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Abstract: Open geospatial data sources provide opportunities for low cost 3D scene 

reconstruction. In this study, based on a sparse airborne laser scanning (ALS) point cloud 

(0.8 points/m2) obtained from open source databases, a building reconstruction pipeline for CAD 

building models was developed. The pipeline includes voxel-based roof patch segmentation, 

extraction of the key-points representing the roof patch outline, step edge identification and 

adjustment, and CAD building model generation. The advantages of our method lie in generating 

CAD building models without the step of enforcing the edges to be parallel or building 

regularization. Furthermore, although it has been challenging to use sparse datasets for 3D 

building reconstruction, our result demonstrates the great potential in such applications. In 

this paper, we also investigated the applicability of open geospatial datasets for 3D road detection 

and reconstruction. Road central lines were acquired from an open source 2D topographic 

database. ALS data were utilized to obtain the height and width of the road. A constrained 

search method (CSM) was developed for road width detection. The CSM method was 

conducted by splitting a given road into patches according to height and direction criteria. 
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The road edges were detected patch by patch. The road width was determined by the average 

distance from the edge points to the central line. As a result, 3D roads were reconstructed 

from ALS and a topographic database.  

Keywords: open geospatial data; airborne laser scanning; topographic database; building 

reconstruction; road reconstruction; road network 

 

1. Introduction 

Three-dimensional (3D) technologies are gaining popularity in industrial, consumer, entertainment, 

healthcare, education, and governmental applications. According to a new market research report [1], 

3D modeling accounted for the highest market share in 2013. In the next five years, 3D modeling and 

mapping market is expected to grow from $1.1 billion in 2013 to $7.7 billion by 2018. 3D modeling 

solutions enable users to rapidly construct 3D maps of surrounding areas that are suitable for professional 

visualization systems. Smartphone companies, such as Google, Microsoft, Apple, and Samsung, have 

indicated substantial interest in 3D map applications. 3D-enabling devices, such as cameras, scanners, 

GPS components, and other acquisition devices, have created vast potential for the construction of 3D 

environments [1]. 3D maps offer some advantages over 2D maps, including providing superior 

navigation, decision making and information visualization in urban planning and being highly applicable 

to many smart city concepts and location-based services.  

3D reconstruction is the process of determining the shape and appearance of objects using this 

information to produce virtual replicas of, for example, natural environments, old towns, and archaeological 

elements. Virtual reality refers to computer-simulated environments that are replicas of the real world or 

imaginary worlds, but these models include rendered, textured planes and surfaces. Examples of 3D 

modeling pipelines can be found in [2], and an early example of virtual reality can be found in [3]. 

The reconstruction of 3D environments requires not only advanced technology but also available data 

sources. Major data sources used in reconstruction include photogrammetric images, laser scanning and 

existing map data. Photogrammetry is the technology of deriving 3D data from 2D images by mono-plotting 

(single-ray back projection), stereo-imagery interpretation or multi-imagery block adjustment. Laser 

scanning is based on laser (lidar) range measurements from a carrying platform and the precise positioning 

and orientation of the platform. The costs of data acquisition are usually fairly high and include the costs 

of equipment, planning, design and measurement. Open data sources, which provide numerous opportunities 

for exploring the potential of data, are becoming increasingly available. Data are described as “open” if 

they are freely accessible by anyone to use and republish as they wish, without restrictions from copyright, 

patents or other mechanisms of control [4]. The advantages of using open data sources are apparent:  

(i) they provide an economic cost savings; (ii) they maximize the use of data for various purposes;  

(iii) they stimulate research projects; (iv) they foster the connection between developers; and (v) they 

maximize achievements.  

Open geospatial data have gained substantial popularity. In the past few years, some national governments 

have provided geospatial data as open data sources on websites to share and explore the potential of data 

through the development of applications to address public and private demands. In spring 2010, the UK 
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government allowed a significant number of datasets to be freely accessible to the general public via a 

program named ShareGeo Open [5]. These datasets included many core datasets held by the Office of 

National Statistics, the Central Government and the Ordnance Survey. Since 1 May 2012, the National 

Land Survey of Finland (NLS) has allowed its topographic datasets to be freely available to the public 

and to companies at no cost. According to the NLS’s agreement, the open data product can be used 

without compensation and with extensive and permanent rights of use [6]. In March 2014, the commercial 

software company ESRI launched the ArcGIS Open Data site, which enables organizations to create 

custom open data websites. 

As more open geospatial databases become available, the trend to update the geospatial databases 

from 2D to 3D became evident due to the increasing need for 3D applications, such as flood risk modeling, 

flight path planning, and environment and coastal protection. In 2012, the Netherlands established the 

3D national standard for large-scale topography [7]. In December 2013, Singapore launched a plan for 

the development and maintenance of a 3D topographic database. In Finland, the need to update a 2D 

topographic database to a 3D topographic database is urgent because airborne laser scanning (ALS) data 

continuously proliferate throughout Finland. Therefore, one of our motivations was to investigate the 

NLS open datasets and to advance the technology for updating 2D topographic databases to 3D.  

Building reconstruction from ALS has been continuously developed over the decades since the 

commercialization of ALS systems. The proposed methods are generally categorized into two groups 

according to the data source: methods utilizing multiple data sources for building reconstruction, which 

typically use both ALS data and ground plans, and methods utilizing ALS data alone. The former is less 

affected by the density of the ALS point cloud due to the use of the supplementary data. For instance, 

the ground plan may define the outer edges of the buildings, and the inner roof edges may be obtained 

from the intersections of the neighboring roof patches. However, when using ALS data alone, the density 

of the points plays an important role during the development of reconstruction methods. Figure 1 depicts 

building roof point clouds of different densities: 0.8 points/m2 (left) and 8 points/m2 (right). It can be 

seen that the sparse data do not necessarily capture the building corners. Connecting neighboring edge 

points from sparse data will result in jagging line pieces. Meanwhile, the dense data clearly define the 

edges of the roof. Methods developed for a dense dataset may not be suitable for a sparse dataset. The 

current trend shows that open geospatial data sources will be widely used in the coming years, especially 

when considering its free cost and convenience. Therefore, it is urgent in developing methods for 3D 

scene reconstruction from such datasets. 

