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In a screen for unexplained mutation events we identified a pre-
viously unrecognized mechanism generating clustered DNA polymor-
phisms such as microindels and cumulative SNPs. The mechanism,
short-patch double illegitimate recombination (SPDIR), facilitates
short single-stranded DNA molecules to invade and replace genomic
DNA through two joint illegitimate recombination events. SPDIR is
controlled by key components of the cellular genome maintenance
machinery in the gram-negative bacterium Acinetobacter baylyi.
The source DNA is primarily intragenomic but can also be acquired
through horizontal gene transfer. The DNA replacements are non-
reciprocal and locus independent. Bioinformatic approaches reveal
occurrence of SPDIR events in the gram-positive human pathogen
Streptococcus pneumoniae and in the human genome.

illegitimate recombination | mutation | microindels

Short patches of clustered nucleotide variations are routinely
observed in whole genome comparisons (1, 2). These sequence

variations are substrates for natural selection, which shapes pro-
karyotic (3, 4) and eukaryotic (5, 6) genomes. Clustered nucleotide
variations also play a role in oncogenesis where they add to the
overall genomic instability (7, 8). Despite their significant biological
role, the molecular mechanisms underlying formation of clustered
nucleotide variations are not fully understood.
Known mechanisms responsible for clustered nucleotide varia-

tions include error-prone DNA polymerases (9) and conversions at
imperfect palindromes through template-switching (10) (templated
mutagenesis), which can generate tracts of single nucleotide
changes, respectively. Down-regulation or loss of genes involved
in mismatch repair can also lead to increased genome-wide point
mutation frequencies that can result in random single-nucleotide
variation (SNV) clusters. Moreover, cumulative SNVs have been
described when genes for DNA-modifying enzymes were up-
regulated (11). All these mechanisms typically result in tracts of
single-nucleotide polymorphisms (SNPs).
More complex clustered genomic polymorphisms may also

develop through point mutations accumulating in a small DNA
tract over a short time or through independent insertion and
deletion events (12). A number of RecA-independent mecha-
nisms have been described and investigated in detail that lead to
microdeletions without insertions, or to microinsertions without
deletions, in both prokaryotic and eukaryotic organisms. Among
these mechanisms are replication slippage (13) or copy number
variations in microsatellite DNA (14), illegitimate recombination
at microhomologies (15, 16), imprecise nonhomologous end
joining (NHEJ) (17), DNA gyrase-mediated strand switching
(18), and transposon scars. Two or more temporally independent
deletion/insertion events at the same locus can result in clustered

polymorphisms, although in retrospective studies, such sequen-
tial events are nearly impossible to verify.
The most diverse clusters of nucleotide variations are formed

by microhomology-mediated end-joining (MMEJ). MMEJ has
been observed in eukaryotes only and can repair DNA double-
strand (ds) breaks in an error-prone way. During repair, MMEJ
often generates short, direct, or inverted repeats (19) and oc-
casionally incorporates ectopic DNA at the recombinant joints
(20). MMEJ results in highly variable clustered polymorphisms
at the recombinant joint and is now recognized as a driving force
in rapidly evolving oncogenic cells (21). DNA polymerase theta
(POLQ) has recently been identified as the key enzyme in
MMEJ-directed error-prone repair, but many mechanistic de-
tails of its function remain elusive (22). To date, no POLQ-like
genes have been identified in prokaryotes.
Due to the immense evolutionary and biomedical implications

of how and why genetic diversity is generated in prokaryotic and
eukaryotic organisms, the underlying mechanisms are intensively
investigated. To study and quantify the formation of clustered
polymorphisms, we developed a detection assay in the bacterium
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Acinetobacter baylyi. We demonstrate how regions of clustered,
highly variable DNA sequence variations (ranging from 3 to
77 bp) can be formed by two coupled, microhomology-dependent
illegitimate recombination (IR) events with free DNA single
strands of intragenomic or external origin.

