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Abstract: Indoor positioning technology has become more and more important in the last 

two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of 

OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs 

vary during operation due to their physical nature and are easily affected by the 

environmental change, one challenge of the indoor fingerprinting method is maintaining the 

RSSI fingerprint database in a timely and effective manner. In this paper, a solution for 

rapidly updating the fingerprint database is presented, based on a self-developed 

Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed 

on NAVIS for collecting indoor fingerprint information, including a digital compass 

collecting magnetic field intensity, a light sensor collecting light intensity, and a 

smartphone which collects the access point number and RSSIs of the pre-installed WiFi 
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network. The NAVIS platform generates a map of the indoor environment and collects the 

SOPs during processing of the mapping, and then the SOP fingerprint database is 

interpolated and updated in real time. Field tests were carried out to evaluate the 

effectiveness and efficiency of the proposed method. The results showed that the 

fingerprint databases can be quickly created and updated with a higher sampling frequency 

(5Hz) and denser reference points compared with traditional methods, and the indoor map 

can be generated without prior information. Moreover, environmental changes could also 

be detected quickly for fingerprint indoor positioning. 

Keywords: laser scanning; fingerprint database; indoor positioning; SLAM; SOP 

 

1. Introduction 

Indoor positioning and navigation systems have become increasingly significant with their development 

in terms of accuracy, reliability and availability in recent years. Utilizing Signals of Opportunity (SOP) is a 

promising alternative navigation means which may serve in GNSS-challenged environments, such as 

indoors [1]. Meanwhile, SOPs exist as non-navigation radio frequency signals around us, such as WiFi, 

Bluetooth, digital broadcasting signals, ZigBee, magnetic field, light, etc. [2–7]. Their patterns in the 

environment can become unique features for estimating location using the fingerprinting method. 

Fingerprinting is a feasible technique for positioning using Received Signal Strength Index (RSSI) 

measurements. The basic idea of the fingerprinting method is to match a database to a particular 

fingerprint in the area at hand. The method operates in two phases: the training phase and the online 

positioning phase. In the training phase, the SOP map is created based on the reference points within  

the area of interest. The SOP map implicitly characterises RSSI positional relationships through  

the training measurements at the reference points with known coordinates. In the online positioning 

phase, the mobile device measures RSSI observations, and the positioning system utilises the SOP map 

to obtain a position estimate. The fingerprinting method has been widely discussed for indoor 

positioning, and various factors that affect fingerprinting are thoroughly summarised in [8]. Different 

fingerprinting algorithms are compared for indoor positioning with Wireless Local Area Networks 

(WLAN) in [7,9,10]. 

For fingerprint positioning, the traditional method of manually building a fingerprint database is 

usually labour intensive and time consuming, especially in a large mapping area with a high resolution 

of calibration points, which is required for storage in the database. Moreover, SOP signals are sensitive 

to environment change; for example, adding or removing a steel-made table in the office may totally 

distort the previous magnetic pattern. Rearranging the layout of a supermarket will disturb the 

distribution of the WiFi pattern significantly. This implies that the fingerprint database should be 

maintained timely according to environmental changes to guarantee its availability and accuracy by 

recalibration. Obviously, this maintenance is a high-cost labour [11]. The topic of sustaining freshness 

of the fingerprint database has already attracted the attention of researchers in the last few years.  

Rai et al. [12], Shen et al. [13] proposed an inertial positioning method based on the Pedestrian Dead 

Reckoning (PDR) of smartphone users to calibrate the WiFi Fingerprint database, which must model 
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the walking mode of pedestrians. SmartSLAM [14] employs inertial tracing, a WiFi observation model 

and the Bayesian estimation method to construct the floor plan. FootSLAM [15] also utilises  

shoe-mounted inertial sensors to construct the indoor map. WiFi-SLAM [16] exploits a Gaussian 

process latent variable model to build WiFi signal strength maps and can acquire topographically 

correct connectivity graphs. However, most of the above methods rely greatly on the measurements of 

IMU, while current IMU manufacturing technology still restricts their applicability, and the embedded 

consuming-level IMUs in mobile devices might not guarantee its position estimation in complex indoor 

environments. Moreover, all aforementioned methods cannot collect and update spatial maps. Although 

Scholl et al. [17] and Lee et al. [18] also proposed a similar method, fewer SOP signals and no 

environmental variation are considered in their research. 