 

Figure 1. Comparison of the densities of the ALS point clouds. (a) 0.8 points/m2;  

(b) 8 points/m2. 
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The main goals of this paper are as follows: (1) to explore the use of open geospatial datasets for 3D 

scene reconstruction; (2) to develop a pipeline of 3D building reconstruction, including voxel-based  

roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge 

identification and adjustment, and CAD building model generation; (3) to conduct 3D road detection and 

reconstruction from ALS and topographic databases. A constrained search method (CSM) is proposed. 

The open datasets used in this paper include the ALS and 1:10,000 topographic databases. In the 

following section, we briefly review the methods proposed in previous studies.  

2. Related Work 

The previous approaches related to building reconstruction can be grouped into three categories:  

data-driven, model-driven and a combination of data-driven and model-driven. According to Haala and 

Kada [8], the building reconstruction methods were classified into three types: (i) reconstruction with 

parametric shapes; (ii) reconstruction with segmentation; and (iii) reconstruction with digital surface 

model (DSM) simplification; methods in the first category are model-driven, whereas methods in the 

latter two categories are data driven. The strengths and weaknesses of the data- and model-driven 

methods have been discussed in previous studies [9]. For example, data-driven methods are more flexible 

and do not require prior knowledge; however, the density of the data has a significant effect on the resulting 

models. Model-driven approaches predefine parametric shapes or primitives, such as simple roof 

prototypes (e.g., gable, hip, gambrel, mansard, shed and dormer). Complex models are reconstructed by 

the combination of different primitives. One of the advantages of a model-driven approach is that a 

complete building roof model can be constructed according to predefined shapes when some building 

roof data are missing (e.g., due to reflection or an obstacle). However, failure is possible when reconstructing 

complex buildings and building models that are excluded in predefined shapes [8].  

Various researchers have made significant contributions to building reconstruction research,  

e.g., Vosselman et al. [10–13], Brenner et al. [14–17], Elberink [18–22], Haala et al. [8,23–26], and 

Rottensteiner et al. [27–32]. In addition, more recent studies on building reconstruction have been 

presented by Bulatov et al. [33], Chen et al. [34], Dorninger and Pfeifer [35], Hron and Halounová [36], 

Huang et al. [37], Jochem et al. [38], Kada et al. [39,40], Kim and Shan [41], Lafarge et al. [42,43], 

Perera et al. [44], Rau and Lin [45], Sampath and Shan [46], Seo et al. [47], Xiong et al. [48,49],  

Yan et al. [50], Yang et al. [51], and Zhou and Neumann [52,53]. The papers selected for this brief 

review are introduced below. 

Vosselman [10] proposed a building reconstruction method using ALS data, in which a 3D Hough 

transformation was utilized to segment roof patches. In this method, edges are identified using the 

intersection of faces and an analysis of height discontinuities. Geometric constraints were used to enforce 

building regularities. In later iterations of this approach [11,12], both ALS and ground plan were used, 

and a subsequent study [13] applied multiple data sources: ALS, maps and aerial photographs. 

Brenner and Haala [14] used DSMs and 2D ground plans as data sources in an automatic and/or 

semiautomatic reconstruction process. Ground plans are divided into rectangular primitives using a heuristic 

algorithm. For each 2D primitive, a number of different 3D parametric primitives from a fixed set of 

standard types are instantiated, and their optimal parameters are estimated. The final object representation is 

obtained by merging all 3D primitives. In subsequent approaches [15], regularized DSMs and ground 
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plans were utilized. A random sampling consensus (RANSAC) was applied for roof plane segmentation. 

In a subsequent study [16], the author suggested the use of weak constructive solid geometry (CSG) 

primitives to model 3D objects. In a later work, Brenner reviewed the methods of building reconstruction 

from images and laser scanning [17]. 

Elberink and Vosselman [20] noted problems with using dense ALS data for automated building 

reconstruction and discussed problems with model-driven methods and the combination of data- and 

model-driven approaches. Specifically, the following problems were noted: uneven distributions of laser 

points, inaccurate determinations of the parameters for roof plane segmentation, inconsistencies between 

point clouds and ground plans when using ground plans, misclassification or incompleteness of laser 

point data when ground plans were not used, errors in building outline detection due to the missing laser 

points, the need to rely on assumptions about 3D building shapes, challenges in reconstructing complex 

building shapes and certain small details when using model-driven methods, and conflicts when applying 

the thresholds for the final shape of the model when using a combination of data- and model-driven 

approaches. Elberink and Vosselman [21] employed building vectors and an ALS point cloud with a 

density of 20 points/m2 for building reconstruction. A target-based graph matching approach was developed. 

A data-driven method was used in tandem with a model-driven method in the process. The test data 

corresponded to residential areas of Dutch cities with villa and apartment house architectural styles. 

Complete shape matching was observed for 72% of the 728 buildings. The author noted that reconstruction 

was not feasible when the buildings contained complex height jumps and flat roofs because the proposed 

algorithm could not reliably locate all edges of flat roof segments, and the locations of corner points 

inside the polygon were not detected.  

Haala and Brenner [23,24] used laser scanning data and ground plans for building reconstruction. The 

first step was to acquire a DSM from laser point cloud data. Next, the DSM was simplified to reduce the 

number of presented points. The ground plan was then decomposed according to the DSM normal. An 

interactive editing tool was developed to refine the initial reconstruction. Finally, 3D CAD models were 

reconstructed. In a subsequent approach by Haala et al. [26], the authors presented a cell decomposition 

method for both roof and facade reconstruction from input data from ground plans, ALS and TLS. 

Rottensteiner and Briese [27,28] used laser data (for regularized DSM) and aerial images (to perform 

segmentation of aerial image grey levels and expansion by region-growing algorithms). In this method, 

planar roof segments were detected using the DSM normal vectors integrated with the segments from 

the aerial images. Plane intersections and step edges were detected, and a polyhedral model was derived. 

