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We present and analyze a new hybrid stochastic finite element method for solving eigenmodes of structures with random geometry
and random elastic modulus. The fundamental assumption is that the smallest eigenpair is well defined over the whole stochastic
parameter space. The geometric uncertainty is resolved using collocation and random material models using Galerkin method at
each collocation point. The response statistics, expectation and variance of the smallest eigenmode, are computed in numerical
experiments. The hybrid approach is superior to alternatives in practical cases where the number of random parameters used to
describe geometric uncertainty is much smaller than that of the material models.

1. Introduction

In standard engineering models many physical quantities
such as material parameters are taken to be constant, even
though their statistical nature is well understood. Similarly,
assumptions of geometric constants, such as thickness of
a structure, are not realistic due to manufacturing imper-
fections. In a detailed report on a state-of-the-art verifica-
tion and validation process comparing modern simulations
with the set of experiments performed in the Oak Ridge
National Laboratory in the early 70s, Szabo and Muntges
report discrepancies of over 20% in some quantities of
interest [1]. These discrepancies are attributed to machining
imperfections not accounted for in the computations. Also, in
important nonlinear problems such as buckling of a shell, it is
known that variation betweenmanufactured specimens has a
profound effect in the actual performance [2]. This suggests
that a stochastic dimension should be added to the models.

The modern era of uncertainty quantification starts with
the works of Babuska et al. [3, 4] and the ETH-group led
by Schwab and Gittelson (e.g., [5]) with provably faster
convergence rates than the standard Monte Carlo methods.
Although the so-called stochastic finite elements had been
studied for a relative long time before (the classic reference is
Ghanem and Spanos [6]), their application was thus limited
to highly specific cases.

The solution methods can broadly speaking be divided
into intrusive and nonintrusive ones. The same division
applies to stochastic eigenvalue problems (SEVPs) as well.
SEVPs have attracted a lot of attention recently and various
algorithms have been suggested for computing approximate
eigenpairs [7–10], specially the power iteration [11] and
inverse iteration [12].

In this paper our focus is on effects ofmaterialmodels and
manufacturing imperfections of geometric nature. It should
be noted that in the context of this paper it is assumed
that the problems are positive definite and the eigenpair of
interest is the ground state, that is, the one with the smallest
eigenvalue which, in theory, can be a double eigenvalue. Our
experimental setup is nonsymmetric and, thus, a spectral
gap exists and the inverse iteration converges to the desired
eigenmode.

In stochastic eigenvalue problems one must address two
central issues that do not arise in stochastic source problems:
first, the eigenmodes are defined only up to a sign and,
second, the eigenmodes must be normalized over the whole
parameter space; that is, every realizationmust be normalized
in the sameway.Here our quantity of interest is the eigenvalue
and, therefore, we do not necessarily have to fix the signs.The
normalization is handled by solution of a nonlinear system of
equations as in [12].
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(b) Perturbed domain

Figure 1: Two realisations of the domain with meshes. The nominal domain is the reference. The rotation and scaling of the cavity as well as
the direction of the uncertainty in the Young’s modulus is indicated.

The main result of this paper is the new hybrid algorithm
which combines a nonintrusive outer loop (collocation)
with an intrusive inner one (Galerkin). The randomness in
geometry is resolved using collocation and that of materials
with Galerkin at every collocation point. The model problem
is an idealized engine bed vibration problem, where a 2D
hollow square is clamped from one side (see Figure 1). The
inner cavity is assumed to be of fixed shape but random
orientation and Young’smodulus is taken to be random in the
normal direction into the body. The choice of the geometric
uncertainty models the case of sand casting with moulds of
fixed shape. The hybrid approach combines the geometric
flexibility of collocation with much faster computation times
of the Galerkin approach used in the inner loop and, thus,
combines the best of both worlds.

The rest of the paper is organized as follows: first the
abstract problem is introduced in Section 2. The representa-
tion of the random input is given in Section 3. Higher order
finite elements are described in Section 4. Section 5 is central
to our discussion; both solution methods, collocation and
spectral inverse iteration, are presented. Numerical experi-
ments are discussed in Section 6 and finally conclusions are
drawn in Section 7.

2. Problem Statement

We start by presenting the deterministic system of Navier’s
equations of elasticity and the corresponding weak form.
We then extend this to the stochastic setting in order to
cover the case of uncertain domain andmodulus of elasticity.
We aim to compute statistics of the smallest eigenvalue
of the resulting stochastic system. The geometry of the
computational domain is illustrated in Figure 1.

2.1. Deterministic Formulation. We use the Navier equations
of elasticity to model the system of interest. Find the
eigenvalue 𝜅, the displacement field u = (𝑢1, 𝑢2), and the
symmetric stress tensor 𝜎 = (𝜎

𝑖𝑗
)
2
𝑖,𝑗=1, such that

𝜎 = 𝜆div (u) I+ 2𝜇𝜖 (u) , in 𝐷,

− div (𝜎) = 𝜅u, in 𝐷,

u = 0, on 𝜕𝐷
𝐷
,

𝜎 ⋅n = 0, on 𝜕𝐷
𝑁
,

(1)

where 𝜕𝐷 = 𝜕𝐷
𝐷
∪ 𝜕𝐷

𝑁
is a partitioned boundary of𝐷. The

Lamé constants are

𝜆 =

𝐸]
(1 + ]) (1 − 2])

,

𝜇 =

𝐸

2 (1 + ])
,

(2)

with 𝐸 and ] being Young’s modulus and Poisson’s ratio,
respectively. Further, I is the identity tensor, n denotes the
outward unit normal to 𝜕𝐷

𝑁
, and the strain tensor is

𝜖 (u) = 1
2
(∇u+∇u𝑇) . (3)

The vector-valued tensor divergence is

div (𝜎) = (

2
∑

𝑗=1

𝜕𝜎
𝑖𝑗

𝜕𝑥
𝑗

)

2

𝑖=1

. (4)

This formulation assumes a constitutive relation correspond-
ing to linear isotropic elasticity with stresses and strains
related by Hooke’s generalized law:

𝜎V =
[

[

[

𝜎11

𝜎22

𝜎12

]

]

]

= D (𝜆, 𝜇)
[

[

[

𝜖11

𝜖22

𝜖12

]

]

]

= D (𝜆, 𝜇) 𝜖V. (5)

