded
for their content types later during the Detailed Screening phase (see Figure 3).

4See: https://www.acm.org/about-acm/class, accessed October 1, 2020.

MANUSCRIPT

https://www.acm.org/about-acm/class

• JUFO Level Check. Our purpose was to focus this study on publications from channels that
represent the higher end of the quality spectrum of those that—in the broadest sense—publish sci-
entific information. To this end, we applied this third stage of Rapid Screening to restrict inclusion
based on a Finnish classification system developed for assessing the quality of scientific publica-
tion channels. This system is known by the abbreviation jufo that stands for Julkaisufoorumi 5

(Publication Forum in English).
The jufo classification has a single dimension that consists of three hierarchical levels: “Basic,”

“Leading,” and “Highest,” numbered from one to three, respectively. Each level has criteria that
a publication channel has to meet to be classified on that level; channels that do not meet the Ba-
sic level criteria are assigned level number zero. If a publication channel and the related publisher
have been classified on the same level, then the channel is not listed separately, and the classifica-
tion given to the publisher applies.The organizationmaintaining the classification system operates
under The Federation of Finnish Learned Societies6 (Tieteellisten seurojen valtuuskunta in Finnish).
The actual classifications are given and maintained by expert panels that consist in total of approx-
imately two hundred scholars, who either are Finnish or are working in Finland. The classification
database can be queried via Julkaisufoorumi website, and the individual classifications might be
revised in time.

In practice, on this stage we compiled the jufo levels of the search results that passed the two
previous stages and ensured that all journals7 are (1) at least of jufo level one (see criterion 7 in
Table A1) or (2) otherwise known to be peer-reviewed. Although this check applies only to jour-
nals, jufo levels were compiled for all search results in the interest of analysis and completeness.
All jufo levels were recorded during Nov. 13, 2019, and for all but the few most recent years it
would be impossible to use the publication-time jufo levels. Most of the publication channels that
were represented in the search results had an official jufo class. For the rest, authors’ personal
judgement was used to unofficially classify them for the purposes of this study. Based on the jufo
levels, we excluded three publications, and 316 search results (36.8 %) were left for the next phase.

5See: http://www.julkaisufoorumi.fi/en/publication-forum, accessed October 1, 2020.
6See: https://www.tsv.fi/en, accessed October 1, 2020.
7 In this study, the Journal of Computing Sciences in Colleges is interpreted to be a series of conference proceedings.

MANUSCRIPT

http://www.julkaisufoorumi.fi/en/publication-forum
https://www.tsv.fi/en

Event-driven Programming in Programming Education
A Mapping Review

ALEKSI LUKKARINEN, LAURI MALMI, and LASSI HAARANEN

APPENDIX B RESULT-RELATED TABLES AND FIGURES

To offer more in-depth knowledge about the results of this review, this appendix provides the
following tables and figures:

Table B1 Substantial data collected from the publications.
Table B2 Five most-used publication channels.
Table B3 25 most-cited publications.
Figure B4 Details for four author-based publication streams.

Copyright © Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen 2021.

This is the authors' version ("final accepted manuscript") of the work. It is posted here for your
personal use. Not for redistribution. The formatting and the layout differ in the published version.

The definitive Version of Record was published in ACM Transactions on Computing Education
in March 2021 and is available at: https://doi.org/10.1145/3423956

ACM Reference format:
Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. 2021. Event-driven Programming in Programming
Education: A Mapping Review. ACM Trans. Comput. Educ. 21, 1, Article 1 (March 2021), 31 pages.
https://doi.org/10.1145/3423956

https://doi.org/10.1145/3423956
https://doi.org/10.1145/3423956

Title
(� and � denote historical/semi-historical publications; see § 3.3.
 denotes one of the 25 most-cited publications; see § 3.1.2 and Table B3.)