In this study, we introduce a self-designed autonomous SLAM (simultaneous localization and 

mapping) robot platform NAVIS [19] by taking advantage of the feature with accurate positioning of 

the reference point and indoor mapping simultaneously. The objective is to carry out the SOP data 

collection for indoor positioning. Based on the platform, the indoor map can be built and updated 

simultaneously, which is important for navigation applications. The SLAM mapping algorithm 

calculates its accurate position of the robot platform. All SOP pattern including RSSI, light strength, 

magnetic field strength will be collected and updated with corresponding position. The positioning 

accuracy from mapping algorithm plays an important role to sustain the accuracy of the database.  

We compared the mapping results from mapping algorithm with terrestrial laser scanning (TLS) in 

feature-less environment and open data (Intel Seattle lab) in feature-rich environment as reference. We 

evaluated the accuracy of the proposed SLAM mapping algorithm and concluded that such method can 

be utilised for miscellaneous SOP fingerprint database maintenance of pedestrian indoor navigation in 

a quick manner. 

The main contributions of this paper are included as follows: (1) a faster LiDAR-UGV based 

SLAM method for SOP collection is designed and tested with denser SOP sample points, higher 

sampling frequency and larger coverage area; (2) an accurate spatial map can be created and updated 

simultaneously with the proposed method, which can be utilised for indoor navigation; (3) the scalability 

of the system is evaluated from WiFi-only SOP source positioning to miscellaneous SOP source 

positioning, and the preliminary experiment proves the that miscellaneous SOP positioning method can 

enhance positioning accuracy by 19% percent compared with the WiFi-only solution with an  

un-optimised algorithm to offer a readily accessible solution for indoor positioning with higher 

availability. The rest of this paper is organised as follow: Section 2 describes the workflow of SOP 

fingerprint database maintenance using NAVIS. Section 3 discusses the field tests and the 

experimental results, and conclusions are drawn in Section 4. 

2. SOP Fingerprint Database Maintenance Method using UGV SLAM 

2.1. Method Overview 

One of the challenges of the fingerprinting method is generating and maintaining the fingerprint 

database. SOP signals such as WiFi, Bluetooth, magnetic field, digital broadcasting signals, etc., vary 

during operation due to their physical nature and are vulnerable to changes of the environment. The 
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positioning results drift quickly if the fingerprint database cannot be updated in time, which results in 

the inapplicability of the fingerprinting method in reality. Figure 1 presents a practical sample tested 

by authors in a typical office environment. When the Access Point (AP) set changes from 22 APs to  

8 APs in the third floor of the Finnish Geospatial research Institute (FGI) main office building, the 

positioning accuracy decreases from 1.87 m to 8.96 m with un-updated database. Traditional method 

manually builds a fingerprint database by measuring SOP pattern in a known reference point for a 

period time, for example, 30 s to 1 min, and the mean value is calculated as the fingerprint feature 

information. It is a labour intensive and time consuming task and difficult to update it. A readily 

accessible method for maintaining the fingerprint database is still not available, which restricts the 

applicability of the indoor navigation applications. 

 

Figure 1. Comparison of positioning errors before/after the updated set of access points. 

SLAM technology may become an effective method for resolving such problems. Figure 2 shows  

the workflow of the fingerprint database maintenance method proposed in this paper. The  

self-developed NAVIS platform equipped with a LiDAR, a magnetic meter, a light strength sensor, 

and a smart phone runs through the unknown indoor environment. It generates an indoor grid map and 

collects the SOP signals simultaneously in real time along a trajectory. Mapping algorithm of SLAM 

calculates accurate positions of the moving platform as reference points. All SOP pattern including 

RSSI, light strength, magnetic field strength will be collected and updated with their corresponding 

reference point. The positioning accuracy from the mapping algorithm plays an important role for 

sustaining the accuracy of the database and defines the error envelope of the indoor positioning 

applications. The indoor grid map generated by the laser point cloud can be utilised for indoor 

navigation. Finally, the SOP fingerprint map database is interpolated within the vector indoor map and 

rectified to the global map coordinate reference for seamless outdoor-indoor navigation applications. 
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Figure 2. Workflow of SOP fingerprint database maintenance based on UGV SLAM. 