Results
Joined Double Illegitimate Recombinations Generate Clustered
Polymorphisms. To quantify and characterize clustered small
indels and polymorphisms, we developed an in vivo detection
construct (hisC::′ND5i′) (23) in the soil bacterium Acinetobacter
baylyi ADP1. The construct is permissive for small IR events but
largely refractory to single-nucleotide mutations. In this con-
struct, two neighboring stop codons in a functionless 228-bp in-
sert prevent expression of a histidine prototrophy marker gene
(histidinol-phosphate aminotransferase; Fig. 1A). We found that
spontaneous histidine-prototrophic (His+) mutants arose at low
frequencies. Subsequent DNA sequencing analyses of individual
His+ isolates revealed that the ′ND5i′ segment was frequently
substituted with different heterologous segments of intragenomic
origins. The substituting DNA segments were of similar or
shorter length, eliminating or bypassing the stop codons (Fig. 1
B–E and Dataset S1), and their neighboring upstream and
downstream nucleotide stretches were identical with DNA seg-
ments in otherwise fully heterologous DNA regions elsewhere in
the genome (Fig. S1). Sequence analyses of these donor DNA
fragments and the parental DNA sequences strongly suggested
that integration occurred through hybridization at micro-
homologies (short identical DNA stretches) or at extended
microhomologies (clusters of microhomologies interrupted by
mismatches and gaps in heterologous DNA; Fig. 1 B–E and
Supporting Information) followed by illegitimate recombinations.
The recombinations occurred either at a single, contiguous
microhomology (class 1 events; Fig. 1 B and C) or at two sepa-
rate microhomologies on the same molecule (class 2 events; Fig.
1 D and E). The recombinations were nonreciprocal (Supporting
Information) and independent of genomic locus and detection
construct (Supporting Information). Together, these short-patch

double illegitimate recombination (SPDIR) events led to highly
variable polymorphisms at a single genetic locus and introduced
multiple clustered nucleotide exchanges, DNA sequence re-
placements of variable length, or deletions accompanied by nu-
cleotide changes at the deletion site (Dataset S1), resulting in
highly diverse codon changes (Fig. S2). In all characterized
SPDIR events, the source DNA of the acquired nucleotide
polymorphisms was identified both for intragenomic and extra-
genomic (see below) origins (Dataset S1). Net nucleotide gains
(maximum six base pairs) were observed in only a few cases.
Although the SPDIR mechanism depends on microhomologies,
the randomness of the genetic changes observed suggests a broad
mutagenic potential.

Low Frequency of SPDIR Mutations in Wild-Type Cells.We quantified
occurrence of SPDIR experimentally in wild-type (WT) A. baylyi
cells and found that His+ revertants were scarce (1.1 × 10−11;
about 14-fold rarer than single point mutations; Table 1). The frac-
tion of SPDIR mutation events among the His+ reversions was ∼5%,
corresponding to a calculated SPDIR frequency of 5.6 × 10−13

(Table 1). This number is likely an underestimation due to lim-
itations in the detection construct because SPDIR-generated
substitutions that introduce stop codons or frameshifts or lead to
improper protein folding remain undetected.
The non-SPDIR His+ mutations were in most cases (>90% in

WT) conferred by in frame deletions in ′ND5i′ [i.e., single ille-
gitimate recombination (IR) events], both with and without
microhomologies, and occasionally by different classes of mu-
tations (Supporting Information). The fact that SPDIR occurred
in the WT close to the detection limit in our specific experi-
mental setup can explain lack of prior experimental discovery.