First Author Year
General

Pedagogical
Offerings

Isced
Levels

Course Context;
Programming Theme

Programming Languages and Tools

General-Purpose Educational

¡YO� quiero Java!: Teaching Java as a Second Programming Language Tuttle S. M. 2001  6 CS2; Web Java —

.NET Gadgeteer: A New Platform for K–12 Computer Science Education Hodges S. 8 2013  3 K–12; Embedded C#, VB .NET Gadgeteer

A “CS 1.5” Introduction to Web Programming Stepp M. 3 2009  6 Web programming JavaScript, PHP, SQL —

A� CS1 to CS2 Bridge Class Using 2D Game Programming Leutenegger S. T. 2006  6 CS1/CS2; Games ActionScript —

A Different Approach of Teaching Introductory Visual Basic Course Jiang K. 3 2004  6 CS1; GUIs VB, VBA, VBScript —

A Game-Based Approach to the Teaching of Object-Oriented
Programming Languages

Rodríguez Corral
J. M. 5

2014  6 CS2 C# Sifteo Cubes

A Graphics Package for the First Day and Beyond Goldwasser
M. H. 2

2009  3, 6 CS1; Graphics Python cs1graphics

A� Hypertext Module for Teaching User Interface Design Barrett M. L. 1993   6 Graphics/GUIs — —

A� Library to Support a Graphics-Based Object-First Approach to CS 1 Bruce① K. B. 3 2001  6 CS1; Graphics Java objectdraw

A New Approach to Computer Science in the Liberal Arts Burns B. 2005  6 CS1 — DrRacket

A Placement Test for Computer Science: Design, Implementation, and Analysis Nugent G. 4 2006  6 CS1 — —

A� Required Mechanical Engineering Course in Microprocessors McNeill S. R. 2 1995  6 Mech. eng., 𝜇-proc. Machine lang. in hex —

A� Tangible Interface for Controlling Robotic Toys Patten J. 3 2000  — K–12; Robots — Lego Mindstorms

A Top-Down Approach to Teaching Introductory Computer Graphics Sung K. 2 2004  6 Graphics/GUIs C++ —

Adapting� Computer Graphics Curricula to Changes in Graphics Hitchner L. E. 2 2000  6 Graphics/GUIs Java —

Adapting Higher-Order List Operators for Blocks Programming Kim④ S. 2 2015   6 Mobile programming — App Inventor

Adding Breadth to CS1 and CS2 Courses through Visual
and Interactive Programming Projects

Jimenez-Peris
R. 3

1999  6 CS1/CS2;
Graphics, Games

— —

AdMoVeo: A Robotic Platform for Teaching Creative Programming to Designers Alers S. 2 2009  6 Creative programming
for designers; Robots

Java (Processing) AdMoVeo

An Environment for Learning Interactive Programming Tang T. 3 2014  6 CS1 Python Skulpt, CodeSkulptor,
SimpleGUI

Alice: A 3-D Tool for Introductory Programming Concepts Cooper S. 3 2000   3, 6 CS0/CS1 Python Alice

Assessment of Computer Science Learning in a Scratch-Based Outreach Program Franklin② D. 15 2013   2 Outreach — Scratch

Beautiful JavaScript: How to Guide Students to Create Good and Elegant Code Passier H. 3 2014  — — JavaScript —

BlockyTalky: New Programmable Tools to Enable Students’ Learning Networks Kelly A. 4 2018    2 K–12; Embedded,
Music, Network

— BlockyTalky

Chief Chefs of Z to Alloy: Using a Kitchen Example to Teach Alloy with Z Tarkan S. 2 2009    6, 7, 8 Formal methods Alloy, Z —

Notes: Continues on the next page…Pedagogical offerings:  = approaches,  = tools,  = outcomes. Language acronyms: BASIC = Beginner’s All-Purpose Symbolic Instruction Code; PHP = PHP: Hypertext Preprocessor;
SQL = Structured Query Language; VB(A) = Visual Basic (for Applications). The circled numbers left from the authors refer to the author-based publication streams; see § 3.2 and Figure B4.
Numbers on the right side of authors refer to the total number of authors, when more than one exist.

Table B1. Substantial data collected from the publications fully included into this study (see § 2.2).

MANUSCRIPT

Title
(� and � denote historical/semi-historical publications; see § 3.3.
 denotes one of the 25 most-cited publications; see § 3.1.2 and Table B3.)