2.2. Real Time SLAM Based on “NAVIS” 

The core of the proposed fast fingerprint database maintenance method is to obtain the accurate 

position of the SOP reference point as quickly as possible. A real-time 2D UGV with LiDAR-based 

SLAM technology is utilised for that purpose in this work. The scan-matching algorithm designed for 

the SLAM is called the Improved Maximum Likelihood Estimated (IMLE) based on a  

multi-resolution occupied grid map [19]. The NAVIS can achieve a positioning and mapping 

frequency of 5 Hz on an on-board computer with an average positioning accuracy of approximately 

RMS 10 cm. The NAVIS platform is based on: (1) an iRobot® home vacuum-cleaning robot (see 

Figure 3a); (2) several SOP sensors including digital compass (HMR3000, Honeywell), light sensor (a 

self-developed module with a CdS photoresistor), and a WiFi sensor (a smartphone with  

self-developed RSSI collecting program); and (3) a SICK LMS150 laser scanner. The laser scanner has 

a field-of-view of 270° with 0.25° angular resolution and a scan frequency of 25 Hz, and the maximum 

effective range for the laser scanner is 50 m indoors. The laser scanner, the SOP sensors and the robot 

are all connected to the on-board computer through its Ethernet port for collecting laser scanning data 

and serial ports connections for SOP sensors. The LiDAR and all SOP sensors are powered by an 

external battery. Figure 3b shows the Graphic User Interface (GUI) of the NAVIS program, which is 

designed and implemented for data management, positioning and mapping. The SLAM mapping and 

positioning result are presented in the centre “map view window”, and data resources are organized in 

the data management window on the left. 
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Figure 3. (a) The hardware platform of real time UGV SLAM NAVIS; (b) the data 

processing software of NAVIS. 

2.3. Mapping Accuracy Evaluation 

Figure 4 presents the mapping results of the mobile NAVIS platform of the third floor of the FGI 

main building compared with that of Terrestrial Laser Scanning (TLS) in which a laser scanner surveys 

the environment on a stationary tripod. The red dots are the TLS reference, and the white grid map is 

the result of NAVIS. The left (west) corridor is aligned and coincides well with the reference points, 

but there is a 0.4 m deviation at the end of the right (north-east) corridor illustrated as the red and 

yellow lines in the figure. There are several possible reasons for the deviation. The first is that the 

heading estimation resolution of NAVIS is 0.5°. This implies that the error introduced by quantisation 

of the heading estimation is 19.6 cm at the end of the right (east) corridor, which has a length of 45 m. 

The second is that the corridor turn in FGI is a feature-poor indoor environment with glass-made 

windows and handrails which do not reflect the laser pulse like a Lambertian object. Only the echoes 

from the steel window frame can be utilised for scan-matching processing. This low-feature 

environment results in the decrease of the heading estimation, and the positional error introduced by 

the heading estimation accumulates as the travelled distance increases. We also tested NAVIS with a 

public dataset (Intel Research Lab-Seattle) to evaluate its performance. The results are presented in 

Figure 5b. The loop closure in such a typical office building is 12 cm and is marked as the red line and 



Sensors 2015, 15 5317 

 

 

the yellow line in Figure 5a. In conclusion, the NAVIS mapping result is accurate enough for SOP 

fingerprint database creating and positioning. 

 

Figure 4. (a) The NAVIS mapping result of the FGI corridor compared with TLS;  

(b) map error details. 
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Figure 5. (a) Mapping error details of open dataset; (b) Mapping result of NAVIS tested 

with open dataset (Intel Research Lab-Seattle). 