Rottensteiner et al. [29] only used laser data. Roof planes were detected using the surface normal vectors. 

The plane intersects and step edges were then detected. Finally, all step edges and intersection lines were 

combined to form the polyhedral models. The author’s recent contributions to the ISPRS benchmark for 

urban object detection and 3D building reconstruction can be found in Rottensteiner et al. [27,31,32]. 

More information about the ISPRS benchmark will be introduced later. 

In a recent study, Dorninger and Pfeifer [35] presented a mean shift segmentation method for roof 

segmentation and 2D α-shape outline extraction using an angular criterion for final polygon generalization. 

Sampath and Shan [46] utilized the eigenvalues of the covariance matrix to separate the lines and planes. 

The planar components were grouped into a small patch. The normal vector of the small patch was 

determined. The same normal vectors were clustered (using k-means clustering) to form roof patches. 

Buildings were reconstructed by estimating the intersection lines using a plane adjacency matrix.  
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Lafarge and Mallet [43] proposed a hybrid representation for building reconstruction using geometric  

3D-primitives (e.g., planes, cylinders, spheres or cones) to represent standard roof sections and mesh-patches 

to describe more irregular roof components. Xiong et al. [48] presented a building reconstruction method 

from a set of noisy point clouds by utilizing roof layer division and global optimized model geometry. 

In this method, the roof points are decomposed into layers. Each layer is reconstructed independently. 

The nodes of the roof patches are computed based on the roof planes and their intersections. Zhou and 

Neumann [53] utilized the inter-element similarities and relationships of the building structures (e.g., 

direction and placement similarities between planar elements) and detected their locally fitted plane 

primitives and global regularities to reconstruct the building models. Yang et al. [51] presented a method 

for building outline extraction. The resulting building outlines consisted of a set of edge points, not  

key-point-represented outlines. As is evident, many researchers have proposed the use of shape 

decomposition or the detection of plane intersection lines to segment different roof patches instead of 

patch outline extraction.  

The International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark in urban 

object detection and 3D building reconstruction was launched in 2012. The results were published in 

July 2014 [27]. In this benchmark, two test areas with five datasets were provided: the first test contained 

georeferenced 8-cm ground sample distance (GSD) aerial color infrared images and an ALS with a 

density of 4–7 points/m2 from an area in Vaihingen, Germany; the second test contains a set of georeferenced 

15-cm GSD RGB color images and ALS data with a density of approximately 6 points/m2 from an area in 

Vaihingen, Germany. According to the results, 14 different building reconstruction methods were submitted. 

Ten methods were only based on ALS points, two methods only employed images, one method was 

based on a raster DSM from ALS and one method used both images and ALS data. The results indicated 

that ALS data were preferred to images during the building reconstruction. Eight methods were based 

on generic building models, five methods employed adaptive predefined models, and one method was 

based on primitives. Data-driven methods are more prevalent in this benchmark. One primitive-based 

reconstruction method was suitable for large roofs but produced many errors in small superstructures  

on roofs. During the reconstruction process, under-segmentation was the dominant error type for areas  

with small buildings, whereas over-segmentation errors were common for areas with large roofs. Thus, 

Rottensteiner et al. [27] concluded that “for future research, the focus can be on smaller roof structures 

and a better treatment of step edges in complex flat roof buildings”. 

With regard to road reconstruction, many studies have provided evidence that an ALS point cloud is 

suitable for road detection and reconstruction. Clode et al. [54] proposed a method for classifying roads 

using both the intensity and range of LIDAR data. Jan et al. [55] introduced a temporal filtering method 

based on conditional random fields for the detection and reconstruction of the curbs and road surfaces. 

Zhang [56] utilized the height information of the point cloud and pattern recognition techniques for road 

candidate selection. The line representation of the candidates was then determined. Finally, road surfaces 

and road edges were extracted.  

Recently, mobile laser scanning (MLS) has been widely for fast and accurate road modeling.  

Recent studies based on MLS point clouds for road modeling can be found in Boyko and Funkhouser [57], 

Yang et al. [58], and Sukhan and Park [59]. Boyko and Funkhouser [57] utilized a road map and a  

large-scale unstructured 3D point cloud for 3D road reconstruction. Yang et al. [58] extracted road 

markings from MLS data using georeferenced point cloud images and the strength of the reflectance. 
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Sukhan and Park [59] presented a drivable road model using four-layered laser scanners and one camera, 

and the positions of the vehicles and the obstacles were identified. 

Although some studies of 3D road modeling have been implemented, there is still a room for further 

development. In this paper, we developed approaches tailored for upgrading 2D roads from the NLS 

topographic database (presented as the central lines of the road carriageways) to 3D road models (featuring 

the road edges and heights) and investigated the availability of ALS point clouds of different densities.  

3. Data Sources 

The open geospatial data file download service has been provided by the NLS since May 2012. 

Customers are able to select their desired product, format and coordinate system as well as their areas of 

interest within Finland. The data sources that we used include two sets of ALS point clouds with different 

densities, a 2D topographic database and orthophoto.  

3.1. Airborne Laser Scanning 

ALS data provide 3D coordinates of point cloud and laser echo information. The coordinate system 

is ETRS-TM35FIN. ALS is currently available in some parts of Finland. Data acquisition for the entire 

country is planned for 2019 [6]. The program of utilizing ALS is based on the technology transfer from 

the Finnish Geodetic Institute to the NLS. From the NLS, the concept was also modified to Swedish 

National Laser Scanning.  

Open ALS data from NLS have a density of 0.8 points/m2. Its vertical accuracy is typically 15 cm, 

whereas its planimetric accuracy is approximately 35 cm. Quality control for the Finnish national ALS 

data has been addressed by Ahokas et al. [60]. 

The second set of ALS data, which was provided by the local municipality, has a density of  

8 points/m2, a vertical accuracy of 10 cm, and a planimetric accuracy of 25 cm. The objective of using 

two sets of ALS with different densities is to investigate the feasibility of road edge extraction from each 

set and determine their applications.  