First Author Year
General

Pedagogical
Offerings

Isced
Levels

Course Context;
Programming Theme

Programming Languages and Tools

General-Purpose Educational

Collateral Learning of Mobile Computing: An Experience Report Kumar A. N. 2018  6, 7 Artificial intelligence,
Prog. lang.; Mobile

(Java, C++) —

Combining Big Data and Thick Data Analyses for Understanding Youth
Learning Trajectories in a Summer Coding Camp

Fields③ D. A. 4 2016  1, 2 Outreach — Scratch

Controversy on How to Teach CS 1: A Discussion on the SIGCSE-Members
Mailing List

Bruce① K. B. 2004  6 CS1 — —

Creating� Windows Applications Using Borland’s OWL Classes Szuecs L. 1996  6 Graphics/GUIs C++ —

Debugging: A Review of the Literature from an Educational Perspective McCauley R. 7 2008 lit. review — — — —

Designing a Relational Social Robot Toolkit for Preschool Children
to Explore Computational Concepts

Gordon M. 4 2015   0 Preschool computing — Social Robot Toolkit
(incl. DragonBot)

Developing Assessments to Determine Mastery of Programming Fundamentals Luxton-Reilly A. 10 2017  6 CS1; GUIs — —

Developing Principles of GUI Programming Using Views Bishop J. 2 2004  — CS curriculum C# Views

DoodlePad: Next-Gen Event-Driven Programming for CS1 Russo M. F. 2017  6 CS1; Graphics Java DoodlePad

Easy,� Realistic GUIs with Java in CS1 Lambert K. 2 2000  3, 6 CS1/CS2; GUIs Java BreezyGUI

Ecological Design-Based Research for Computer Science Education:
Affordances and Effectivities for Elementary School Students

Harlow② D. B. 5 2018    1 K–6 — LaPlaya

EcoSim: A Language and Experience Teaching Parallel Programming
in Elementary School

Gregg C. 4 2012   1 K–6; Parallelism — EcoSim

Educating for Mobile Computing: Addressing the New Challenges Burd B. 6 2012   — CS curriculum; Mobile JavaScript AppInventor,
TouchDevelop

Effects of Oral Metaphors and Allegories on Programming Problem Solving Hidalgo-Céspedes
J. 4

2018   6 CS1 Java Goldbach Calculator

Engaging Students in Programming Fundamentals Using Alice 2.0 Mullins P. M. 2 2008  6 CS1 Java Alice

Engendering Excitement and Interest in Computer Science Courses
by Using Emerging Wireless Sensors

Wang H. 2014  6, 7 Oper. syst., Security;
Wireless sensors

NesC —

Enhancing Robot Programming with Visual Feedback and Augmented Reality Magnenat S. 4 2015   3 K–12; Augmented
reality, Robots

— Thymio II, Aseba/VPL

Event-Driven� Programming Facilitates Learning Standard
Programming Concepts

Bruce① K. B. 2 2004  3, 6 CS1 Java objectdraw

Event-Driven Programming Is Simple Enough for CS1 Bruce① K. B. 3 2001  6 CS1; GUIs —

Events Not Equal to GUIs Hansen S. 2 2004  6, 7 Event-driven progr. Java —

Notes: Continues on the next page…Pedagogical offerings:  = approaches,  = tools,  = outcomes. Language acronyms: BASIC = Beginner’s All-Purpose Symbolic Instruction Code; PHP = PHP: Hypertext Preprocessor;
SQL = Structured Query Language; VB(A) = Visual Basic (for Applications). The circled numbers left from the authors refer to the author-based publication streams; see § 3.2 and Figure B4.
Numbers on the right side of authors refer to the total number of authors, when more than one exist.

Table B1 (continued). Substantial data collected from the publications fully included into this study (see § 2.2).

MANUSCRIPT

Title
(� and � denote historical/semi-historical publications; see § 3.3.
 denotes one of the 25 most-cited publications; see § 3.1.2 and Table B3.)

First Author Year
General

Pedagogical
Offerings

Isced
Levels

Course Context;
Programming Theme

Programming Languages and Tools

General-Purpose Educational

Events-First Programming in App Inventor Turbak④ F. 5 2014  — CS0; Mobile — App Inventor

Experiences� with CCB-Directed Projects in the Classroom Purtilo J. 2 1994  6 SE project course — —

Experiencing Aspects of Games Programming in an Introductory
Computer Graphics Class

Sung K. 3 2007  6 Graphics/GUIs; Games — —

Exploring� the Difficulties of Learning Object-Oriented Techniques Sheetz S. D. 5 1997  6, 7 Advanced progr. Smalltalk —

Frameworks� in CS1: A Different Way of Introducing Event-Driven Programming Christensen H. B. 2 2002   6 CS1; GUIs Java Presenter Framework