2.4. Fingerprint Map Creation 

In order to acquire the parameters of the SOP fingerprint feature, the SOP sensors are installed on  

the platform. As shown in Figure 6a, the SOP information is time-tagged with SLAM time. A list of 

position-SOP pairs is created for the map database when the NAVIS runs along a trajectory consisting 

of reference points in the corridor. Finally, the SOP grid map can be interpolated from the reference 

points using the Inverse Distance Weighted interpolation (IDW) algorithm [20,21] within the indoor 

map boundary. Figure 6b shows an example of a result from the position-SOP pairs list. 
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Figure 6. (a) Data process workflow of fingerprint map creation; (b) an example of a result 

from the position-magnetic field pairs list from the data process. 

The fingerprint feature information of magnetic field and light utilised in this paper are normalised 

intensity data and raw light intensity. Meanwhile, the fingerprint information of WiFi is more 

sophisticated because there are many WiFi emitters in the FGI main building. Each one transmits 

signals, and the intensity of signals changes slightly within a short period. A spatial distance-mean 

filter is adopted on every reference point for acquiring the fingerprint feature information to process 

the SOP measurements acquired from a moving platform. As shown in Figure 7, the main idea of the 

spatial filter is to give a certain distance d to each reference point p (for example, 1 m in this paper). At 

reference point p, n WiFi access points (AP1, AP2, …, APn) are detected, and the mean signal strength 

of AP1 can be calculated with Equation (1) at that reference point: 

(1ܲܣ)݁ݎݑݐ݂ܽ݁	ܲܨ = 1݊ݍ(1ܲܣ)
ୀଵ ݄݊݁ݓ −൫݁ܿ݊ܽݐݏ݅ܦ ൯݅ݍ < ݀ (1)

  



Sensors 2015, 15 5320 

 

 

 

Figure 7. The spatial distance-mean filter for WiFi fingerprint feature information creation. 

2.5. Coordinate Reference Rectification 

SLAM is a technology of detecting the unknown environment while positioning simultaneously [22–24]. 

It adopts a local coordinate reference on each update cycle, and the orientation of the map depends on 

the initial position and heading angle of the UGV. The local coordinate reference map should be  

rectified to a global coordinate reference for further SOP positioning application, and the method 

applied in this paper is the Four Parameters Similarity Coordinate Transformation (FPSCT), also 

called two-dimensional Helmert transformation [25]: 
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where xΔ  and yΔ  are the displacement of local and global coordinates, respectively, α  is the rotation 

angle and m  is the scaling factor. 

Meanwhile, the four transformation parameters can be calculated with the known control points by 

the least squares method. The selected control points of the FGI indoor map are shown in Figure 8,  
which are selected for the transform parameter ( xΔ , yΔ , α , and m ) calculation. Finally, the SOP map 

can be rectified to the global coordinates with Equation (2). 
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Figure 8. (a) The global coordinate map with control points for coordinate rectification;  

(b) example of a local coordinate grid map with control points. 

3. Tests, Results and Discussion 

The field tests were carried out along the corridor at the third floor of the FGI building. To 

investigate the potential of the proposed method, total nine tests were divided into three groups. Each test 

lasted for 5 min along the 90 m corridor, and the robot operated at a fixed speed of 0.28 m/s in all tests. 

Group 1 (test 1–test 5) was tested for generation of the SOP fingerprint map using magnetic field, 

light intensity and WiFi RSSI; group 2 (test 6, test 7) was tested for spatial environmental change 

detection for indoor map updating; and group 3 (test 8, test 9) was tested for SOP environmental 

change detection for updating the SOP database by turning the light and WiFi APs on and off.  

Figure 9a,b shows the image of the experiment corridor and a group of reference point trajectories. 

(b)  

Figure 9. (a) Corridor in FGI; (b) reference point trajectories collected by NAVIS. 
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3.1. SOP Fingerprint Map Generation 

As introduced above, multi-SOP sensors can be equipped on the NAVIS platform to acquire related 

SOP fingerprint feature information. The SOP fingerprint maps are created from the trajectories of group 1. 

In the trajectories of group 1, there are no obstacles in the corridor, the man-made lights are turned off 

and all the experimental WiFi APs are turned on. Figure 10a,b shows the grid maps of the discovered 

magnetic field and light intensity distribution information, respectively. Figure 10c,d shows the 

detected WiFi AP numbers at different positions and RSSI distributions of one WiFi AP. The reference 

point positions coincide well with the background-rectified map. The reference points are denser 

compared with traditional fingerprint creating methods. 
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Figure 10. (a) Grid map result of magnetic field intensity distribution; (b) grid map result 

of light intensity distribution; (c) grid map of WiFi access point number distribution;  

(d) grid map of intensity distribution of one WiFi access point. 