3.2. Topographic Database 

The Finnish topographic database contains vectors of buildings, transportation networks, 

administrative borders, geographic names, land use, and waterways. The positional accuracy of the 

topographic database corresponds to the scale range of 1:5000–1:10,000, which indicates 1 m for the 

position accuracy and 0.25 m for the vertical accuracy. The traffic road network and geographic names 

are continuously updated, the buildings, constructions and administrative borders are annually updated 

and the remaining elements are updated approximately every five to 10 years. The topographic database 

is available as a version that encompasses the entire country [6]. The formats for the topographic 

database include Esri shape, MapInfo MIF, and also MAAGIS/XL and GML.  

3.3. Orthophoto 

NLS orthophotos comprise a color aerial photo data set with a terrain resolution of 0.5 m, which 

encompasses the entire country of Finland. NLS orthophotos are updated every three to 10 years. The 
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product is a part of the NLS raster material. Color orthophotos can be used as textures for terrain 

presentations. The format is the jpeg2000 format (. jp2). 

4. Developed Methods for 3D Building Reconstruction 

This section presents the developed methods for 3D CAD building model reconstruction from a sparse 

ALS point cloud (0.8 points/m2). We assume that the ALS point cloud has been classified into buildings 

and ground. The procedure for building reconstruction is illustrated in Figure 2. “CAD” is the abbreviation 

of “computer-aided design”. In this paper, a CAD model mainly refers to an optimized model. It is 

represented by a 3D wireframe model. In this section, we also used the terms such as “key point” and 

“roof patch”. A key point of a building model is the point in which direction or height changes. A key 

point heavily affects the description of the shape of the building. “Roof patch” is a plane which contains 

all coplanar points. In a simple case, one roof has one patch. In most of cases, a roof contains several roof 

patches, which are possibly intersected (e.g., gable and hip roofs) or parallel with different height patches. 

During the CAD building model reconstruction, the core issue is the extraction of the key points 

representing the roof patch outlines. The following steps are suggested for obtaining the final building 

models: (i) voxel-based building roof patch segmentation and the extraction of the key-points representing 

the outline of each patch; (ii) establishment of the data structure for the roof patches (the building direction, 

plane normal, patch neighboring relations and inclusive relationships); (iii) the acquisition and adjustment 

of step edges; and (iv) building base height acquisition and meshing. 

 

Figure 2. Procedure for 3D CAD building model reconstruction.  

4.1. Roof Patch Segmentation 

The input for the roof patch segmentation algorithm was implemented based on the classified individual 

buildings (Figure 3a). In the planar patch segmentation, we utilized voxel-based processing initially 
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developed for the efficient processing of mobile laser scanning [61] point clouds, which has also been 

found to be feasible for the processing of ALS point clouds. First, the point cloud was divided into a regular 

voxel structure, and only occupied voxels (henceforth “voxels” for brevity) were retained and saved into 

an array. Each element of the array contained the ݕ ,-ݔ-, and ݖ-coordinates of the points of one voxel. 

For each voxel, the indices of the voxels in the 124-neighborhood were retrieved and saved in a separate 

table. Second, locally planar voxels were classified via principal component analysis (PCA) to obtain 

the variances ߣଵ  ଶߣ   ଷ in the three principal directions [62]. A voxel was classified as planar if theߣ

points in its 124-neighborhood were located approximately within a plane. We used a flatness measure 

ܨ ൌ 1 െ ଵߣଷ/ሺߣ  ଶߣ   was greater than 0.95, the voxel was labelled ܨ ଷሻ [63] in the classification: ifߣ

as planar. Third, planar seed surfaces were extracted from the planar points (Figure 3b) using a modified 

version of the USF range image segmentation algorithm [64]. The modifications were as follows: (i) 

instead of pixels, we used voxels; (ii) a voxel’s normal was calculated via PCA using all points in the 

voxel’s 124-neighborhood; (iii) we chose the seed voxel randomly and calculated the initial plane parameters 

from the seed voxel’s 124-neighborhood; (iv) we used 124-connectivity; (v) we did not compare angles 

between the normal in the growing phase; (vi) the perpendicular distance between a new candidate voxel 

and the plane of the surface grown so far was calculated between the candidate voxel’s center of mass 

and the plane (we used a threshold of 0.2 m); (vii) we did not calculate the point-to-point distance but 

accepted all 124-neighbors that satisfied perpendicular distance condition (vi); (viii) we re-estimated the 

plane parameters of the surface after five new voxels had been added; and (ix) patches smaller than  

2 voxels were discarded. Fourth, the seed patches were used to obtain connected planar surface patches 

from the original point cloud (Figure 3c). The fourth phase was necessary because, for example, all 

points on the planes are not classified as a planar patch due to noise and roof crests. The fourth phase 

began by selecting one seed patch, fitting a plane to it and selecting all points of the building point cloud 

that resided on the seed plane. Then, selected points were merged with the seed points, duplicates were 

removed, and connected components were retrieved from the points. If the largest connected component 

that overlapped the seed patch was sufficiently large, it was classified as a planar patch. The points on 

the planar patch were removed from the building point cloud and the remaining seed patches. Next, a 

new seed patch was selected, and the same procedure was repeated for the remaining points. This process 

continued until all seed patches were treated. An application of the algorithm to a more complex roof 

structure is shown in Figure 4. The height jumps of different patches are displayed on the right side of 

Figure 4. Different colors represent different patches.  

 

Figure 3. Procedure of plane segmentation. 
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(a) (b) (c) 

Figure 4. Example of roof patch segmentation with height jumps. (a) ALS building points; 

(b) detected roof patches shown in different colors; (c) roof patches at different heights. 

4.2. Building Roof Data Structure Establishment 

After roof patch segmentation, the data structure for the building roofs should be established. In this 

section, an example is given to show how a building roof data structure is treated. Figure 5 displays the 

numbering of the roof patches.  