Frogs to Think with: Improving Students’ Computational Thinking and
Understanding of Evolution in a Code-First Learning Environment

Guo Y. 6 2016    2 K–9 science education — FrogPond

From Alice to Python. Introducing Text-Based Programming in Middle Schools Tabet N. 4 2016   2 K–12 Java, Python Alice

From Android Games to Coding in C—An Approach to Motivate Novice
Engineering Students to Learn Programming: A Case Study

Dolgopolovas V. 3 2018   6 CS1; Mobile C App Inventor

How to Creatively Communicate Microsoft.NET Technologies
in the IT Curriculum

Chaytor L. 2 2003  5 CS curriculum VB, JavaScript —

How� to Teach Graphics Using X (and Live to Tell about It) Pavlidis T. 1996  6 Graphics/GUIs C —

Incorporating Tangible Computing Devices into CS1 Goadrich M. 2014  6 CS1; Hardware,
Embedded, Mobile

Python App Inventor

Initialization in Scratch: Seeking Knowledge Transfer Franklin② D. 6 2016  1 K–6 C, Java Scratch

Instrumentation:� A Multi-Science Integrated Sequence Tesser H. 3 2000  6 CS1; Processing data
from instruments

VB, VBA —

Integrating Console and Event-Driven Models in CS1 Woodworth P. 2 1999  6 CS1 C++ —

Introducing� Concurrency in CS 1 Bruce① K. B. 3 2010  6 CS1; Concurrency Java objectdraw

Introducing� High School Students to Event Driven Programming Lang R. R. 2 1999  3 Outreach ToolBook, Open Script

Introducing OO Design and Programming with
Special Emphasis on Concrete Examples

Angster E. 3 1999  6 CS1 — —

Introduction to Game Design in the Large Classroom Whitehead J. 2008  6 Game design/progr. — GameMaker

Introductory Programming in a Web Context de Raadt M. 2010  6 CS1; Web JavaScript —

JavaScript� as a First Programming Language for Multimedia Students Ward R. 2 1998  6 CS1; Multimedia JavaScript —

Learning through Game Modding El-Nasr M. S. 2 2006  3, 6 Game design/progr.;
Games

C#, UnrealScript —

Let’s Modify the Objects-First Approach into Design-Patterns-First Pecinovský R. 3 2006  2, 3, 6 K–12, CS1, Complem.
educ.; Design patterns

Java BlueJ

Notes: Continues on the next page…Pedagogical offerings:  = approaches,  = tools,  = outcomes. Language acronyms: BASIC = Beginner’s All-Purpose Symbolic Instruction Code; PHP = PHP: Hypertext Preprocessor;
SQL = Structured Query Language; VB(A) = Visual Basic (for Applications). The circled numbers left from the authors refer to the author-based publication streams; see § 3.2 and Figure B4.
Numbers on the right side of authors refer to the total number of authors, when more than one exist.

Table B1 (continued). Substantial data collected from the publications fully included into this study (see § 2.2).

MANUSCRIPT

Title
(� and � denote historical/semi-historical publications; see § 3.3.
 denotes one of the 25 most-cited publications; see § 3.1.2 and Table B3.)

First Author Year
General

Pedagogical
Offerings

Isced
Levels

Course Context;
Programming Theme

Programming Languages and Tools

General-Purpose Educational

MakeCode and CODAL: Intuitive and Efficient Embedded Systems
Programming for Education

Devine J. 6 2019  — K–12; Embedded Static Type Script, C++ —

Mediating Programming through Chat for the OLPC Dimond J. P. 2009   1, 2 Outreach A chat with a small bespoke programming language

Modeling the Learning Progressions of Computational
Thinking of Primary Grade Students

Seiter L. 2 2013   1 K–6 — Scratch

My Program Is Correct But It Doesn’t Run: A Preliminary Investigation
of Novice Programmers’ Problems

Garner S. 3 2005  6 CS1 Java —

New� Possibilities in the Introductory Graphics Course
for Computer Science Majors

Rosalee Wolfe 1999  6 Graphics/GUIs C++ —

No Sensor Left Behind: Enriching Computing Education with Mobile Devices Dabney M. H. 3 2013  3 Outreach; Mobile Java App Inventor

Object-Oriented Programming at Upper Secondary School for Advanced Students Lubomir Salanci 2006  3 K–12 Object Pascal —

Parallel Programming with Pictures is a Snap! Feng A. 3 2017   2 Outreach; Parallelism — Snap!