3.2. Map Variation Detection 

The spatial structure of the indoor environment is another important issue for guaranteeing the 

reliability and positioning accuracy of the indoor positioning system [26]. However, variation in the 
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indoor environment is more frequent than in the outdoor environment. As we know, the variation in 

the indoor environment may result in a change in SOP pattern. For example, an aquarium may change 

the indoor map and also attenuate the fingerprint signal like WiFi and Bluetooth; a bulky metal 

container may distort the magnetic field. Thereby, it is a challenge to detect the variation in the spatial 

structure and update the indoor map in time. 

Figure 11 shows the compared grid maps of the experiment corridor of group 2 and group 1 to 

demonstrate the capability of detecting changes in spatial structure. As presented by the red rectangles 

in Figure 11b, there were no obstacles in the corridor turn, and the elevator door was opened in the group 1 

experiment. Then, the testers placed a rubbish bin, a big carton, two plastic tubes and a vacuum cleaner 

on the corner and closed the elevator door to simulate environmental layout changes as presented in 

Figure 11a. From Figure 11c, all placed objects and environmental changes were detected. The 

summary of the map variation detection is listed in Table 1. It was found that plenty of noises are 

introduced by adding the tube in the test scene. More noise can be found in vacuum cleaner case. The 

explanation of the noise generation is that the diameter of the footprint of the laser scanning point is 

comparable with or even larger than the size of the detected objects. According to the datasheet of the 

laser scanner, the diameter can be calculated with Equation (3): 

Diameter = distance (mm) × 0.015 rad + 8 mm (3)

 

Figure 11. Cont. 
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Figure 11. (a) Real objects in the corridor; (b) Grid map of corridor turn without obstacles; 

(c) Grid map of corridor turn with obstacles. 

The size of the vacuum cleaner’s tube is approximately 6 cm, which is smaller than the footprint 

size. The detected tube is 9 cm; however, such point clusters are easily recognised as discrete spatial 

noise and neglected when converting the grid map to a vector map. Based on the observations and 

analysis, it can be concluded that for indoor mapping updating, the footprint size should be small 

enough to detect precise spatial change. 

Table 1. The summary of the accuracy of map variation detection on different object (unit: cm). 

 True Size Measured Size Error 

Rubbish bin 30 28.62 4.6% 

Carton 55 × 45 51.41 × 43.38 6.5% × 3.6% 

Tube 14 9.5 32.2% 

Vacuum cleaner’s tube 6 9 50% 

3.3. SOP Variation Detection 

It is important to detect SOP variation and update the fingerprint database to assure the reliability of 

the SOP fingerprint database for the fingerprinting method. In this research, the tester simulated the 

variation of light and WiFi by turning on/off the devices (light and WiFi emitters) to evaluate the SOP 

variation detection capability of the proposed system in the group 3 tests. Figure 12 illustrates the 

results of the light variation detection. In Figure 12a, the red rectangle area represents the variation in 

light intensity when the lights were turned off (blue line) and turned on (red line). There were several 

lights equally distributed along the corridor, and similar peaks could be found in the red line. The 

locations of the peaks coincided with the geospatial distribution of the man-made lights. Figure 12b,c 

shows the compared light strength RSSI map for different light situations. Then, three WiFi APs were 

turned off for group 3 located at the beginning of corridor in the junction of two corridors and at the 
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end of the corridor to test the detection of WiFi variation. Such changes could be detected during the 

group 3 tests. 

 

(b)  
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Figure 12. (a) 3D plot of light intensity variation detection; (b) the light intensity RSSI 

map with lights turned off; (c) the light intensity RSSI map with lights turn on. 