2.2. Weak Formulation. Let us introduce a function space
𝑉
𝐷
= {V : V ∈ 𝐻

1
(𝐷), V|

𝜕𝐷𝐷
= 0} and define the eigen-

problem: find the eigenpair (𝜅, u) ∈ R × (𝑉
𝐷
× 𝑉

𝐷
) such that

𝑎 (u, k) = 𝜅 (u, k)𝐷 , ∀k ∈ 𝑉
𝐷
× 𝑉

𝐷
, (6)

where the bilinear form

𝑎 (u, k) = ∫

𝐷

𝜎 (u) : 𝜖 (k) 𝑑x (7)
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is the integrated tensor contraction

𝜎 : 𝜖 =

2
∑

𝑖,𝑗=1
𝜎
𝑖𝑗
𝜖
𝑖𝑗
, (8)

and (⋅, ⋅)
𝐷
denotes the mass matrix

(u, k)𝐷 = ∫

𝐷

𝑢1V1 +𝑢2V2𝑑x. (9)

As usual, we define the kinematic relation

𝜖V (u) =

[

[

[

[

[

[

[

[

𝜕

𝜕𝑥1
0

0 𝜕

𝜕𝑥2
𝜕

𝜕𝑥2

𝜕

𝜕𝑥1

]

]

]

]

]

]

]

]

[

𝑢1

𝑢2
] (10)

and specify the constitutive matrix

D (𝜆, 𝜇) =
[

[

[

𝜆 + 2𝜇 𝜆 0
𝜆 𝜆 + 2𝜇 0
0 0 𝜇

]

]

]

(11)

for the purpose of rewriting the bilinear form as

𝑎 (u, k) = ∫

𝐷

𝜖V (u)
𝑇D (𝜆, 𝜇) 𝜖V (k) 𝑑x. (12)

2.3. Stochastic Extension of the Eigenproblem. We introduce
two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) to
model randomness of the domain and the elastic modulus,
respectively. Here Ω

𝑖
denotes the set of outcomes, F

𝑖
is a 𝜎-

algebra of events, and P
𝑖
is a probability measure on Ω

𝑖
for

each 𝑖 = 1, 2. Furthermore we set

(Ω,F,P) =

2
⨂

𝑖=1
(Ω

𝑖
,F

𝑖
,P

𝑖
) (13)

to be the underlying product probability space.
The geometry of the computational domain 𝐷 is illus-

trated in Figure 1. We assume that the radius of the cavity
𝑅 : Ω1 → R and the angle 𝜃 : Ω1 → R are randomvariables
satisfying 𝑅min ≤ 𝑅(𝜔1) ≤ 𝑅max and 𝜃min ≤ 𝜃(𝜔1) ≤ 𝜃max for
some suitable constants 𝑅min, 𝑅max, 𝜃min, 𝜃max > 0. Thus we
may write 𝐷 = 𝐷(𝜔1) = 𝐷(𝑅(𝜔1), 𝜃(𝜔1)). In the numerical
examples we set 𝑅(𝜔1) and 𝜃(𝜔1) to be uniformly distributed
random variables.

Suppose that for each 𝜔1 ∈ Ω1 the Young modulus is a
random field on the domain𝐷(𝜔1). By this we mean that 𝐸 =

𝐸(𝜔1, ⋅, ⋅) : Ω2 × 𝐷(𝜔1) → R for every 𝜔1 ∈ Ω1. We assume
that 𝐸(𝜔1, 𝜔2, x) is strictly positive and bounded; that is, for
some constants 𝐸min, 𝐸max > 0 it holds that

𝐸min ≤ 𝐸 (𝜔1, 𝜔2, ⋅) ≤ 𝐸max in 𝐷(𝜔1) . (14)

The stochastic extension of eigenproblem (6) is now given
by the following: find the eigenvalue 𝜅 : Ω → R and the
eigenfunction u : Ω → 𝑉

𝐷(𝜔1)
× 𝑉

𝐷(𝜔1)
such that

𝑎 (𝜔;u (𝜔1, 𝜔2, ⋅) , k)

= 𝜅 (𝜔1, 𝜔2) (u (𝜔1, 𝜔2, ⋅) , k)𝐷(𝜔1)
,

∀k ∈ 𝑉
𝐷(𝜔1)

× 𝑉
𝐷(𝜔1)

(15)

holds for P-almost every 𝜔 = (𝜔1, 𝜔2) ∈ Ω. Here 𝑎(𝜔; u, k)
is the stochastic equivalent of the bilinear form 𝑎(u, k) and is
given by

𝑎 (𝜔; u, k) = ∫

𝐷(𝜔1)
𝜎 (𝜔, u) : 𝜖 (k) 𝑑x = ∫

𝐷(𝜔1)
𝜖V (u)

𝑇

⋅D (𝜆 (𝜔1, 𝜔2, ⋅) , 𝜇 (𝜔1, 𝜔2, ⋅)) 𝜖V (k) 𝑑x.
(16)

The Lamé constants 𝜆(𝜔1, 𝜔2, x) and 𝜇(𝜔1, 𝜔2, x) are simply
random fields defined by (2) with 𝐸 = 𝐸(𝜔1, 𝜔2, x).

In most cases we are mainly interested in computing
statistical moments of the solution. Suppose that we have a
random variable V(𝜔1, 𝜔2). The expected value or mean of
V(𝜔1, 𝜔2) is defined to be

E [V] = ∫

Ω

V (𝜔1, 𝜔2) 𝑑P (𝜔) (17)

and its variance is

Var [V] = E [(V−E [V])2] . (18)

In this paper our aim is to compute the expected value and
variance of the smallest eigenvalue of system (15).

3. Spectral Representations

For purposes of numerical treatment we need to approximate
the random Young modulus using only a finite number
of random variables. A natural way of achieving this is
to use the truncated Karhunen-Loève expansion. Once a
finite-dimensional approximation has been obtained we may
express our solution in a generalized polynomial chaos basis
and apply solution schemes based on the stochastic Galerkin
finite element method; see [6] for a thorough introduction
to this approach. Instead of using the Karhunen-Loève
expansion one could also fix a spatial basis and then estimate
the polynomial chaos coefficients straight frommeasurement
data; see, for instance, [13, 14].