Playing Beowulf: Bridging Computational Thinking, Arts
and Literature through Game-Making

de Paula B. H. 4 2018  2 Outreach; Games — MissionMaker

Problems in the Initial Teaching of Programming Using Java:
The Case for Replacing J2SE with J2ME

Utting I. 2006  — CS1/CS2; GUIs Java —

Programming in the Wild: Trends in Youth Computational Participation
in the Online Scratch Community

Fields③ D. A. 3 2014  1, 2, 3 K–12 — Scratch

Reflections on Teaching App Inventor for Non-Beginner Programmers:
Issues, Challenges and Opportunities

Soares④ A. 2014  6, 7 Mobile programming — App Inventor

Skill Progression Demonstrated by Users in the Scratch Animation Environment Scaffidi C. 2 2012  1, 2, 3 K–12 — Scratch

Squint: Barely Visible Library Support for CS1 Murtagh① T. P. 2007   6 CS1; GUIs, Networks Java Squint

Starting from Scratch: Outcomes of Early Computer Science Learning
Experiences and Implications for What Comes Next

Weintrop② D. 4 2018   1 K–12 LaPlaya

Students’ Experiences from the Use of MIT App Inventor in Classroom Perdikuri K. 2014   3 K–12 — App Inventor

subTextile: Reduced Event-Oriented Programming System for
Sensate Actuated Materials

Sadi S. 2 2007  — Complementary
education

— subTextile

Teaching CS1 with Web Applications and Test-Driven Development Schaub S. 2009  6 CS1; Web C# —

Teaching� Design Patterns through Computer Game Development Gestwicki P. 2 2008   6 Design patterns;
Games

Java EEClone

Teaching Embedded Software Concepts Using Android Muppala J. K. 2011  6 Embedded progr. Java —

Notes: Continues on the next page…Pedagogical offerings:  = approaches,  = tools,  = outcomes. Language acronyms: BASIC = Beginner’s All-Purpose Symbolic Instruction Code; PHP = PHP: Hypertext Preprocessor;
SQL = Structured Query Language; VB(A) = Visual Basic (for Applications). The circled numbers left from the authors refer to the author-based publication streams; see § 3.2 and Figure B4.
Numbers on the right side of authors refer to the total number of authors, when more than one exist.

Table B1 (continued). Substantial data collected from the publications fully included into this study (see § 2.2).

MANUSCRIPT

Title
(� and � denote historical/semi-historical publications; see § 3.3.
 denotes one of the 25 most-cited publications; see § 3.1.2 and Table B3.)

First Author Year
General

Pedagogical
Offerings

Isced
Levels

Course Context;
Programming Theme

Programming Languages and Tools

General-Purpose Educational

Teaching Non-Beginner Programmers with App Inventor:
Survey Results and Implications

Soares④ A. 2 2015   6 Mobile programming — App Inventor

Teaching Objects-First in Introductory Computer Science Cooper S. 3 2003  6 CS1 Java, C++ Alice

Teaching Software Design Engineering Across the K–12 Curriculum:
Using Visual Thinking and Computational Thinking

Fronza I. 3 2016  1, 2, 3 K–12 curriculum — —

The Assessment of Mobile Computational Thinking Sherman④ M. 2 2015  6 Mobile programming — App Inventor

The CCL-Parallax Programmable Badge: Learning with
Low-Cost, Communicative Wearable Computers

Brady C. 5 2015   6 CS curriculum BASIC, C, Spin,
Assembler

CCL-Parallax

The Curse of Monkey Island: Holding the Attention
of Students Weaned on Computer Games

Ladd B. C. 2006  6 CS1/CS2; Games C++ —

The Design of Mobile Apps: What and How to Teach? Stuurman S. 3 2014  6, 7 CS curriculum; Mobile — —

The Impact of Different Teaching Approaches and Languages on Student
Learning of Introductory Programming Concepts

Kunkle W. M. 2 2016  6 CS1 Java, VB, C++ BlueJ

The Programmers’ Collective: Fostering Participatory Culture by Making
Music Videos in a High School Scratch Coding Workshop