3.4. Evaluation of Indoor Positioning Based on Miscellaneous SOP 

A preliminary test has been carried out to evaluate how miscellaneous SOP sources improve  

the fingerprinting method to evaluate the scalability of the proposed system. An un-optimised Weight 

Quick Selection (WQS) indoor positioning algorithm is applied for evaluation, which could be 

considered as a variation of the traditional K-Nearest Neighbours (KNN) algorithm [27,28]. The 

pseudo-code of the algorithm is shown in Algorithm 1. 
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Algorithm 1. Pseudo-code of the WQS algorithm based on miscellaneous SOPs 

Requires: 1. Fingerprint database Fpdb = (ܲ < ,ݔ ,ݕ ,ݐݏ݈݅ݏ ݓ >ଵ,	ܲ < ,ݔ ,ݕ ,ݐݏ݈݅ݏ ݓ >ଶ,… , ܲ < ,ݔ ,ݕ ,ݐݏ݈݅ݏ ݓ >); 
2. Fingerprint information at unknown position Fpx = (ݏଵ, …,ଶݏ ,  ;(ݏ

Setting: δଵ, δଶ … δ (thresholds) for each type of SOP 

for each sop measurement in Fingerprint Fpx  
 if	ݏ)ܛ܊܉ − (ݐݏ݈݅ݏ < 	 δଵ 

ݓ  = ݓ	 + 1  (weight increased only when the sop measurement follows the 

weight δ-selecting criteria ) 

end for 

end for 

return ୫ܲୣୟ୬ = (௪భା௪మ)∗భା(௪మା௪య)∗మା(௪భା௪య)∗యଶ∗(௪భା௪మା௪య) ,  
which is the mean position of the three positions with the maximum weight ݓ௫ 

An un-optimised and empirical weight δ-selecting criteria is adopted in this research, and the	δ 

values for light, magnetic field and WiFi are 50, 100 and 5, respectively for the WQS algorithm. The 

results of the fingerprinting method with a miscellaneous SOP source are presented in Figure 13. The 

blue line in Figure 13 depicts the positioning error results using WiFi only, and the red line shows the 

positioning error result of the combined solution which utilises the SOPs of WiFi RSSI, light intensity 

and magnetic intensity. The positioning errors are calculated with Equation (4):  e = ඥ(x − X)ଶ + (y − Y)ଶ (4)

where (x, y) is the estimated position and (X, Y) is the true position. As shown in Figure 13 and Table 2, 

several conclusions can be drawn: (1) with the proposed UGV mobile platform, the collected SOP 

fingerprint is comparable with the traditional manual method (1.89 m vs. 1.87 m); (2) approximately 

80% of the positioning results have better position accuracy than 3 m with WiFi only; meanwhile, 

when miscellaneous SOP sources are utilised, an un-optimal WQS algorithm can mitigate the 

positioning mean error by 19% and enhance 10.5% of the positioning result to have a better position 

accuracy than within 3 m. 

Table 2. The positioning error statistics (m). 

 RMS Error Mean Error Maximum Error Within 3 m  

Positioning with WiFi 2.31 1.89 6.87 80% 

Positioning with WiFi, light and magnetic 1.95 1.53 6.78 90.5% 
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Figure 13. Comparison of positioning errors between single SOP source and 

miscellaneous SOP sources 

The preliminary tests prove that such fast fingerprint maintenance solution can be employed for the 

fingerprinting indoor position application and can improve positioning accuracy with miscellaneous 

SOP sources. 

4. Conclusions and Future Works 

This paper presents a fast method for SOP fingerprint database maintenance for indoor positioning 

based on the self-developed real-time UGV SLAM platform. Based on the results of field tests,  

the following conclusions can be drawn: (1) SLAM-enabled UGV is a feasible platform for collecting 

and updating the SOP fingerprint database with finer sampling points and a larger coverage area in a 

rapid way to sustain the freshness of the database, which is important for a more realistic indoor 

positioning application; (2) the spatial environment and its variation could be detected and updated by 

the NAVIS platform, and the outputs can be used for SOP fingerprint database maintenance and 

positioning purposes; (3) the SOP fingerprint databases maintained by NAVIS are effective and 

comparable to the traditional manual method; (4) the platform can be easily extended from a single 

SOP source to miscellaneous SOP sources to increase positioning accuracy and availability. 