3.1. Karhunen-Loève Expansion. The Karhunen-Loève ex-
pansion is a representation of a random field as a linear com-
bination of the eigenfunctions of the associated covariance
operator. Truncating the resulting series we obtain a finite-
dimensional approximation of the original random field.
The Karhunen-Loève expansion is the optimal choice among
linear expansions in the sense that it minimizes the mean
square truncation error [6].
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For a fixed 𝜔1 ∈ Ω1 let 𝐸(𝜔2, x) = 𝐸(𝜔1, 𝜔2, x) be a
random field on𝐷 = 𝐷(𝜔1) with mean field

𝐸 (x) = ∫

Ω2

𝐸 (𝜔2, x) 𝑑P (𝜔2) (19)

and a covariance function

𝐶
𝐸
(x1, x2) = ∫

Ω2

(𝐸 (𝜔2, x1) − 𝐸 (x1))

⋅ (𝐸 (𝜔2, x2) − 𝐸 (x2)) 𝑑P (𝜔2)

(20)

that is symmetric and positive definite.The associated covari-
ance operator

(C
𝐸
V) (x1) := ∫

𝐷

C
𝐸
(x1, x2) V (x2) 𝑑x2 (21)

is compact as an operator C
𝐸
: 𝐿

2
(𝐷) → 𝐿

2
(𝐷) and there-

fore admits a countable number of positive eigenvalues
{𝜆

𝑚
}
∞

𝑚=1 and associated eigenfunctions {𝜙
𝑚
}
∞

𝑚=1. The eigen-
values {𝜆

𝑚
}
∞

𝑚=1 tend to zero as 𝑚 tends to infinity and the
eigenfunctions {𝜙

𝑚
}
∞

𝑚=1 form an orthonormal basis of 𝐿2(𝐷).
The eigenpairs may be computed numerically using, for
example, fast multipole methods [15].

The Karhunen-Loève expansion of the random field
𝐸(𝜔2, x) is now given by

𝐸 (𝜔2, x) = 𝐸 (x) +
∞

∑

𝑚=1
√𝜆

𝑚
𝜙
𝑚 (

x) 𝑦𝑚 (𝜔2) , (22)

where {𝑦
𝑚
}
∞

𝑚=1 are centered and orthogonal but not necessar-
ily independent random variables.

In numerical computations we replace the random field
𝐸(𝜔2, x)with an approximation obtained by truncating series
(22) after 𝑀 terms. The truncation error depends upon the
decay of the Karhunen-Loève eigenvalues and eigenfunc-
tions. See [16] for bounds on this decay.

Remark 1. It is essential for numerical algorithms that the
random variables {𝑦

𝑚
}
∞

𝑚=1 are mutually independent, even
though this is not in general implied by their orthogonality.
A solution to this issue has been proposed in [3], where
suitable auxiliary density functions have been introduced. In
the numerical examples we assume a representation of the
random field with respect to a set of independent uniformly
distributed random variables. Other types of random vari-
ables (e.g., Gaussian) could be considered as well.

3.2. Legendre Chaos. We employ the generalized polynomial
chaos framework which essentially means representing our
solution on a basis of orthogonal polynomials. In our case
we assume the input random variables to be uniformly
distributed and the polynomial chaos basis is therefore given
by tensorized Legendre polynomials. The use of orthogo-
nal polynomials as a basis allows us to apply stochastic
Galerkin based methods and ensures optimal convergence
of these methods; see [17]. In this paper we aim to solve

the eigenmodes using a method of spectral inverse iteration
introduced in [12].

Assume that y(𝜔2) = (𝑦1(𝜔2), . . . , 𝑦𝑀(𝜔2)) is a vector of
mutually independent random variables that are uniformly
distributed in the interval [−1, 1].The expected value ormean
of a random variable V(y) is now given by

E2 [V] = ∫

Ω2

V (y (𝜔2)) 𝑑P (𝜔2)

= ∫

[−1,1]𝑀
V (y) 2−𝑀𝑑y.

(23)

Here we have used a subscript to indicate that the expected
value is taken over the sample space Ω2 only. We associate
each multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑀) with the multivariate
Legendre polynomial

Λ
𝛼
(y) :=

𝑀

∏

𝑚=1
𝐿
𝛼𝑚
(𝑦

𝑚
) , (24)

where 𝐿
𝑝
(𝑥) denotes the univariate Legendre polynomial of

degree 𝑝. We assume that the polynomials are normalized so
that E2[Λ

2
𝛼
] = 1 for all 𝛼 ∈ N𝑀

0 .
The system {Λ

𝛼
(y) | 𝛼 ∈ N𝑀

0 } forms an orthonormal
basis of 𝐿2([−1, 1]𝑀). This allows us to express any square
integrable randomvariable V(y) in a polynomial chaos expan-
sion

V (y) = ∑

𝛼∈N𝑀0

V
𝛼
Λ

𝛼
(y) , (25)

where the coefficients are given by V
𝛼
= E2[VΛ 𝛼

].
For numerical computations we truncate expansion (25).

To this end we choose a finite set of multi-indices A ⊂ N𝑀

0
and approximate V(y) with the series

VA (y) = ∑

𝛼∈A

V
𝛼
Λ

𝛼
(y) . (26)

Here the choice of the set A is key to obtaining accurate
approximations and is currently a topic of active research. In
our numerical examples we consider sets that for a fixed level
𝐿 ∈ R are given by A

𝑀,𝐿
= {𝛼 ∈ N𝑀

0 | ∑
𝑀

𝑚=1 𝛼𝑚/√𝜆𝑚 ≤ 𝐿},
where {𝜆

𝑚
}
∞

𝑚=1 are the Karhunen-Loève eigenvalues. More
sophisticated adaptive schemes for selecting the multi-index
sets have been presented in [18–20].

The most important reason for using the polynomial
chaos basis is that it allows fast computation of any expecta-
tions involved.This is because we may evaluate integrals over
the stochastic domain analytically and are thus able to avoid
numerical integration in high dimensions. Orthogonality of
the Legendre polynomials yields

E2 [Λ 𝛼
] = 𝛿

𝛼0,

E2 [Λ 𝛼
Λ

𝛽
] = 𝛿

𝛼𝛽

(27)

for all multi-indices 𝛼, 𝛽 ∈ N𝑀

0 . For notational convenience
we set

𝑐
𝑚𝛽𝛾

:= E2 [𝑦𝑚Λ 𝛼
Λ

𝛽
] , 𝑚 ∈ N, 𝛼, 𝛽 ∈ N

𝑀

0 ,

𝑐
𝛼𝛽𝛾

:= E2 [Λ 𝛼
Λ

𝛽
Λ

𝛾
] , 𝛼, 𝛽, 𝛾 ∈ N

𝑀

0 .
(28)
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These coefficients are easy to evaluate analytically; see the
appendix in [12]. It is also worth noting that most of the
coefficients are evaluated to zero. This fact can be exploited
in order to speed up the solution process.