Fields③ D. A. 3 2015   3 K–12; Media — Scratch

Using a Discourse-Intensive Pedagogy and Android’s App Inventor for
Introducing Computational Concepts to Middle School Students

Grover S. 2 2013  2 K–12; Mobile — App Inventor

Using Alice 2.0 as a First Language Mullins P. 3 2009   6 CS1/CS2 Java, C++ Alice

Using� Graphics to Support the Teaching of Fundamental
Object-Oriented Principles in CS1

Alphonce C. 2 2003  6 CS1; Graphics Java NGP

Using Image Processing Projects to Teach CS1 Topics Wicentowski R. 2 2005  6 CS1; Media Java, C —

Using Mobile Phone Programming to Teach Java and Advanced
Programming to Computer Scientists

Riley D. 2012  6 Advanced progr.;
Mobile

Java —

Using Open-Source Robocode as a Java Programming Assignment Liu P. L. 2008   6 Advanced progr.;
Games

Java Robocode

Using Second Life in Programming’s Communities of Practice Esteves M. 5 2008  6 CS1/CS2;
Virtual reality

Second Life, Linden
Scripting Language

—

Why� Structural Recursion Should Be Taught before Arrays in CS 1 Bruce① K. B. 3 2005  6 CS1 Java objectdraw

XDP:� A Simple Library for Teaching a Distributed Programming Module Arnow D. M. 1995  6 Operating systems C XDP

Youth Computational Participation in the Wild: Understanding
Experience and Equity in Participating and Programming
in the Online Scratch Community

Fields③ D. A. 3 2017  — K–12 — Scratch

Notes: Pedagogical offerings: = approaches,  = tools,  = outcomes. Language acronyms: BASIC = Beginner’s All-Purpose Symbolic Instruction Code; PHP = PHP: Hypertext Preprocessor; SQL = Structured Query
Language; VB(A) = Visual Basic (for Applications). The circled numbers left from the authors refer to the author-based publication streams; see § 3.2 and Figure B4. Numbers on the right side of authors refer to
the total number of authors, when more than one exist.

Table B1 (continued). Substantial data collected from the publications fully included into this study (see § 2.2).

MANUSCRIPT

Publication Channel Abbreviations Type Publisher # of Results Jufo Level Source of jufo Level

SIGCSE Technical Symposium
https://sigcse.org/sigcse/events/symposia

SIGCSE Conference ACM 26 1 Publisher

Innovation and Technology in Computer Science Education
(formerly Integrating Technology into Computer Science Education;
includes ITiCSE Working Group Reports)
http://iticse.acm.org/

ITiCSE, ITiCSE-WGR Conference ACM 11 1 Channel

Journal of Computing Sciences in Colleges
(formerly Journal of Computing in Small Colleges)
http://www.ccsc.org/

J Comput Sci Coll (JCSC) Journal
(proceedings of
conferences)

CCSC 11 0 Authors’ judgement

Information Technology Education
(formerly Information Technology Curriculum)
https://www.sigite.org/

SIGITE, CITC4, CITC5 Conference ACM 5 1 Publisher

ACM Transactions in Computing Education
(formerly Journal on Educational Resources in Computing)
https://toce.acm.org/ (http://jeric.acm.org/)

ACM Trans Comput Educ (TOCE),
J Educ Resour Comput (JERIC)

Journal ACM 3 2 Channel

Summary 5 publication channels (3 journals and 2 conferences) of jufo levels 0–2, consisting of 56 (53.3 %) of the 105 included publications.

Notes: Several publication channels have been renamed. J Comput Sci Coll is included on the basis of interpreting it as a series of conference proceedings. The abbreviation jufo refers to a Finnish
classification to measure the quality of scientific publication channels; see § A.3. All jufo levels were collected during November 13, 2019.

Table B2. Five most-used publication channels in the 105 fully included publications
according to the first versions of the publications (see § 3.1.1).