Single-Strand–Specific DNA Exonucleases Control SPDIR in Wild-Type
Cells.Microhomology-mediated IR events have been observed in
prokaryotes and eukaryotes (15, 16) and are initiated by
annealing of DNA single-strand ends. We hypothesized that
SPDIR was initiated by hybridization of genomic dsDNA at
exposed single-stranded (ss) gaps, loops, or replication forks,
with ssDNA segments. In prokaryotes, free cytoplasmic DNA
single strands are attacked by ss-specific DNA exonucleases
(24) (ssExo), and in A. baylyi, these ssExo have been revealed
as RecJ and ExoX (23). We therefore quantified SPDIR in
ssExo-deficient mutants and found that the SPDIR frequency
was elevated approximately sevenfold in ΔrecJ and fourfold in
ΔexoX mutants (Table 1). The frequency was increased 28-fold
in a ΔrecJ ΔexoX double mutant, which lacked all ssExo ac-
tivity. In the ΔrecJ ΔexoX strain, SPDIR events produced about
34% of all His+ mutation events, whereas in WT and in the
single mutants the proportion of SPDIR events was at least
sixfold lower than in the ΔrecJ ΔexoX mutant (Table 1). These
results confirmed that SPDIR is suppressed by ssExo in WT
cells and indicate that SPDIR events depend on the presence
of ssDNA in the cytoplasm.

SPDIR Is Inhibited by RecA Protein.Cytoplasmic ssDNA is a cellular
genome damage signal and can be bound by RecA protein to
initiate recombinational repair and to trigger the SOS response
(25). We deleted the recA gene of A. baylyi, and in the ΔrecA
mutant we observed an about sixfold SPDIR frequency increase.
Remarkably, in a ΔrecA ΔrecJ ΔexoX triple mutant, the SPDIR
frequency was >7,700-fold higher than that of the WT, and
SPDIR was the most common His+ mutation (80%; Table 1).
The strong synergy effect suggests that SPDIR is controlled by
factors beyond elimination of free cytoplasmic DNA. It is con-
ceivable that binding of RecA protein to ssDNA efficiently
prevents hybridization of ssDNA molecules, and molecules that
escape RecA-binding frequently anneal at microhomologies. In
WT cells, these microhomology-annealed molecules are attacked

Fig. 1. (A) Schematic illustration of the hisC::′ND5i′ detection construct for
SPDIR. The genomic location and the sequence detail of the two stop codons
are indicated (modified after ref. 23). The ′ND5i′ insert is shown in blue, and
the translated codons are shown in black, with the two consecutive stop
codons indicated in red. (B–E) Examples of clustered polymorphisms gener-
ated by SPDIR, shown as triple DNA alignments of the parental (His−; P), His+

recombinant (R), and donor (D) strands used for the double IR. Stop codons
are indicated in red, and recombination sites are highlighted in yellow.
Microhomologies (as approximated by ΔG0

min) are in purple typeface. (B and
C) Class 1 SPDIR events formed by two illegitimate joints at a single, con-
tiguous extended microhomology. (D and E) Class 2 SPDIR events with ille-
gitimate joints at separate (simple or extended) microhomologies, leading to
complex replacements or deletions. The donor DNA originated from intra-
genomic loci [(B) Recurrent SPDIR mutation A26 (Dataset S1), putative
ACIAD1938 gene; (C) SPDIR O106, putative ACIAD1581 gene; and (D) SPDIR
R159, putative ACIAD2154 gene] except E. In E, the donor DNA was derived
from Bacillus subtilis DNA (ipk gene) and acquired by A. baylyi through
natural transformation. The complete set of experimentally found SPDIR
sequences is listed in Dataset S1.
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by ssExo and prevented from genomic integration, as observed in
Escherichia coli (24) and A. baylyi (23). Alternatively, faithful
recombinational DNA damage repair mediated by RecA together
with ssExo prevents production of ssDNA remnants (26) (e.g.,
displaced strand fragments or flaps) that could act as donor mol-
ecules for SPDIR. These explanations are not mutually exclusive.