Figure 6 shows an example of an inclusive relationship. First, patch 1 and patch 2 are neighboring 

relations. If the centroid of patch 1 (red point) is located on patch 2 and the height of patch 1 is greater 

than the height of patch 2, ݄ܿݐܽ	1 ∈  These patches have an inclusive relationship if the .2݄ܿݐܽ

following conditions are satisfied: (i) two planar patches are neighboring relations; (ii) the centroid of 

one patch is located inside another neighboring plane (in 2D space); and (iii) one plane is higher than 

another plane.  

 

Figure 5. Segmented building roof patches with marked patch numbers. 

 

Figure 6. The determination of an inclusive relationship: ݄ܲܽܿݐ	1 ∈  .2	݄ܿݐܽܲ

Patch 1 

Patch 2 
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Table 1 shows the data structure for the roof patches. The data structure in Table 1 contains multiple 

feature descriptions: the consistency in the patch direction and building direction, intersecting angle of the 

patch normal and vertical direction, inclusive relations, neighboring relations and height of the patch 

centroid. The patch and building directions can be obtained by PCA of the points. The normal of a patch 

is defined here as the mean value of the normal of all points of the patch. The normal angle is the intersection 

angle of the normal and vertical directions. The relationship between two neighboring planar patches can be 

determined by calculating the 2D shortest distances (−xy plane) between the boundaries of two patches. 

When the shortest distance is less than a threshold, e.g., 1.5 m, we refer to them as neighboring relations.  

Table 1 reveals that all patches have consistent directions in an entire building. The patch normal 

angle is defined as a zero horizontal plane and a 90° vertical plane. As shown in Table 1, six smaller 

patches contain angles greater than 10°. Two patches (P12 and P15) contain angles greater than 20°, 

which indicates that the large patches are more stable than the smaller planes in normal angle estimation. 

Table 1 also shows that three pairs of patches satisfy the criteria of an inclusive relationship: P7 and P4, 

P15 and P2, P16 and P3.  

Table 1. Data structure of building roofs. 

Plane 

(Number of 

Points >10) 

Number 

of Points 

Plane and 

Building Direction 

(Consistent = 1) 

Plane Normal 

Angle 

(degree) 

Inclusive 

Relationship 

ሺࡼ ∈  ሻࡼ

Neighboring 

Relations 

The Height of 

the Centroid of 

the Plane (m) 

P1 1652 1 1.0896 0 
P2, P3, P5, P8,  

P10, P11 
14.87 

P2 1550 1 −5.5742 0 P1, P3, P6, P12, P15 22.2 

P3 976 1 3.3197 0 P2, P1, P12, P16 26.09 

P4 648 1 3.8889 0 P6, P7, P13 22.23 

P5 386 1 3.7306 0 
P1, P9, P10,  

P11, P14 
22.91 

P6 243 1 −8.8889 0 P2, P4, P5 11.35 

P7 237 1 7.5949 ࡼૠ ∈   P4 25.65ࡼ

P8 74 1 14.5946 0 P1, P10 11.66 

P9 56 1 −12.8571 0 P5 19.69 

P10 48 1 −7.5 0 P1, P5, P8 19.60 

P11 53 1 6.7925 0 P1, P5 18.36 

P12 66 1 21.8182 0 P2, P3 15.49 

P13 51 1 −14.1176 0 P4 7.1 

P14 19 1 −18.9474 0 P5 18.2 

P15 14 1 −25.7143 ࡼ ∈   P2, P6 26.81ࡼ

P16 30 1 12 ࡼ ∈   P3 27.24ࡼ

4.3. Extraction of Roof Patch Outlines 

The roof patch outlines are extracted by the following procedure: 

(a) Rotate the planar patch to be horizontal (Figure 7a,b), retrieve the minimum bounding box (MBB) 

and rotate the patch again by setting the sides of the MBB as the new coordinate axes; 
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The planar patch was projected into the plane in which it lies, and a MBB was retrieved for the 

projection in the following way. First, a MBB with an arbitrary rotation was retrieved, and its area was 

calculated. Next, the rotation was varied in small steps, and the MBB and its area were retrieved in each 

step. The rotation that provided the MBB with the smallest area was selected. Finally, the projections 

were rotated such that the sides of the MBB were parallel to coordinate axes. 

(b) Transform the horizontal patch to a binary image and obtain the MBB of the image (Figure 7c); 

(c) Calculate the solidity of the image. The solidity of an image refers to the proportion of pixels in 

the convex hull that are also in the region, that is, image actual area divided by its convex area. If the solidity 

value is less than the threshold, e.g., 0.94, the image contains irregular regions. Thus, its complementary 

image and the image’s MBB are obtained (Figure 7d).  

(d) Repeat (c) for all images inside the MBBs, that is, divide the image into sub-images until the 

solidities of all sub-images are greater than a threshold (e.g., 0.94) (Figure 7e). When the area of the sub-

image is less than a threshold, it is not considered for the MBB extraction. 

(e) Combine all MBBs and sort the order of the vertices of the polygon; 

 

 

 

Figure 7. Outline extraction from binary images: (a) roof patch point cloud; (b) roof patch 

rotation to horizontal or vertical direction; (c) extract the MBB of the patch; (d) obtain the 

MBB of the complementary image of (c); (e) acquire the MBB of the complementary image 

of (d); (f) combine the boundaries of (c), (d) and (e) to extract the outline of the roof patch; 

(g) achieve the final outline by rotating the outline of (f) to the original direction. 

(a) (b) 

(f) (g) 
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(f) Transform the result from (e) to 3D points (the reverse processing of (b)) (Figure 7f); 

(g) Rotate the result from (f) to the original position (the reverse rotation processing of (a)) (Figure 7g); 

(h) Overlap the key points from (g) with all points of the roof patch and remove the key points that 

have no neighboring points within a certain distance (e.g., 2 m).  

(I) Extract the final outline by sorting the vertices as a closed polygon. 

The building in the example contains 16 planar patches. Figure 8 illustrates all outlines of the 

extracted roof patches. However, the neighboring patches have inconsistent edges. Additional processing 

is needed to achieve consistent edges.  

 

Figure 8. Superimpose the outlines of all planes on the building point cloud. 