4. Higher Order Finite Elements

Here we give a short overview of the ℎ𝑝-FEM following
closely the one in [21]. In the 𝑝-version of the FEM the
polynomial degree 𝑝 is used to control the accuracy of
the solution while keeping the mesh fixed in contrast to
the ℎ-version or standard finite element method, where the
polynomial degree is constant but the mesh size varies. The
ℎ𝑝-method simply combines the ℎ- and 𝑝-refinements.

In our setting we can use topologically fixed meshes with
high-order elements with𝑝 = 4 and𝑝 = 8 to ensure sufficient
resolution of the deterministic part of the solution.

In the following one way to construct a 𝑝-type quadri-
lateral element is given. The construction of triangles follows
similar lines. First of all, the choice of shape functions is not
unique. We use the so-called hierarchic integrated Legendre
shape functions.

Legendre polynomials of degree 𝑛 can be defined by a
recursion formula

(𝑛 + 1) 𝑃𝑛+1 (𝑥) − (2𝑛 + 1) 𝑥𝑃𝑛 (𝑥) + 𝑛𝑃𝑛−1 (𝑥) = 0, (29)

where 𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥.
The derivatives can similarly be computed by using the

recursion

(1−𝑥2) 𝑃
𝑛
(𝑥) = − 𝑛𝑥𝑃

𝑛 (
𝑥) + 𝑛𝑃𝑛−1 (𝑥) . (30)

The integrated Legendre polynomials are defined for 𝜉 ∈
[−1, 1] as

𝜓
𝑛 (
𝜉) = √

2𝑛 − 1
2

∫

𝜉

−1
𝑃
𝑛−1 (𝑡) 𝑑𝑡, 𝑛 = 2, 3, . . . , (31)

and can be rewritten as linear combinations of Legendre
polynomials

𝜓
𝑛 (
𝜉) =

1
√2 (2𝑛 − 1)

(𝑃
𝑛 (
𝜉) − 𝑃𝑛−2 (𝜉)) ,

𝑛 = 2, 3, . . . .
(32)

The normalizing coefficients are chosen so that

∫

1

−1

𝑑𝜓
𝑖 (
𝜉)

𝑑𝜉

𝑑𝜓
𝑗 (
𝜉)

𝑑𝜉

𝑑𝜉 = 𝛿
𝑖𝑗
, 𝑖, 𝑗 ≥ 2. (33)

Using these polynomials we can now define the shape
functions for a quadrilateral reference element over the
domain [−1, 1] × [−1, 1]. The shape functions are divided
into three categories: nodal shape functions, side modes, and
internal modes.

There are four nodal shape functions:

𝑁1 (𝜉, 𝜂) =
1
4
(1− 𝜉) (1− 𝜂) ,

𝑁2 (𝜉, 𝜂) =
1
4
(1+ 𝜉) (1− 𝜂) ,

𝑁3 (𝜉, 𝜂) =
1
4
(1+ 𝜉) (1+ 𝜂) ,

𝑁4 (𝜉, 𝜂) =
1
4
(1− 𝜉) (1+ 𝜂) ,

(34)

which taken alone define the standard four-node quadrilat-
eral finite element. There are 4(𝑝 − 1) side modes associated
with the sides of a quadrilateral (𝑝 ≥ 2), with 𝑖 = 2, . . . , 𝑝,

𝑁
(1)
𝑖
(𝜉, 𝜂) =

1
2
(1− 𝜂)𝜓

𝑖 (
𝜉) ,

𝑁
(2)
𝑖
(𝜉, 𝜂) =

1
2
(1+ 𝜉) 𝜓𝑖 (𝜂) ,

𝑁
(3)
𝑖
(𝜉, 𝜂) =

1
2
(1+ 𝜂)𝜓

𝑖
(𝜂) ,

𝑁
(4)
𝑖
(𝜉, 𝜂) =

1
2
(1− 𝜉) 𝜓𝑖 (𝜉) .

(35)

For the internal modes we choose the (𝑝 − 1)(𝑝 − 1) shape
functions:

𝑁
0
𝑖,𝑗
(𝜉, 𝜂) = 𝜓

𝑖 (
𝜉) 𝜓𝑗

(𝜂) ,

𝑖 = 2, . . . , 𝑝, 𝑗 = 2, . . . , 𝑝.
(36)

The internal shape functions are often referred to as bubble-
functions.

Note that some additional book-keeping is necessary.
The Legendre polynomials have the property 𝑃

𝑛
(−𝑥) =

(−1)𝑛𝑃
𝑛
(𝑥). This means that every edge must be globally

parameterized in the same way in both elements where it
belongs.

4.1. Curved Boundaries. Since we want to use fixed mesh
topologies even with perturbed domains, it is important to
represent curved boundary segments accurately. The linear
blending function method of Gordon and Hall [22] is our
choice for this purpose.

In the general case all sides of an element can be curved,
but in our case only one side is—as in Figure 1. We assume
that every side is parameterized:

𝑥 = 𝑥
𝑖 (
𝑡) ,

𝑦 = 𝑦
𝑖 (
𝑡) ,

− 1 ≤ 𝑡 ≤ 1,

(37)
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where 𝑖 = 1, . . . , number of sides. Using capital letters as
coordinates of the corner points (𝑋

𝑖
, 𝑌

𝑖
), we can write the

mapping for the global 𝑥-coordinates of a quadrilateral as

𝑥 =

1
2
(1− 𝜂) 𝑥1 (𝜉) +

1
2
(1+ 𝜉) 𝑥2 (𝜂)

+

1
2
(1+ 𝜂) 𝑥3 (𝜉) +

1
2
(1− 𝜉) 𝑥4 (𝜂)

−

1
4
(1− 𝜉) (1− 𝜂)𝑋1 −

1
4
(1+ 𝜉) (1+ 𝜂)𝑋2

−

1
4
(1+ 𝜉) (1+ 𝜂)𝑋3 −

1
4
(1− 𝜉) (1+ 𝜂)𝑋4

(38)

and symmetrically for the 𝑦-coordinate. Note that if the
side parameterizations represent straight edges, the mapping
simplifies to the standard bilinear mapping of quadrilaterals.

5. The Solution Method

Wewill present a hybrid method of stochastic finite elements
for solving the stochastic eigenvalue problem (15). More pre-
cisely, we apply stochastic collocation to resolve the depen-
dency on the geometry and the stochastic Galerkin scheme
for computing the effects of the random field. The method
of stochastic collocation allows for an easy implementation,
since the solution statistics are sampled from an ensemble
of deterministic solutions. This makes the method attractive
from the point of view of random geometry. On the other
hand, if a sufficiently accurate parametric representation for
the input random field exists, then the use of stochastic
Galerkin basedmethods iswellmotivated by their high rate of
convergence—especially if the number of parameters is large.
In this paper we apply a method of spectral inverse iteration
introduced in [12] to compute the eigenpair of interest at each
collocation point.