MANUSCRIPT

Citations Title (� and � denote historical/semi-historical publications; see § 3.3) Authors
First Publication (channels with JUFO level ≠ 1 are accentuated)

Year Channel Jufo Publisher Pages

297 Alice: A 3-D Tool for Introductory Programming Concepts Cooper S., Dann W., Pausch R. 2000 J Comput Sci Coll 0 A CCSC 10
2485 Teaching Objects-First In Introductory Computer Science Cooper S., Dann W., Pausch R. 2003 SIGCSE 1 P ACM 5
123 Learning through Game Modding El-Nasr M. S., Smith B. K. 2006 ACM Comput Entertain 1 C " 20
82 Modeling the Learning Progressions of Computational Thinking of Primary Grade Students Seiter L., Foreman B. 2013 ICER 1 P " 8
73 Debugging: A Review of the Literature from an Educational Perspective McCauley R. et al. (7 authors) 2008 Comput Sci Educ 2 C Taylor & Francis 26
566 My Program Is Correct But It Doesn’t Run: A Preliminary Investigation of Novice

Programmers’ Problems
Garner S., Haden P., Robins A. V. 2005 ACE 1 P ACS 8

51 Assessment of Computer Science Learning in a Scratch-Based Outreach Program Franklin② D. et al. (15 authors) 2013 SIGCSE 1 P ACM 6
475 Controversy on How to Teach CS 1: A Discussion on the SIGCSE-Members Mailing List Bruce① K. B. 2004 ITiCSE-WGR 1 P " 7
44 A Game-Based Approach to the Teaching of Object-Oriented Programming Languages Rodríguez Corral J. M. et al. (5 authors) 2014 Comput Educ 3 C Elsevier 10
40 Programming in the Wild: Trends in Youth Computational Participation in the Online

Scratch Community
Fields③ D. A., Giang M., Kafai Y. B. 2014 WiPSCE 1 P ACM 10

39 Teaching� Design Patterns through Computer Game Development Gestwicki P., Sun F. 2008 J Educ Res Comput 2 C " 21
35 Skill Progression Demonstrated by Users in the Scratch Animation Environment Scaffidi C., Chambers C. 2012 Int J Hum Comput Interact 1 C Taylor & Francis 16
326 Using a Discourse-Intensive Pedagogy and Android’s App Inventor for Introducing

Computational Concepts to Middle School Students
Grover S., Pea R. 2013 SIGCSE 1 P ACM 6

32 Using Alice 2.0 as a First Language Mullins P., Whitfield D., Conlon M. 2009 J Comput Sci Coll 0 A CCSC 8
31 Exploring� the Difficulties of Learning Object-Oriented Techniques Sheetz S. D. et al. (5 authors) 1997 J Manag Inf Syst 3 C Taylor & Francis 29
30 A� Library to Support a Graphics-Based Object-First Approach to CS 1 Bruce① K. B., Danyluk A. P., Murtagh T. P. 2001 SIGCSE 1 P ACM 5
30 Developing Assessments to Determine Mastery of Programming Fundamentals Luxton-Reilly A. et al. (10 authors) 2017 ITiCSE-WGR 1 P " 23
27 The Programmers’ Collective: Fostering Participatory Culture by Making Music Videos in

a High School Scratch Coding Workshop
Fields③ D. A., Vasudevan V., Kafai Y. B. 2015 Interact Learn Environ 1 C Taylor & Francis 21

25 Using Mobile Phone Programming to Teach Java and Advanced Programming to
Computer Scientists

Riley D. 2012 SIGCSE 1 P ACM 6

24 The Assessment of Mobile Computational Thinking Sherman, Mark and Martin, Fred 2015 J Comput Sci Coll 0 A CCSC 7
23 Educating for Mobile Computing: Addressing the New Challenges Burd B. et al. (6 authors) 2012 ITiCSE-WGR 1 P ACM 13
22 Using� Graphics to Support the Teaching of Fundamental Object-Oriented Principles in CS1 Alphonce C., Ventura P. 2003 OOPSLA 1 P " 6
22 Using Image Processing Projects to Teach CS1 Topics Wicentowski R., Newhall T. 2005 SIGCSE 1 P " 5
21 No Sensor Left Behind: Enriching Computing Education with Mobile Devices Dabney M. H., Dean B. C., Rogers T. 2013 " 1 P " 6
21 The Impact of Different Teaching Approaches and Languages on Student Learning of

Introductory Programming Concepts
Kunkle W. M., Allen R. B. 2016 ACM Trans Comput

Educ
2 P " 26

Summary 25 (23.8 %) of the 105 included results; 3 of these are historical and 1 is semi-historical 86 unique authors; 1–15 per result 1997–2017 15 channels; 7 SIGCSEs 0–3 5 publishers 5–29

Notes: 5/6 = citations do/might come from multiple publications. All citation counts were collected (see § 2.2.2) from Scopus during Sept. 3, 2020. Some citation records from Scopus did not contain a citation count and are not
taken into account. If they were counted as single citations, however, their effect would be about 1–5 citations per result, which makes the large-scale effect practically negligible. The numbers next to the authors refer
to the author-based publication streams; see § 3.2 and Figure B4. The abbreviation jufo refers to a Finnish classification to measure the quality of scientific publication channels; see § A.3. All jufo levels were
collected during Nov. 13, 2019. The letters in the jufo column indicate the source of the level as follows: C = publication channel, P = publisher, S = publication series, and A = author’s judgement.