4.4. Acquisition and Adjustment of Step Edges 

We obtained individual roof patch outlines from Section 3.3. However, the neighboring patches have 

inconsistent edges. The step edge is an abruptly height change roof edge connecting its neighboring patches 

(see the left image of Figure 9). From the patch neighboring relationship list in Table 1, each patch  

must address the edges of its neighboring patches. The neighboring relationships between two edges of 

neighboring patches must be identified. The shorter edge is projected onto the longer neighboring edge 

to ensure consistency in the edges. In this stage, the edges are still considered in 2D. The right picture of 

Figure 9 shows the results after edge adjustment. 

 

  

Figure 9. (Left) Step edge represented by red lines; (Right) After edge adjustment. 
  

Step edge 
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4.5. Building Base Height Acquisition and Model Generation 

Previous sections have presented the procedure for extracting the roof patch outlines and achieving 

consistent edges between two neighboring patches. We now have the outlines of the roof patches. The base 

height of a building is its ground-level height. ALS building points only include roof parts, and ALS 

data do not include building facade data. The building base height can be obtained from ALS ground 

points by projecting the building key points onto the ground. However, not all planar patch key points 

are projected to the ground because some planes are located on top of other planes (the inclusive relationship). 

Upper patch key points are vertically projected onto its lower planar patch. Then, the ALS ground points 

are triangulated to form a triangulated irregular network (TIN). Building base heights are calculated by 

vertically projecting the key points of the buildings onto the TIN model. The ground heights of the 

building key points are obtained via bilinear interpolation. An average ground height is applied to achieve 

the leveling building base lines. Building models are constructed by meshing the key points in each 

vertical plane. A vertical plane contains both roof points and building base points. Figure 10 illustrates 

the wireframe models and solid models of the buildings. 

 

Figure 10. Building model generation: wireframe model and solid model. Roofs are represented 

by the red areas. 

5. Developed Methods for 3D Road Detection and Reconstruction 

Road networks provide abundant information for a 3D scene. A 3D road network can be reconstructed 

by employing 2D carriageway central lines from a topographic database and ALS data. A topographic 

database provides both 2D carriageway central lines and the road attributes, e.g., the “class”. The road “class” 

was defined by the surface materials: motorway, main suburban road, railway, and pedestrian way. Each 

“class” described the range of the road or carriageway widths e.g., class “12111”: motorway, each 

carriageway with a width of 10–11 m (refer to Table 2). We utilize the width information to obtain the 

location of the road edges from the ALS point cloud. For example, for a motorway with a carriageway 

width range of 10–11 m, the edge search range (R) can be extended to a width of e.g., 5 m in each side. 

If one side shows slope change and another is flat, then the neighboring carriageway of the flat side is 

searched, until slope changes are detected. If there is no height change within the search range, it is accepted 

as a central carriageway. Thus, neighboring carriageways in the both sides need to be retrieved to find 

the slope change edges. 
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Table 2. Transportation data (the width of a carriageway) from the NLS topographic database. 

Class Legend Width (m) 

12111 Motorway 10–11 
12112 Highway 8–10 
12121 High-capacity urban roads 6.5–8 
12122 Main suburban roads 5–6.5 
12131 Suburban roads and entry 4–5 
12132 Small suburban roads with gravel surface 3–4 
12141 Roadway ≤3 
12313 Pedestrian and bicycle way with gravel surface ≤2 
12314 Pedestrian and bicycle way with asphalt surface ≤2 
12316 Footpath 1 
14111 Electrified railway 1.52 m  

 

Figure 11. Procedure of 3D road network reconstruction. 
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Figure 11 illustrates the 3D road network reconstruction procedure. The method was developed according 

to the following steps: (i) obtain the elevations of the carriageway or road central lines from ALS ground 

points; (ii) determine the ALS search area for the road edge detection; (iii) road patch separation; (iv) use 

the discrete Laplacian method for road surface detection; (v) calculate the width of the road and create 

parallel road lines on both sides of the central lines according to the detected road width; and (v) mesh 

the roads to form a 3D road network.  

5.1. Obtaining the Elevations of 2D Central Lines of the Roads or Carriageways from ALS  

Ground Points 

First, the ALS ground points (also called terrain points) are triangulated to form a TIN. The 2D 

carriageway nodes from topographic databases are projected onto the TIN model, and each node is located 

in a certain triangle (see Figure 12). The bilinear interpolation method is used to calculate the node height.  

 

Figure 12. Road node projected onto a ground TIN model. 

5.2. Determination of the ALS Search Area for Detecting the Road Edges 

According to the road “class” definition, the width range for each carriageway is known. Figure 13 

shows one example of a motorway.  

For example, consider “12111” motorway with a carriageway width range of 10–11 m. The actual 

edges could be positioned between the green lines. The extended area for searching the edges is defined 

as the minimum width plus 10 m; each side is about 5 m. An example of an extended area can be found 

in Figure 14, in which the red lines represent the extended border for ground point selection.  

 

Figure 13. Example of the width range for a carriageway defined by the road “class” in 

topographic databases.  
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Figure 14. Road patch segmentation. (Left) lines of segmentation (blue line) vertical  

to the road surfaces through the key points; (Right) ALS ground points segmented into 

multiple patches. 

5.3. Road Patch Separation 

One road typically contains many nodes, and the road may be located on an undulating terrain. When 

we detect the road edges, ground points are separated into patches according to the detected key points. 

The algorithm for the key point detection will be described in the text below. The blue lines in the left 

image of Figure 14 represent the separation lines perpendicular to the road surfaces through the key 

points. These lines intersect with the extended border lines (red lines) to form the intersection points. 

The connections between the intersection points create the patch areas. The right image in Figure 14 

illustrates ALS ground points located in different patch areas using different colors.  

The method for the key point extraction was developed according to two criteria. When one of these 

criteria is satisfied, we accept the point as a key point. 

(i) Direction change in the -xy plane 

We consider Figure 15 as an example. The angle between the neighboring lines, e.g., P3P4 and P4P5, 

is calculated. If the intersection angle is greater than 15°, the intersection point is accepted as a key point. 