5.1. Discretization. Let us consider the stochastic eigenprob-
lem (15) for a fixed 𝜔1 ∈ Ω1. We replace the Young modulus
𝐸 = 𝐸(𝜔1, ⋅, ⋅) with the expression

𝐸
𝑀
(𝜔2, x) = 𝐸 (x) +

𝑀

∑

𝑚=1
√𝜆

𝑚
𝜙
𝑚 (

x) 𝑦𝑚 (𝜔2) (39)

obtained by truncating the Karhunen-Loève expansion (22)
after 𝑀 terms. Plugging (39) into (2) we may write the
constitutive matrix (11) in the form

D (𝜆 (𝜔1, 𝜔2, x) , 𝜇 (𝜔1, 𝜔2, x))

= D0 (𝜔1, x) +
𝑀

∑

𝑚=1
D
𝑚
(𝜔1, x) 𝑦𝑚 (𝜔2) .

(40)

We assume that {𝑦
𝑚
}
𝑀

𝑚=1 is a set of mutually independent
and uniformly distributed random variables with supports
scaled to the interval [−1, 1]. The sample space Ω2 is thus
parameterized by the vector y = (𝑦1, . . . , 𝑦𝑀) ⊂ [−1, 1]𝑀.
With 𝜔1 ∈ Ω1 being fixed we may now interpret the

eigenvalue 𝜅 as a function of y and the eigenfunction u as a
function of y and x.

Next we address the spatial discretization of (15) on the
fixed domain 𝐷 = 𝐷(𝜔1). Let {𝜑𝑘}

𝑁

𝑘=1 be a set of global basis
functions for the approximation space of 𝑉

𝐷
× 𝑉

𝐷
. Here we

employ the 𝑝-version of the finite element method so that the
components of each 𝜑

𝑘
are some shape functions (34), (35),

or (36) from Section 4. From (15) we obtain the deterministic
Galerkin projection

∫

𝐷

𝜖V (u)
𝑇D0𝜖V (𝜑𝑘) +

𝑀

∑

𝑚=1
𝑦
𝑚
𝜖V (u)

𝑇D
𝑚
𝜖V (𝜑𝑘) 𝑑x

= 𝜅∫

𝐷

u ⋅𝜑
𝑘
𝑑x, 𝑘 = 1, . . . , 𝑁.

(41)

We define the stiffness matrix A(𝑚) for each𝑚 = 0, . . . ,𝑀 by
setting

A(𝑚)

𝑖𝑗
= ∫

𝐷

𝜖V (𝜑𝑖)
𝑇D

𝑚
𝜖V (𝜑𝑗) 𝑑x (42)

and the mass matrixM via

M
𝑖𝑗
= ∫

𝐷

𝜑
𝑖
⋅𝜑

𝑗
𝑑x. (43)

For a fixed 𝜔1 ∈ Ω1 we have now reduced (15) to a stochastic
matrix eigenvalue problem: find a random variable 𝜅(𝜔1, ⋅) :

[−1, 1]𝑀 → R and a random vector u(𝜔1, ⋅) : [−1, 1]
𝑀

→

R𝑁 such that

(A(0)
+

𝑀

∑

𝑚=1
A(𝑚)

𝑦
𝑚
) u (y) = 𝜅 (y)Mu (y) . (44)

5.2. Stochastic Collocation. In our problem of interest the
geometry of the computational domain depends on the
random variables 𝑅(𝜔1) and 𝜃(𝜔1). Thus, these variables give
us a parametrization of the sample space Ω1. We present an
anisotropic collocation operator and apply it for computing
the dependency of our solution on the parameters. Imple-
mentation of a sparse grid collocation operator (see [4, 23])
would also be possible but since we only consider collocation
in two dimensions we are restricted to full tensor collocation
in the following. In our case we rely on the Gauss-Legendre
quadrature, since the random variables 𝑅(𝜔1) and 𝜃(𝜔1) are
uniformly distributed. Furthermore, for notational simplicity
we assume these to be scaled so that 𝑅, 𝜃 ∈ [−1, 1].

Denote by {𝑧(𝑛)
𝑘
}
𝑛

𝑘=0 the abscissae of the Gauss-Legendre
quadrature of order 𝑛 and by {𝑤(𝑛)

𝑘
}
𝑛

𝑘=0 the associated quadra-
ture weights. The quadrature points {𝑧(𝑛)

𝑘
}
𝑛

𝑘=0 are the zeros
of the univariate Legendre polynomial of degree 𝑛 + 1. The
one-dimensional Lagrange interpolation operators I

𝑛
with

respect to the interpolation points {𝑧(𝑛)
𝑘
}
𝑛

𝑘=0 are defined via

(I
𝑛
V) (𝑧) =

𝑛

∑

𝑘=0
V (𝑧(𝑛)

𝑘
) ℓ

(𝑛)

𝑘
(𝑧) for 𝑛 ≥ 0. (45)

Here {ℓ(𝑛)
𝑘
}
𝑛

𝑘=0 are the Lagrange basis polynomials of degree
𝑛. For information on orthogonal polynomials and computa-
tion of the quadrature weights see [24].
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The full tensor Lagrange interpolation operator is defined
as the tensor product of the univariate operators. In our two-
dimensional case this is

I
𝐹

𝛾
= I

(𝑅)

𝑛1
⊗I

(𝜃)

𝑛2
, (46)

whereI(𝑅)

𝑛1
andI(𝜃)

𝑛2
denote the one-dimensional interpola-

tion operators in the variables 𝑅(𝜔1) and 𝜃(𝜔1), respectively,
and 𝛾 = {𝑛1, 𝑛2} are the orders of quadrature. Applied on a
random variable V(𝑅, 𝜃) the full tensor interpolation gives

(I
𝐹

𝛾
V) (𝑅, 𝜃)

=

𝑛1

∑

𝑘1=0

𝑛2

∑

𝑘2=0
V (𝑧(𝑛1)

𝑘1
, 𝑧

(𝑛2)
𝑘2

) ℓ
(𝑛1)
𝑘1

(𝑅) ℓ
(𝑛2)
𝑘2

(𝜃) .

(47)

The expected value of a random variable V(𝑅, 𝜃) is given
by

E1 [V] = ∫

Ω1

V (𝑅 (𝜔1) , 𝜃 (𝜔1)) 𝑑P (𝜔1)

= ∫

[−1,1]2
V (𝑅, 𝜃) 2−2𝑑𝑅𝑑𝜃.