Based on current configuration of the platform, more experiments will also be carried out in a 

dynamic environment, where more pedestrians are moving to simulate the data-collecting scenario in a 

crowded supermarket to verify the performance of the proposed method in more complex situations. 

Optimised positioning algorithms based on miscellaneous SOP sources will also be investigated. 
  



Sensors 2015, 15 5328 

 

 

Acknowledgments 

This study was financially supported by the National Nature Science Foundation of China 

(41304004), the Academy of Finland (project: “Centre of Excellence in Laser Scanning Research” 

(272195), “WIPINDTV” (254232)), and the Aalto energy efficiency research program (Light Energy). 

Author Contributions 

Jian Tang and Yuwei Chen conceived and designed the experiments and wrote the paper;  

performed the experiments; Liang Chen and Jingbin Liu analyzed the data; Antero Kukko,  

Harri Kaartinen contributed reagents/materials/analysis tools; Juha Hyyppä, Hannu Hyyppä,  

Ruizhi Chen reviewed the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Yang, C.; Nguyen, T.; Venable, D.; White, M.; Siegel, R. Cooperative position location with 

signals of opportunity. In Proceedings of the 2009 IEEE Aerospace & Electronics Conference 

(NAECON), Dayton, OH, USA, 21–23 July 2009; pp. 18–25. 

2. Storms, W.; Shockley, J.; Raquet, J. Magnetic field navigation in an indoor environment.  

In Proceedings of the Ubiquitous Positioning Indoor Navigation and Location Based Service 

(UPINLBS), Kirkkonummi, Finland, 14–15 October 2010; pp. 1–10. 

3. Chen, L.; Kuusniemi, H.; Chen, Y.; Pei, L.; Kröger, T.; Chen, R. Motion Restricted Information 

Filter for Indoor Bluetooth Positioning. International Journal of Embedded and Real-Time 

Communication System. 2012, 3, 54–66. 

4. Liu, J.; Chen, Y.; Tang, J.; Jaakkola, A.; Hyyppä, J.; Chen, R. The Uses of Ambient Light for 

Ubiquitous Positioning. In Proceeding of the IEEE/ION Position, Location and Navigation 

Symposium 2014 Conference, Monterey, CA, USA, 5–8 May 2014. 

5. Rabinowitz, M.; Spilker, J.J., Jr. A new positioning system using television synchronization 

signals. IEEE Trans. Broadcast. 2005, 51, 51–61. 

6. Liu, J.; Chen, R.; Chen, Y.; Tang, J.; Hyyppä, J. Testing the Feasibility of Positioning Using 

Ambient Light. GPS World 2014, 23, 45–50. 

7. Moghtadaiee, V.; Dempster, A.G.; Lim, S. Indoor localization using FM radio signals: A 

fingerprinting approach. In Proceeding of the 2011 IEEE International Conference on Indoor 

Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 21–23 September 2011; pp. 1–7. 

8. Kjærgaard, M.B. A Taxonomy for Radio Location Fingerprinting. Lect. Notes Comput. Sci. 2007, 

4718, 139–156. 

9. Hoffmann, A.; van der Vegt, J.W.; Lehmann, F. Towards automated map updating: Is it feasible 

with new digital data-acquisition and processing techniques. In Proceedings of the International 

Geoscience and Remote Sensing Symposium(IGARSS) 2000, Honolulu, HI, USA, 24–28 July 

2000; pp.2108–2010.  



Sensors 2015, 15 5329 

 

 

10. Honkavirta, V.; Perälä, T.; Ali-Löytty, S.; Piché, R. Location fingerprinting methods in wireless 

local area network. In Proceedings of the 6th Workshop on Positioning, Navigation and 

Communication 2009 (WPNC’09), Hannover, Germany, 2009. 

11. Chen, L.; Pei, L.; Kuusniemi, H.; Chen, Y.; Kröger, T.; Chen, R. Bayesian Fusion for Indoor 

Positioning Using Bluetooth Fingerprints. Wirel. Pers. Commun. 2013, 70, 1735–1745. 