Exposure to Genotoxic Stress Increases SPDIR Frequencies. IR fre-
quencies are increased with accumulating genomic DNA dam-
ages, and the increase has been attributed to microhomology-
mediated DNA end-joining events leading to deletions and other
genomic rearrangements (27). We determined whether introduc-
tion of DNA strand breaks affected SPDIR frequency in A. baylyi.
For this purpose, we treated growing cultures with subinhibitory
concentrations of ciprofloxacin (a fluoroquinolone antibiotic
interfering with DNA gyrase activity) (28), or with variable doses
of UV (UV) light. Both agents result in replication blocks and
lead to genome fragmentation (29, 30). We found that the His+

frequencies were increased up to at least 600-fold with increasing
doses of ciprofloxacin or UV until viability was affected, and
SPDIR events were detected at low proportions (2–5%) except
after UV irradiation with 10.8 mJ (Table 1).
When we repeated the UV experiments with the ΔrecJ ΔexoX

mutant, SPDIR events accounted for ∼25% of His+ events with
both UV doses tested (Table 1). This ratio was lower than in
untreated cells (34%), indicating that SPDIR is increased by two
to three orders of magnitude with increasing DNA damage lev-
els, which is in agreement with previous reports on IR (27).
However, the increase of SPDIR events is lower than that of IR-
mediated mutations such as deletions.

Natural Transformation Increases Frequency and Variability of SPDIR
Events. To explore the effect of exogenous DNA on SPDIR
formation, we exploited the constitutive competence for natural

transformation of WT A. baylyi cells (23). DNA molecules are
taken up by the cells into the cytoplasm as single strands (31).
We found that exposure to foreign DNA isolated from Bacillus
subtilis resulted in a fourfold to fivefold elevated SPDIR fre-
quency (Table 1). We repeated the experiments with the ΔrecJ
ΔexoX mutant, using B. subtilis DNA, isogenic A. baylyi His− DNA,
and DNA isolated from salmon sperm as donor DNA substrates. In
the ΔrecJ ΔexoX strain, addition of the DNA substrates led to
SPDIR frequencies about 15- to 40-fold higher than without added
DNA (Table 1). Notably, when exposed to foreign DNA, about two
thirds of the SPDIR mutations were formed with cognate DNA,
and approximately one third were formed with taken-up DNA. This
result is consistent with findings of previous reports showing that
recombination attempts during natural transformation frequently
result in DNA strand breaks and thus can damage genomic DNA
(32). The DNA damages then lead to increased SPDIR frequencies,
as observed in the experiments with ciprofloxacin and UV light. The
RecA-independent recombination at the MH was strand orien-
tation-specific (Supporting Information). In a transformation-
deficient ΔcomA ΔrecJ ΔexoX triple mutant [lacking the ComA
DNA uptake pore (23)], the SPDIR frequency was not different
from that of the ΔrecJ ΔexoX mutant (Table 1).
These results confirm that SPDIR is primarily an intragenomic

process and also demonstrate that natural transformation can be
mutagenic through the SPDIR pathway. Consequently, clustered
polymorphisms in the genome of some bacterial species can be
the result of foreign DNA acquisition. However, in retrospective
genome analyses it may often not be possible to identify the
origin of donor DNA molecules due to the short length of the
SPDIR-generated polymorphisms.

The Two IR Events of SPDIR Are Temporally Linked. Three lines of
evidence strongly suggest that SPDIR mutations form within a
single generation before selection. First, we frequently found

Table 1. His+ and SPDIR frequencies in A. baylyi strains without and with genotoxic stress or addition of DNA

A. baylyi ADP1 hisC::′ND5i′
relevant genotype

Amendment

Median His+ frequency SPDIR fraction‡

Calculated SPDIR
frequency

nCIP* (MIC) UV, mJ260 nm DNA† Absolute Relative

Wild type — — — 1.1×10−11 5% (2/40) 5.6×10−13 =1 10
ΔexoX — — — 3.1×10−11 8% (2/25) 2.4×10−12 4.3 17
ΔrecJ — — — 1.1×10−10 4% (1/25) 4.3×10−12 7.7 9
ΔrecJ ΔexoX — — — 4.6×10−11 34% (19/56) 1.6×10−11 28 11
ΔrecA — — — 4.4×10−11 8% (2/25) 3.5×10−12 6.2 15
ΔrecA ΔrecJ ΔexoX — — — 5.4×10−9 80% (32/40) 4.3×10−9 7,722 14
Wild type 0.1 — — 1.5×10−9 2% (1/50) 3.0×10−11 53 11