(48)

Here we have again used a subscript to designate that the
expectation is taken over the sample space Ω1. From (47) we
obtain

E1 [I
𝐹

𝛾
V] =

𝑛1

∑

𝑘1=0

𝑛2

∑

𝑘2=0
V (𝑧(𝑛1)

𝑘1
, 𝑧

(𝑛2)
𝑘2

)𝑤
(𝑛1)
𝑘1

𝑤
(𝑛2)
𝑘2

. (49)

Hence we may compute the expected value of the solution
once we have solved the underlying problem at each colloca-
tion point.

5.3. Spectral Inverse Iteration. We choose to solve (44) at each
collocation point using amethod of spectral inverse iteration.
Thismethod has been introduced in [12] and there its conver-
gence towards the eigenpair with the smallest eigenvalue has
been verified in the case of an elliptic operator with random
coefficients. However, assuming that the eigenpair of interest
is of multiplicity one, the method is in fact applicable for a
much wider range of problems.

We may consider the spectral inverse iteration as a
stochastic extension of the deterministic inverse iteration
which has been given in Algorithm 2 for reference. For the
generalized eigenvalue problem of a stiffness matrix A and a
mass matrixM, the deterministic inverse iteration converges
to the eigenpair forwhich the eigenvalue is closest to the given
parameter 𝜅.

Algorithm 2 (deterministic inverse iteration). Fix 𝜅 ∈ R

and tol > 0. Let u(0) be a normalized initial guess for the
eigenvector and set 𝜅(0) = (u(0))𝑇Au(0). For 𝑘 = 1, 2, . . . do
the following:

(1) Solve (A − 𝜅M)k = Mu(𝑘−1) for k.
(2) Set u(𝑘) = k/‖k‖.

(3) Set 𝜅(𝑘) = (u(𝑘))𝑇Au(𝑘).
(4) Stop if ‖u(𝑘) − u(𝑘−1)‖ < tol and return (𝜅, u) =

(𝜅
(𝑘)
, u(𝑘)).

The idea in the spectral inverse iteration is to interpret
each equation involved in Algorithm 2 in a stochastic sense
using Galerkin projections with respect to a given spectral
basis. To this end we start by fixing a finite polynomial chaos
basis {Λ

𝛼
(y) | 𝛼 ∈ A ⊂ N𝑀

0 } and proceed by formulating
the respective Galerkin projections. Here we only recap the
essentials of the process as it has already been thoroughly
explained in [12].

For some 𝜅 ∈ R let us consider the equation

(A (y) − 𝜅M) k (y) = Mu (y) (50)

that arises from the first step of Algorithm 2. Here we assume
the matrix A to take the form

A = A(0)
+

𝑀

∑

𝑚=1
A(𝑚)

𝑦
𝑚

(51)

as in (44). We replace the random vectors u(y) and k(y) with
the truncated polynomial chaos expansions

uA (y) = ∑

𝛽∈A

u
𝛽
Λ

𝛽
(y) ,

kA (y) = ∑

𝛽∈A

k
𝛽
Λ

𝛽
(y) .

(52)

The Galerkin projection of (50) on the basis {Λ
𝛼
}
𝛼∈A is now

defined as

E2 [(A− 𝜅M) kAΛ 𝛼
] = E2 [MuAΛ 𝛼

] , 𝛼 ∈ A. (53)

Using the orthogonality relations (27) this reduces to the
linear system

Ψ𝜂 = 𝜁, (54)

where 𝜁, 𝜂, and Ψ are block vectors and matrices character-
ized by [𝜁

𝛼
] = Mu

𝛼
, [𝜂

𝛽
] = k

𝛽
and

[Ψ
𝛼𝛽
] = (A(0)

− 𝜅M) 𝛿
𝛼𝛽
+

𝑀

∑

𝑚=1
A(𝑚)

𝑐
𝑚𝛼𝛽

. (55)

Let us next consider the normalization step in
Algorithm 2. For a vector k(y) we aim to compute w(y)
such that

w (y) =
k (y)




k (y)



. (56)

If we set 𝑛(y) = ‖k(y)‖ then the respectiveGalerkin projection
on the basis {Λ

𝛼
}
𝛼∈A is defined as

E2 [𝑛
2
AΛ 𝛼

] = E2 [




kA





2
Λ

𝛼
] , 𝛼 ∈ A (57)
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and reduces to

∑

𝛽∈A

∑

𝛾∈A

𝑛
𝛽
𝑛
𝛾
𝑐
𝛼𝛽𝛾

= ∑

𝛽∈A

∑

𝛾∈A

k𝑇
𝛽
Mk

𝛾
𝑐
𝛼𝛽𝛾

, 𝛼 ∈ A. (58)

This is a nonlinear system of equations for the coefficients
{𝑛

𝛼
}
𝛼∈A and can be solved using, for example, Newton’s

method with the initial guess 𝑛
𝛼
= ‖k

𝛼
(y)‖. The Jacobian is

given explicitly by

J
𝛿𝜖
= 2𝑛

𝜖
∑

𝛾∈A

𝑐
𝛿𝜖𝛾
. (59)

The Galerkin projection of (56) is now defined as

E2 [wA𝑛AΛ 𝛼
] = E2 [kAΛ 𝛼

] , 𝛼 ∈ A (60)

and reduces to the block linear system

Φ𝜃 = 𝜂, (61)

where [𝜂
𝛼
] = k

𝛼
, [𝜃

𝛽
] = w

𝛽
, and

[Φ
𝛼𝛽
]
𝑖𝑗
= 𝛿

𝑖𝑗
∑

𝛾∈A

𝑛
𝛾
𝑐
𝛼𝛽𝛾

. (62)

For computing the eigenvalue we need to be able to
evaluate the Rayleigh quotient

𝑟 (y) = u (y)𝑇A (y)u (y) , (63)

for a vector u(y). As explained in [12] we may approximate
𝑟(y) in the Galerkin sense to obtain the formula

𝑟
𝛼

= ∑

𝛽∈A

∑

𝛾∈A

(u𝑇
𝛽
A(0)u

𝛾
+ ∑

𝛿∈A

𝑀

∑

𝑚=1
u𝑇
𝛽
A(𝑚)u

𝛿
𝑐
𝑚𝛾𝛿

)𝑐
𝛼𝛽𝛾

(64)

for the Galerkin coefficients {𝑟
𝛼
}
𝛼∈A.