In Figure 15, the angle between P3P4 and P4P5 is 27°; P4 becomes a key point. 

(ii) Height change 

From the direction change detection, P3 and P4 were selected as key points. Then, we must calculate 

the height changes between the neighboring points. For example, the road height ranges from P1 to P5: 

[3.48, 3.34, 3.24, 2.95, 3.42]. 

For P2, h2−h1 = −0.14, h3−h2 = −0.1; For P4, h4−h3 = −0.29, h5−h4 = 0.47. 

From the estimation of the height changes, two criteria are applied for the key point selection:  

Identical or different signs in the height differences of the neighboring points:  

Different signs (e.g., −0.29, 0.47) indicate that the terrain contains ups and downs (e.g., P4). Consider 

P4 as an example (although P4 has been selected as a key point during the direction change detection); 

P4 is also selected as a key point according to this criterion.  

The height differences between neighboring points:  

If the height difference between neighboring points exceeds the threshold (e.g., 0.3 m), we retain the 

point as a key point. In the example, h5−h4 = 0.47. Thus, we select h4 as a key point. 
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From these results, P3 and P4 are selected as key points. The ortholines through P3 and P4 perpendicular 

to the road central line are created. The ortholines separate the road surfaces into multiple patches.  

 

Figure 15. Example of a road with direction and height changes. 

5.4. Application of the Discrete Laplacian Method for Road Detection 

The road surface was first extracted roughly using Laplace’s differential operator, which can be 

described as 

ܮ ൌ 	
∆ܸ
4
ൌ
1
4
ቆ
߲ଶܸ
ଶݔ߲


߲ଶܸ
ଶݕ߲

ቇ  (1)

where ܸ(x,y) is a function of two variables and the interior points of ܮ are obtained by taking the 

difference between a point in ܸ and the average of its four neighbors. The discrete Laplacian calculates 

the values on the edges of ܮ by linearly extrapolating the second differences from the interior. We 

employed the discrete Laplacian method for the height changes with respect to the neighbors. The results 

shown in Figure 16 are obtained by thresholding the discrete Laplacian. The red points represent the 

approximate result for the road surface and the blue points represent the ALS points. 

 

Figure 16. Application of the discrete Laplacian method for road detection. (Red) Road 

surface points detected by the discrete Laplacian operator; (Blue) ALS ground points. 

After the rough extraction of the road surface, histogram analysis was applied to the previous results 

to remove the majority of the scattered noise. A bivariate histogram (-xz plane) is established to analyze 

the number of points located in the bins. When the number of points in a bin is less than the threshold, 

these points are removed.  
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Figure 17 shows the histogram analysis and results. The road trace is distinct on the left side of the 

figure. However, the results on the right side of the figure show some scattered points around the road 

surfaces. Therefore, we employ the range search to estimate the number of nearest neighbor points to 

remove the scattered points. Figure 18 shows the results after scatter point removal. 

 

Figure 17. Road detection using a histogram analysis. (Left) Histogram image; (Right) the 

results of the road detection. 

 

Figure 18. Results of the road surface detection. 

In the case of multi-carriageways motorways or highways, since each carriageway has one central 

line, a road consists of multiple central lines. The slope change happens on both sides of the road. For a 

central carriageway, there is no height change on its sides. Therefore, when we use the CSM, if no slope 

change was detected, the neighboring carriageway was retrieved until the edge with slope change was found.  

5.5. Calculation of the Road Width and Estimation of the Road Edges 

After extracting the road surface from the patches, edges are generated according to the rule of parallel 

to the road center line. The road width can be calculated after merging all patches. The road width was 

determined by the average distance from the edge points to the central line. The mean width can be applied 

(see Figure 19). For multi-carriageways roads such as motorway or highway, the road width is the widths 

of multi-carriageways combination. 
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Figure 19. The road edges are generated by creating parallel lines from the central lines of 

the road according to the calculated road width. 

5.6. Meshing 

When the geometries of the roads have been defined by the sets of nodes and their topological 

relationships, the shapes and surfaces of the roads can be generated by triangulating the nodes, which is also 

referred to as meshing. The meshed polygons can be visualized in 3D computer graphics and solid models. 

6. Experimental Results and Analysis 

We utilized the datasets described in Section 2 for 3D scene reconstruction. The test areas were 

located in Tapiola-Otaniemi-Keilaniemi area, in southeast Espoo, Finland. A set of ALS building points 

was utilized for building model reconstruction. Two sets of ALS point clouds (densities of 0.8 points/m2 

and 8 points/m2) and one set of topographic data were applied to test the road detection and 

reconstruction, and their applicability was investigated. The resulting 3D scene includes 3D terrain 

model, 3D buildings and 3D roads. 

6.1. 3D Terrain Model 

The 3D terrain model was generated from ALS ground points. Due to a large number of points from 

ALS, we have developed a quad-tree algorithm for ground point reduction [65]. After performing this 

algorithm, the terrain model with representation of reasonable points can be achieved. The orthophoto 

is applied for the ground texture (Figure 20).  

   

Figure 20. Terrain model for an area of 6 km × 6 km. (Left) terrain model without texture; 

(Right) terrain model with an orthophoto texture. 
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6.2. 3D Building Models 

The original building point cloud has a density of 0.8 points/m2. The building types in the test area 

have both flat and oblique, regular- and irregular-shaped roofs. The resulting models are shown in Figure 21. 

The evaluation is conducted based on three aspects: (i) roof patch segmentation; (ii) height difference 

between models and building point clouds; and (iii) assessment of the distance between the model points 

and their nearest points in the laser data. 

 

Figure 21. 3D building models of the Tapiola area. 

 

Figure 22. Extracted building roof patches. The different colors represent different patches. 