0.25 — — 7.1×10−9 5% (2/40) 3.6×10−10 631 10
Wild type — 3.6 — 2.8×10−10 4% (2/46) 1.2×10−11 21 13

— 10.8 — 8.2×10−9 0% (0/67) <1.2×10−10 <216 12
ΔrecJ ΔexoX — 3.6 — 1.3×10−9 25% (2/8) 3.3×10−10 594 5

— 10.8 — 8.5×10−9 25% (3/12) 2.1×10−9 3,782 5
Wild type — — BS 6.5×10−11 4% (1/25)§ 2.6×10−12 4.6 10
ΔrecJ ΔexoX — — AB 1.4×10−9 47% (8/17) 6.6×10−10 1,173 10

— — SS 7.4×10−10 33% (7/21)§ 2.5×10−10 439 5
— — BS 5.5×10−10 51% (24/47){ 2.8×10−10 500 9

ΔrecJ ΔexoX ΔcomA — — — 6.5×10−11 35% (8/23) 2.3×10−11 40 10
hisC+ trpE27 — — — 1.5×10-10# n.a. n.a. n.a. 11

n.a., not applicable.
*CIP, ciprofloxacin supplemented at concentrations relative to the minimal inhibitory concentration (MIC) for A. baylyi wild type (62.5 ng·mL−1; modified
Etest).
†Supplemented with 300 ng·mL−1 genomic DNA from the following sources: BS, Bacillus subtilis 168; AB, A. baylyi hisC::′ND5i′; SS, salmon sperm DNA.
‡Identical genotypes were regarded as siblings originating from a single mutation event.
§The SPDIR events formed with endogenous AB DNA.
{Eight SPDIR events were formed with BS, and 15 events were formed with AB DNA. One donor DNA segment was present in both donor genomes.
#Point mutation frequency, given as median Trp+ frequency.
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intragenomic donor DNA segments in SPDIR isolates with re-
verse complement orientation relative to the hisC::′ND5i′ allele
(Table S1). In these cases, temporally independent IR events
would result in lariat chromosome intermediates that cannot be
replicated by the cell. Second, SPDIR events with foreign DNA
(that is taken up by the cell as ssDNA fragments) require ge-
nomic integration through two IR events in a single generation
to prevent potentially lethal dsDNA breaks. Third, many His+

colonies from the same primary cultures frequently carried
unique, identical SPDIR mutations, both with intragenomic or
exogenous donor DNA molecules. Such jackpot events strongly
suggest that SPDIR mutations preexisted in the bulk culture (see
Supporting Information and Table S1 for details). In our fre-
quency calculations, identical mutations from the same assay
were treated as single mutation events.

A Model for SPDIR Caused by Cytoplasmic ssDNA Molecules. We
show that SPDIR events depend on the presence of ssDNA and
are suppressed by key components of the genome maintenance
machinery. A genomic integration model is depicted in Fig. 2. In
that model, microhomologies are used by the cell to join un-
related DNA molecule ends, as has been demonstrated and
quantified in previous studies for single (15) or multiple (24, 33)
IR events. The model further builds on a proposed mechanism
for strand orientation-specific, RecA-independent integration of
short DNA molecules (23), in which we showed that fully ho-
mologous oligodeoxynucleotides (≥20 bp) could be chromoso-
mally integrated in a single event during replication, acting as
primers for Okazaki fragments (23, 24) (Supporting Information).
In the present study, we demonstrate that microhomologies are
sufficient for chromosomal integration at low but detectable
frequencies during lagging strand DNA synthesis (Fig. 2, Fig. S3,
and Supporting Information).