12. Rai, A.; Chintalapudi, K.K.; Padmanabhan, V.N.; Sen, R. Zee: Zero-effort crowdsourcing for 

indoor localization. In Proceedings of the 18th Annual International Conference on Mobile 

Computing and Networking (Mobicom 12), Istanbul, Turkey, 22–26 August 2012; pp. 293–304. 

13. Shen, G.; Chen, Z.; Zhang, P.; Moscibroda, T.; Zhang, Y. Walkie-markie: Indoor pathway 

mapping made easy. In Proceedings of the 10th USENIX Conference on Networked Systems 

Design and Implementation, Lombard, IL, USA, 3–5 April 2013; pp. 85–98. 

14. Shin, H.; Chon, Y.; Cha, H. Unsupervised construction of indoor floor plan using smartphone.  

IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2011, 42, 889–898. 

15. Robertson, P.; Angermann, M.; Krach, B. Simultaneous localization and mapping for pedestrians 

using only foot-mounted inertial sensors. In Proceedings of the Ubicomp 2009, Orlando, FL, 

USA, September 30–October 3 2009. 

16. Ferris, B.; Fox, D.; Lawrence, N. WiFi-slam using Gaussian process latent variable models.  

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) 2007, 

Hyderabad, India, 6–12 Januray 2007; pp. 2480–2485. 

17. Scholl, P.M.; Kohlbrecher, S.; Sachidananda, V.; van Laerhoven, K. Fast indoor radio-map 

building for RSSI-based localization systems. In Proceedings of the 2012 IEEE Ninth 

International Conference on Networked Sensing Systems (INSS), Antwerpm, Belgium,  

11–14 June 2012; pp. 1–2. 

18. Lee, Y.C.; Park, S.H. RSSI-based fingerprint map building for indoor localization. In Proceedings of 

the 2013 IEEE 10th International Conference on Ubiquitous Robots and Ambient Intelligence 

(URAI), Jeju, Korea, 30 October–2 November 2013; pp. 292–293. 

19. Tang, J.; Chen, Y.; Jaakkola, A.; Liu, J.; Hyyppä, J.; Hyyppä, H. NAVIS-An UGV Indoor 

Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications. Sensors 

2014, 14, 11805–11824. 

20. Wikipedia: Inverse Distance Weighting. Available online: http://en.wikipedia.org/wiki/Inverse_ 

distance_weighting (accessed on 25 July 2014). 

21. Donald, S. A two-dimensional interpolation functions for irregularly-spaced data. In Proceedings 

of the 1968 ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. 

22. Aulinas, J.; Petillot, Y.; Salvi, J. ;Lladó A., X. The SLAM problem: A survey. In Proceedings of 

the 2008 Conference on Artificial Intelligence Research & Development. Anaheim, CA,  

22–24 October 2008; pp. 363–371. 

23. Olson, E.B.; Teller, S.; Leonard, J. Robust and Efficient Robotic Mapping. Ph.D. Thesis, 

Massachusetts Institute of Technology, Cambridge, MA, USA, June 2008. 

24. Thrun, S.; Leonard, J.J. Simultaneous Localization and Mapping. In Springer Handbook of 

Robotics; Springer: Berlin/Heidelberg: Berlin, Germany, 2008; pp. 871–889. 

25. Ghilani, C.D. Coordinate Transformations. In Adjustment Computations: Spatial Data Analysis,  

5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. 



Sensors 2015, 15 5330 

 

 

26. Vu, T.T.; Matsuoka, M.; Yamazaki, F. LiDAR-Based Change Detection of Building in Dense 

Urban Areas. In Proceedings of the International Geoscience and Remote Sensing Symposium  

(IGARSS) 2004, Anchorage, Alaska, 20–24 September 2004; pp. 3413–3416. 

27. Yang, P.; Li, Z. Weight-select and weighted location algorithm based on RSSI. Inf. Electron. Eng. 

2012, 2, 007. 

28. Honkavirta, V.; Perala, T.; Ali-Loytty, S.; Piché, R. A comparative survey of WLAN location 

fingerprinting methods. In Proceedings of the 2009 IEEE 6th Workshop on Positioning, Navigation 

and Communication, Hannover, Germany, 19 March 2009; pp. 243–251. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