Table B3. 25 most-cited publications in the 105 fully included publications (see § 3.1.2).

MANUSCRIPT

Bruce et al. 2005
Why Structural Recursion
Should Be Taught before

Arrays in CS 1

Murtagh 2007
Squint: Barely Visible

Library Support
for CS1

Bruce et al. 2010
Introducing

Concurrency in CS 1

Bruce et al. 2001a
Event-Driven

Programming Is Simple
Enough for CS1

Bruce et al. 2001b
Library to Support

a Graphics-Based Object-
First Approach to CS 1

Bruce 2004
Controversy on How to Teach

CS 1: A Discussion on the SIGCSE-
Members Mailing List

Bruce & Danyluk 2004
Event-Driven Programming
Facilitates Learning Standard

Programming Concepts

Franklin et al. 2013
Assessment of Computer

Science Learning in a Scratch-
Based Outreach Program

Franklin et al. 2016
Initialization in Scratch:

Seeking Knowledge Transfer

Fields et al. 2014
Programming in the Wild:

Trends in Youth Computational
Participation in the Online

Scratch Community

Fields et al. 2015
The Programmers’ Collective:

Fostering Participatory Culture by
Making Music Videos in a High

School Scratch Coding Workshop

Fields et al. 2016
Combining Big Data and Thick

Data Analyses for Understanding
Youth Learning Trajectories in a

Summer Coding Camp

Fields et al. 2017
Youth Computational Participation in the

Wild: Understanding Experience and Equity
in Participating and Programming in the

Online Scratch Community

Harlow et al. 2018
Ecological Design-Based Research for

Computer Science Education: Affordances and
Effectivities for Elementary School Students

Weintrop et al. 2018
Starting from Scratch: Outcomes of Early

Computer Science Learning Experiences and
Implications for What Comes Next

Soares 2014
Reflections on Teaching App
Inventor for Non-Beginner

Programmers: Issues, Challenges
and Opportunities

Turbak et al. 2014
Events-First Programming

in App Inventor

Soares & Martin 2015
Teaching Non-Beginner

Programmers with App Inventor:
Survey Results and Implications

Kim & Turbak 2015
Adapting Higher-Order

List Operators for
Blocks Programming

Sherman & Martin 2015
The Assessment of Mobile
Computational Thinking

1

2

3

4

Fig. B4. Four author-based publication streams having at least four publications (see § 3.2). The first stream (red) is related mostly to ObjectDraw and Squint.
The second and third streams are concerned with Scratch (green), except Harlow et al. [2018] and Weintrop et al. [2018] (purple), which deal with LaPlaya.
Finally, the fourth stream (orange) is linked to App Inventor. Please notice that the timeline continues from the first stream to the other three streams.

MANUSCRIPT

https://doi.org/10.1145/377435.377440
https://doi.org/10.1145/1044550.1041652
https://doi.org/10.1145/364447.364527
https://doi.org/10.1145/1028664.1028704
https://doi.org/10.1145/1047344.1047430
https://doi.org/10.1145/1227310.1227489
https://doi.org/10.1145/1734263.1734341
https://doi.org/10.1145/2445196.2445304
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1080/07370008.2018.1475390
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/2670757.2670768
https://doi.org/10.1080/10494820.2015.1065892
https://doi.org/10.1145/2839509.2844631
https://doi.org/10.1145/3123815
http://isedj.org/2014-12/n4/ISEDJv12n4p56.html
http://dl.acm.org/doi/10.5555/2602724.2602739
http://isedj.org/2015-13/n5/ISEDJv13n5p24.html
https://doi.org/10.1109/VLHCC.2015.7357219
http://dl.acm.org/doi/10.5555/2753024.2753037