Bioinformatic Analyses Reveal Putative SPDIR Events in Streptococcus
pneumoniae. We hypothesized that SPDIR is a general genetic
mechanism forming microindels and clustered polymorphisms
with intragenomic DNA. To test this hypothesis, we searched for
variations consistent with SPDIR in the gram-positive human
pathogen Streptococcus pneumoniae and in human genomic DNA
samples using bioinformatic approaches. We performed initial
DNA sequence analyses on 203 pairwise genome alignments from
the well-characterized S. pneumoniae PMEN1 lineage (34) collected

over 30 y. We called clustered polymorphisms as a set of ≥3
cumulative single-nucleotide polymorphisms (SNPs) with no
more than eight base pairs (bp) between each SNP (Supporting
Information). We subsequently identified genomic DNA seg-
ments that could have served as potential donor molecules for
SPDIR events.
For each microhomology, we calculated the minimal free en-

ergy of hybridization (35) (ΔG0
min) as a proxy for the annealing

stability properties of a microhomology. Conservatively, we only
considered DNA segments that displayed a lower ΔG0

min than
the weakest microhomology found in the experimental studies
with A. baylyi (Supporting Information and Dataset S1). Using
these criteria, we obtained a set of eight putative SPDIR events
that are in accordance with the thermodynamical requirements
identified experimentally (Dataset S2).
Although identification of false-positive donor molecules cannot

be excluded using this retrospective approach, the likelihood of
random occurrence of identical DNA segments of typically 13 or
more bp occurring in intragenomic DNA is low (Supporting In-
formation). False-positives due to accumulated point mutations or
alternative microindel-generating processes cannot be completely
ruled out. On the basis of estimates of yearly point mutation rates
in the PMEN1 lineage (35) (1.57 × 10−6) of ∼3.3 single-nucleotide
changes per genome per year, the probability of multiple adjacent
SNPs mimicking SPDIR events while the remainder of the ge-
nome remains unchanged is extremely low.

Bioinformatic Analyses Reveal Putative SPDIR Events in Human
Genomes. For humans, we isolated DNA from blood samples
and colon cancer tissues from three individuals (36) and sequenced
the DNA on an Illumina HiSeq 2000. We called clustered poly-
morphisms with donor molecules for SPDIR largely as described
above (see Supporting Information for details). Altogether, we
identified 94 putative SPDIR events (Table S2 and Dataset S3).
Detailed analyses showed that more than half of these events
were short clustered nucleotide variations present in various
human sequence databases including alternative genome assem-
blies, suggesting that SPDIR contributes to the generation of hu-
man heterozygous alleles and that SPDIR is a mutation mechanism
operative in humans.
The remaining insertion–deletion sequences were not found in

available databases and were considered novel (Table S2). Seven
novel putative SPDIR events were uniquely identified in DNA
from blood, whereas a total of 33 putative novel events were
identified in DNA from colon cancer tissue only (Table 2). Re-
markably, 16 novel SPDIR events from cancer tissue formed at
predicted hairpins and led to microinversions (Fig. 3) that in two
cases were imprecise (Fig. 3B). These microinversions predictively
formed through donor ssDNA molecules that originated from the
same locus but reannealed with the DNA single strand as reverse
complement. Donor DNA molecules from loci very close to the
SPDIR site were also observed in the experimental studies (A. baylyi
SPDIR isolates A4 and K49; Dataset S1), but the hisC::′ND5i′
detection construct did not contain stem–loop secondary structures.
Close proximity between donor locus and recombinant micro-
indel locus may increase the likelihood for a SPDIR event.
Three novel SPDIR events, including a single microinversion,

were identified both from cancer tissue and from blood (Table 2),
suggesting somatic mutations early in embryogenesis, spread of
genetic material within the body, or previously unknown het-
erozygous alleles. The observed predominance of SPDIR in
colon cancer tissue possibly reflects the reduced activity of ge-
nome maintenance functions generally observed in cancer cells
(37, 38). This observation is consistent with the increased SPDIR
frequencies of genome maintenance mutants in our experimental
bacterial system (Table 1).