Algorithm 3 now formulates the method of spectral
inverse iteration. Similar to the deterministic case, the choice
of the parameter 𝜅 affects the speed of convergence. However,
if 𝜅 is chosen too close to the actual eigenvalue, the iteration
might not converge as (50) becomes singular for some y ∈

[−1, 1]𝑀. We refer to [12] for more information. In our
numerical examples we set 𝜅 = 0 which ensures convergence
to the eigenpair with the smallest eigenvalue as long as the
matrix A(y) is positive definite for all y ∈ [−1, 1]𝑀.

Algorithm 3 (spectral inverse iteration for stochastic eigen-
value problems). Fix 𝜅 ∈ R and tol > 0. Let u(0) = {u(0)

𝛼
}
𝛼∈A

be a normalized initial guess for the eigenvector and set 𝜅(0) =
{𝑟
𝛼
(u(0))}

𝛼∈A. For 𝑘 = 1, 2, . . . do the following:

(1) With u = {u(𝑘−1)
𝛼

}
𝛼∈A solve system (54) for k =

{k
𝛼
}
𝛼∈A.

(2) Solve 𝑛 = {𝑛
𝛼
}
𝛼∈A from the nonlinear system (58).

Solve system (61) and set u(𝑘) = {w
𝛼
}
𝛼∈A.

(3) Set 𝜅(𝑘) = {𝑟
𝛼
(u(𝑘))}

𝛼∈A.
(4) Stop if ∑

𝛼∈A ‖u(𝑘)
𝛼

− u(𝑘−1)
𝛼

‖ < tol and return (𝜅, u) =
(𝜅

(𝑘)
, u(𝑘)).

5.4. Response Statistics. We may easily calculate statistical
moments of a random variable V(𝑅, 𝜃, y) once we know its
polynomial chaos expansion

VA (𝑅, 𝜃, y) = ∑

𝛼∈A

V
𝛼 (
𝑅, 𝜃) Λ 𝛼

(y) (65)

at each collocation point. By using the orthogonality relations
(27) we obtain

E2 [VA (𝑅, 𝜃, ⋅)] = V0 (𝑅, 𝜃) ,

E2 [(VA (𝑅, 𝜃, ⋅))
2
] = ∑

𝛼∈A

(V
𝛼 (
𝑅, 𝜃))

2
.

(66)

The first and second moments of V(𝑅, 𝜃, y) are now given by

E [V] = E1 [E2 [V]] ,

E [V2] = E1 [E2 [V
2
]] .

(67)

These can be computed by applying formula (49) on (66).
From these we obtain approximations for the expected value
and variance of V(𝑅, 𝜃, y).

6. Numerical Experiments

Let us consider a problem with uncertain domain and
uncertain field. The computational domain is 𝐷 = [−2, 2] ×
[−2, 2] \ 𝐶, where the cavity 𝐶 = [−𝑅, 𝑅] × [−𝑅, 𝑅] ∪

annulus with diameter = 1/4 which is rotated 𝜃 radians by
the origin. Here 𝑅 = 𝑈([1/2, 3/5]) and 𝜃 = 𝑈([0, 𝜋/12]) are
random with uniform distribution. The bottom edge 𝑦 = −2
is clamped; that is, all displacements are inhibited.

In Figure 2 the effect of domain perturbation on the
modes is illustrated. Notice that if one wanted to compute
the statistics of the modes, it would be necessary to map
every realisation onto the nominal domain via conformal
mappings, for instance.

The (constant) material parameters are Poisson ratio ] =
1/3 and the mean field of the Young modulus 𝐸 = 2.069 ⋅
1011 MPa. We have used the convention, however, where the
reported results are normalized by the value of 𝐸.

We will proceed in two steps by first letting only the
geometry vary before adding uncertainty to the field as well.
The cases are

(A) uncertain domain with deterministic field, solved
with collocation,

(B) uncertain domain with uncertain field, solved with
the new hybrid method.

In both cases the nominal domain is the same (see Figure 1).
In the absence of exact solutions overkill solutions have been
used in convergence graphs unless otherwise specified. We
have also verified the results by comparing to a full Monte
Carlo simulation of 620000 draws.

6.1. Case A. The values of the smallest eigenvalue over the
parameter space are shown in Figure 3 using both contour
and surface plots.
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(a) Contour plot: 𝑢1 (𝑅 = 4/5)
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(c) Contour plot: 𝑢1 (𝑅 = 4/5, 𝜃 = 𝜋/12)
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(d) Contour plot: 𝑢2 (𝑅 = 4/5, 𝜃 = 𝜋/12)

Figure 2: Case A: effect of perturbation on eigenmodes. Contour lines of displacement.

We consider a collocation sequence, where the collo-
cation points are taken to span all 16 cases from 1 × 1
to 4 × 4 points over the 𝑅 × 𝜃-parameter space. The
relative convergence of the smallest eigenvalue over thewhole
collocation sequence is shown in Figure 4. We have used
constant polynomial order 𝑝 = 8 (1728 degrees of freedom)
throughout and 𝑝 = 16 (6528 degrees of freedom) for the
reference computation.

The dashed line shows the convergence in the case when
the deterministic discretization of the reference solution is
used also in collocation. The exponential convergence in
expectation is due to convergence in parameter space only.
The poorly performing grids in Figure 4 are the anisotropic
ones with more points for 𝜃. This is due to relative effects of 𝑅

and 𝜃 not being exactly balanced (see Figure 3).The solid line
indicates that already at rule (2, 2) the spatial discretization
used is not sufficient when the reference has been computed
with much higher resolution. The convergence stalls com-
pletely since the deterministic error dominates. Convergence
in variance is slower, as suggested by theory.

6.2. Case B. We proceed to consider a fixed collocation grid
with 4 × 4 collocation points for the parameters 𝑅 and 𝜃.
Assuming normalization of the mean field (𝐸 = 1) we set the
coefficients in the Karhunen-Loève expansion of the Young
modulus (39) to be 𝜙

𝑚
(x) = cos(𝑚𝜋𝑑(x)), where 𝑑(x) is the

distance from x to the inner boundary and 𝜆
𝑚
= (𝑚 + 1)−3.

Thus the series can be considered to converge at an algebraic
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Figure 3: Case A: eigenvalues over the parameter space: the standard deviation is 𝜎 = 0.0008.
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Figure 4: Case A: convergence in eigenvalue: relative error versus collocation sequences in log-scale. Dashed line: fixed deterministic
discretization in reference. Solid line: higher resolution reference. Plotmarkers: uniform collocation grids.

rate of 𝑠 = −1.5.We set the truncation parameter to be𝑀 = 3.
Using 𝑝 = 4 and 25 multi-indices, every linear system has
12000 degrees of freedom.