Fig. 2. Model for SPDIR mechanism illustrated with a DNA replication fork
(black indicates parental DNA strands; blue arrows indicate newly synthesized
DNA strands). The proposed mechanism expands on a synthesis of several
microhomology-dependent IR models (15, 23, 24, 33). In step 1, an ssDNA
molecule (red) anneals at one or more microhomologous regions with exposed
ssDNA segments at the discontinuously synthesized arm. In step 2, the po-
tential 3′-extension is processed, and the hybridized molecule is extended by
a DNA polymerase. In step 3, the potential 5′-overhang is removed, and the
processed end is covalently joined with the newly synthesized 3′-end of the
next Okazaki fragment.
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Discussion
In this study we identified a previously unrecognized mechanism,
SPDIR, which generates clustered DNA polymorphisms. We show
that SPDIR facilitates the formation of SNP clusters, microindels,
and mosaic genes (experimentally observed substitutional insertion
of up to 26 codons; Dataset S1). SPDIR occurs by ssDNA segments
of intragenomic or extragenomic origins that invade and replace
genomic DNA through two IR events.
Our genetic studies in A. baylyi with specific deletion mutants,

together with the genotoxic stress and transformation experiments,
clearly show that cytoplasmic ssDNA segments are responsible for
SPDIR (Fig. 2). In wild-type cells, cytoplasmic ssDNA is a genomic
damage signal, and the formation of ssDNA is tightly controlled
(25). SPDIR can be classified both as a recombination and as a
replication-associated mutation mechanism for clustered polymor-
phisms, with rare ssDNA segments acting as mutagens. Although
oligonucleotides are known to recombine intracellularly or in the
course of horizontal gene transfer (23, 24), and synthetic oligonu-
cleotides are now widely used in targeted mutagenesis approaches,
these events are based on DNA homology. SPDIR depends ex-
clusively on microhomologies in otherwise heterologous DNA that
can be as short as 12 bp and interrupted by mismatches and gaps.
SPDIR occurs rarely in A. baylyi wild-type cells. However,

DNA damages increase the SPDIR frequency by orders of magni-
tude. Consequently, the cells turn into transient phenotypic muta-
tors for microindels under genotoxic stress. The transient mutator
phenotype does not require mutations in DNA repair genes, as
frequently observed in mismatch repair-deficient mutators of pro-
karyotes and eukaryotes (39). It is conceivable that increased
SPDIR frequencies can provide cells with a competitive advantage
in fluctuating environments, as reported for genotypic mutators (40,
41). SPDIR can generate near-random genetic variations and alter
entire protein domains in a single generation. It is thus tempting to
speculate that SPDIR may be an important mechanism in protein
evolution (42) following gene amplification and duplication events
(43) (Supporting Information).
Our in silico identification of potential SPDIR events in both

the gram-positive pathogen S. pneumoniae and in the human
genome strongly suggests that SPDIR is a general mutation
mechanism with relevance beyond our model organism A. baylyi.
The identified microindel variants, together with the presence of
intragenomic donor molecules, are consistent with the experi-
mentally obtained SPDIR events and thus biologically plausible.
Typical SPDIR-generated sequence changes are inaccessible by
known point mutation or recombination processes, such as rep-
lication slippage, microhomology-dependent IR, NHEJ, DNA
gyrase-mediated strand switching, or transpositions. However,
sequence variations caused by SPDIR are comparable with those

produced by MMEJ, a highly mutagenic DNA repair mechanism
in eukaryotes (20). MMEJ is tightly down-regulated in healthy cells
but often operative in tumor tissue. DNA double-strand breaks are
repaired by MMEJ in an error-prone way, frequently leading to
incorporation of ectopic DNA segments at the joints (20).
In our human tumor samples, we determined that 16 uniquely