At each collocation point we employ the spectral inverse
iteration given in Algorithm 3with 𝜅 = 0. For the polynomial
chaos basis we consider multi-index sets of the formA

𝑀,𝐿
=

{𝛼 ∈ N𝑀

0 | ∑
𝑀

𝑚=1 𝛼𝑚/√𝜆𝑚 ≤ 𝐿}. Varying the level 𝐿 ∈

R results in multi-index sets of different size. The overkill
solution used as a reference has been computed with 64
multi-indices. Convergence of the relative error of the small-
est eigenvalue towards the overkill solution as a function of

the size of the multi-index set is illustrated in Figure 5. We
observe algebraic rates of convergence for both the expected
value and the variance.

The dashed horizontal line in Figure 5 illustrates the
relative error between the overkill solution and the Monte
Carlo solution. The statistics for the eigenvalue are

E [𝜅] ≈ 1.64286 ⋅ 10−2,

Var [𝜅] ≈ 9.19957 ⋅ 10−7
(68)
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Figure 5: Case B: convergence in eigenvalue in the case of the 4 × 4 collocation grid: size of the multi-index sets versus relative error in the
hybrid solution in loglog-scale. Plotmarkers: multi-index sets of different size. Dashed line: error between the overkill solution and theMonte
Carlo solution.

for the overkill solution and

E [𝜅] ≈ 1.64236 ⋅ 10−2,

Var [𝜅] ≈ 9.11820 ⋅ 10−7
(69)

for the Monte Carlo solution. The central limit theorem
suggests that the standard deviation of theMonte Carlomean
is 1.21271 ⋅ 10−6, which is of the same size range as the error
between the overkill solution and the Monte Carlo solution.
Comparison with standard collocation is more complicated,
since the hybrid method includes a collocation part. For
an isotropic grid aligned for the geometric uncertainty
dimensions, (𝑅, 𝜃,𝑀1,𝑀2,𝑀3) = (4, 4, 8, 8, 8), that is, 8
points per every term in the Karhunen-Loève expansion, we
get statistics:

E [𝜅] ≈ 1.64237 ⋅ 10−2,

Var [𝜅] ≈ 9.12691 ⋅ 10−7
(70)

within expected accuracy as well.
Algorithm 3 also gives us the eigenvector associated with

the smallest eigenvalue. More precisely we obtain the spectral
components {u

𝛼
}
𝛼∈A𝑀,𝐿

at each collocation point. In Figure 6
we have illustrated themeans of the sorted𝐿2 and𝐻1 energies
of these spectral components. At each of the 16 collocation
points we would observe results similar to those presented
in Figure 6.Theory suggests that the asymptotic convergence
rates for these energies should be 𝑟1 = 𝑠 − 1/2 and 𝑟2 = 𝑠 − 1
for the 𝐿2 norms and 𝐻

1 seminorms, respectively [25, 26].
In our example we observe much faster convergence than
these asymptotic rates would predict. However, the observed

convergence rates differ by one half, which is in accordance
with the theory.

The Monte Carlo reference results have been computed
from 620000 draws using 432 single core CPU hours on Intel
Xeon (2009, 2.8GHz). The anisotropic collocation took two
and the hybrid algorithm for the highest reported number
of multi-indices (64) exactly one single core CPU hour on
the same machine. Naturally, in iterative algorithms there are
many tolerances with which to tune the performance, but
these reported times can be taken as representative.

Remark 4. Notice that in more elaborate models for geo-
metric uncertainty with much higher dimensions of the
parameter space the asymptotic convergence rates will apply
to the collocation method. For lower dimensional cases it is
possible to converge at faster rates, of course, but in real-life
applications one should consider the modeling error as well.
Similarly, for the Galerkin scheme the size of multi-index sets
is too small for the energies of the spectral components to
exhibit asymptotic behaviour.

7. Conclusions

We have demonstrated the practicality of the new hybrid
algorithm in a practical, yet idealized, application. The com-
bination of collocation for the geometric uncertainty and
Galerkin for that of materials allows us to take advantage of
the higher computational efficiency of the Galerkin approach
whilst keeping mesh generation simple. Indeed, in this paper
we have kept the mesh topologically fixed. The observed
convergence rates for the smallest eigenvalue are in line with
theoretical predictions.
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Figure 6: Case B: energies of the spectral components {u
𝛼
}
𝛼∈A𝑀,𝐿

of the eigenfunction in the case of the 4 × 4 collocation grid. Dashed line:
algebraic convergence rates of −3.8 and −3.3 for the 𝐿2 norm and 𝐻1 seminorm, respectively. Plotmarkers: sorted means of the energies in
loglog-scale.

The main two remaining issues for future research are
the mapping of the eigenmodes to the nominal domain and
handling of double eigenvalues in the general case. In 2D we
are confident that this extension can be readily done, but in
3D there are still open mathematical questions on how to
connect the nominal domain and the perturbed ones.
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[2] C. A. Schenk and G. I. Schuëller, Uncertainty Assessment of
Large Finite Element Systems, vol. 24 of Lecture Notes in Applied
and Computational Mathematics, Springer, 2005.

[3] I. Babuska, F. Nobile, and R. Tempone, “A stochastic collocation
method for elliptic partial differential equations with random
input data,” SIAM Journal on Numerical Analysis, vol. 45, no. 3,
pp. 1005–1034, 2007.

[4] F. Nobile, R. Tempone, and C. G. Webster, “An anisotropic
sparse grid stochastic collocationmethod for partial differential
equations with random input data,” SIAM Journal on Numerical
Analysis, vol. 46, no. 5, pp. 2411–2442, 2008.

[5] C. Schwab and C. J. Gittelson, “Sparse tensor discretizations
of high-dimensional parametric and stochastic PDEs,” Acta
Numerica, vol. 20, pp. 291–467, 2011.

[6] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral
Approach, Dover Publications, Mineola, NY, USA, 2003.

[7] R. Ghanem and D. Ghosh, “Efficient characterization of the
random eigenvalue problem in a polynomial chaos decomposi-
tion,” International Journal for Numerical Methods in Engineer-
ing, vol. 72, no. 4, pp. 486–504, 2007.

[8] C. V. Verhoosel, M. A. Gutiérrez, and S. J. Hulshoff, “Iterative
solution of the random eigenvalue problem with application to
spectral stochastic finite element systems,” International Journal
for Numerical Methods in Engineering, vol. 68, no. 4, pp. 401–
424, 2006.

[9] R. Andreev, Implementation of sparse wavelet-Galerkin finite
element method for stochastic partial differential equations [M.S.
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