identified clustered polymorphisms were microinversions at
predicted hairpins (Fig. 3 and Dataset S3). Microinversions at
hairpins have been reported (44–46), but the mechanistic details
of their formation remain elusive (45) and are considered un-
related to templated mutagenesis at imperfect hairpins (46). The
formation of microinversions is also not consistent with our
current understanding of the MMEJ or of other mutation
mechanisms, and microinversions at hairpins have not been
reported in MMEJ surveys (19, 20). However, microinversions
can be explained most parsimoniously by SPDIR where the inverted
repeats of the hairpins act as microhomologies and are used for the
illegitimate joints (Fig. 3A), consistent with the model shown in Fig. 2.
Our results indicate that SPDIR-caused mutations occur in colon
cancer at elevated frequencies but not in the whole blood control. In
many cancers, including those with up-regulated MMEJ, genome
maintenance functions such as Rad51 (eukaryotic RecA homolog)
and ssExo are down-regulated (47, 48). It is conceivable that SPDIR
occurs at elevated frequencies in such tumor cells, as experimentally
observed in the A. baylyi ΔrecA ΔrecJ ΔexoX triple mutant (Table 1).
The role of SPDIR in cancer progression requires further exploration.

Materials and Methods
The A. baylyi mutant strains were constructed as described (23, 32, 49) with
standard procedures (Supporting Information) and are listed in Table S3. The
mutation experiments were conducted in liquid cultures that were in-
oculated with a single colony of a His− strain and aerated for 15 h at 30 °C in
LB broth. The cells were washed, plated on M9 minimal medium with 10 mM
succinate (M9S; His+ mutant titer) and in appropriate dilution on LB (total
cell titer), and incubated at 30°. When applicable, ciprofloxacin or DNA was
added before inoculation. When UV was used as DNA-damaging agent, the
cells were grown for 11 h, washed in PBS, irradiated with a germicidal lamp,
and then grown in LB for another 4 h. On the M9S selective plates, His− cells
grow less than one generation.

His+ colonies on M9S were picked after 40 h (recA+ strains) or 64 h (ΔrecA
strains) and restreaked on M9S, and the recombinant hisC segment was ampli-
fied by PCR and Sanger-sequenced (Supporting Information). To identify ectopic
inserts, the sequencing results were aligned with the A. baylyi genome and,
when donor DNA for natural transformation was used, with donor DNA
sequences, using BLAST (50).

The bioinformatic approaches are described in detail in Supporting In-
formation. The R scripts are available from the authors upon request.

Two ethical boards reviewed the protocol for investigation of the human
samples included in this study: the Regional Committee on Health Re-
search Ethics (Case H-2–2012-FSP2) and the National Committee on Health

Table 2. Combined numbers of novel SPDIR events from three
human individuals

Putative novel SPDIR events Cancer Cancer and blood Blood

Total 33 3 7
Associated with genes 20 1 4

ORFs 15 0 3
Potential control regions 5 1 1
Tumorigenesis 2 0 0
Growth and proliferation,

differentiation, apoptosis,
DNA binding, and transcription

8 1 2

Other functions 10 0 2
Not associated with genes 13 2 3
Microinversions 16 1 0

The potential SPDIR numbers for each human individual are listed in
Table S2.

Fig. 3. Examples of microinversions at predicted hairpins identified in can-
cer tissue from human individuals. Black arrows indicate the inverted repeats (IR),
and blue arrows indicate the loop orientation. Other color codings are the same
as in Fig. 1 B–E. All potential SPDIR events found in the human genomes are
listed in Dataset S3. (A) The class 2 microinversion Z441, located in the proto-
oncogene SASH1 of colon cancer tissue from individual 1. (B) Example of a
microinversion that was fully annealed at the left IR but misannealed at the right
IR (using an alternative microhomology for the right illegitimate joint), resulting
in a net gain of six bp (Z2579; individual 3, colon cancer, intergenic region).
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Research Ethics (Case 1304226). Both review boards approved the human
research and waivered the requirement for informed consent, in accor-
dance with national legislation (Sundhedsloven) (36).
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