6.2.1. Assessment of roof patch segmentation 

Plane extraction is an important step during reconstruction, as it directly affects the number of building 

reconstructions. Figure 22 illustrates the extracted roof patches. The patches are presented in different 

colors. The evaluated point cloud contained 236 planar building patches, and the algorithm detected 271 

patches. A total of 176 patches, that is, 74.6% of the building patches, were correctly detected. Forty-one 

extracted segments consisted of noise segments that contained non-planar objects, such as vegetation  
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or parts of one or more roof patches. Fifteen instances of undersegmentation and three instances of 

oversegmentation were detected; all oversegmented patches were divided into two patches. The extracted 

patches also included 12 parapets on the edges of the roofs, 16 ambiguous segments, which could be 

classified as the ground or buildings, and five planar patches that were not part of buildings. The errors 

from roof patch segmentation were caused by various factors, such as the density of ALS data; the results 

from building classification and the complex of the building structures and so on. 

6.2.2. Assessment of the height difference between the models and original building points 

Figure 23 shows the resulting models for the height evaluation. The left image illustrates the reconstructed 

building models, in which roofs are shown in red and the building facades are shown in gray. In the right 

image, the building models (in gray) overlap the building point cloud (in green). We selected 15 test 

locations distributed evenly throughout the test area, where we measured the height of both 3D building 

models and the original building point cloud. We compared the heights of the models and original points 

in the locations and estimated the average accuracy of the building models with respect to the original 

building points. Table 3 reveals the height differences between the models and original ALS roof points, 

which vary from 0 to 0.28 m. We employed the root mean square error (RMSE) to measure the deviation: 

ܧܵܯܴ ൌ ඨ
∑ ሺܼ௧ െ ܼሻଶ
௧ୀଵ

݊
  

where ܼ௧ is the predicted value, ܼ is the observed value, and ݊ is the number of predictions.  

 

  

Figure 23. Building model height evaluation. (up) Building models, with roofs in red and 

facades in gray. (down) Original ALS building roof points in green and building models in gray. 

In this context, predicted value is the value obtained from a reconstructed model, and the observed 

value is the value obtained from the original ALS point cloud. The RMSE was estimated from the 
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difference showed in Table 3 as 0.18 m. The average height difference between the models and the 

original points was 15 cm. The heights of the model key points were determined by their neighboring 

points. The referenced height of a roof patch was calculated as the average height of the patch points. 

Therefore, the difference is reasonable if the deviation between the model and the roof patch points is 

less than the tolerance of the planar patch detection. 

Table 3. Height differences between the ALS building roof points and 3D roof models in  

15 test locations. 

Test Location Index 
Height of  

ALS Building Points (m) 

Height of  

Building Models (m) 

Height Difference 

(m) 

1 31.61 31.59 0.02 

2 26.84 26.74 0.10 

3 20.04 19.91 0.13 

4 20.76 20.52 0.24 

5 25.04 24.93 0.11 

6 23.81 23.76 0.05 

7 22.72 22.44 0.28 

8 26.86 26.61 0.25 

9 24.91 24.86 0.05 

10 25.36 25.10 0.26 

11 23.21 23.02 0.19 

12 21.81 21.57 0.24 

13 25.89 25.81 0.08 

14 20.51 20.33 0.18 

15 19.72 19.58 0.14 

Average   0.15 

RMSE   0.18 

6.2.3. Assessment of the distance between the model points and their nearest points in laser data 

In our test data, 176 roof patches were reconstructed, with 1142 model key points extracted. These 

model key points were compared to their nearest laser points, and the distances were calculated. The 

results showed that 6% of the distances were larger than one pixel (e.g., 1.2 m in the test data), while 

2.5% were larger than two pixels. The pixel size used in model reconstruction was determined by the 

space between the input points. Therefore, the use of denser laser points decreases the deviation between 

the model point and its nearest laser point. 

6.2.4. Discussion concerning quality assessment approaches for reconstructed 3D building models 

Elberink and Vosselman [22] presented a quality assessment approach for reconstructed 3D building 

models. The authors proposed using residuals between model faces and laser data and the nearest distance 

between model points and laser data to measure the quality of the reconstructed building models. 

Rottensteiner et al. [27] employed several quality metrics for evaluating the building reconstruction results 

from ISPRS benchmarks: (a) completeness, correctness and quality on a per-roof-plane basis; (b) 

completeness, correctness and quality on a per-roof-plane basis for planes larger than 10 m2;  
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(c) over-segmentation, under-segmentation, and both cases; (d) the RMSE of the planimetric distances 

of the reference roof plane boundary points to their nearest neighbors on the corresponding extracted 

roof plane boundaries; and (e) the RMSE of the height difference between reference planes and all 

corresponding extracted planes. The reference planes were manually acquired from aerial stereo-images. 

The quality indices (a), (b) and (c) describe the quality of the roof plane segmentation, whereas (d) and 

(e) represent the geometrical accuracy of the roof polygons. Our assessment method is similar to that of 

Elberink and Vosselman [22] with a notable difference being that they evaluated the deviation of the 

model from each roof patch point. 

6.3. 3D Road Networks 

3D road networks were reconstructed based on the ALS point cloud and 2D topographic database. 

Two sets of ALS point clouds with different point densities (0.8 points/m2 and 8 points/m2) were tested. 

The heights of the carriageway central lines can be acquired from either sparse or dense ALS data. However, 

the road widths are crucial for the 3D road reconstruction. The solutions for road width acquisition are 

different based on two sets of different density point clouds. Figure 24 illustrates the difference between 

the point clouds of different densities. The green lines represent the range of the road widths, which are 

defined in the topographic database. For the example of a road with a width of 10–11 m, the inner green 

lines represent the width of 10 m, whereas the outer green lines represent a width of 11 m. As shown in 

the left image in Figure 24, few points are located between the widths of 10 m and 11 m. It is difficult 

to accurately detect the edges from the sparse data. A solution for using a sparse dataset for road width 

acquisition is to utilize the width information from a topographic database. An average width value, e.g., 

10.5 m in this case, can be applied for the road reconstruction. The dense point cloud is applied for the 

automatic edge detection.  

   

Figure 24. ALS datasets and road with a width range of 10–11 m. (Left) ALS with a density 

of 0.8 points/m2; (Right) ALS with a density of 8 points/m2. 

The approach proposed in Section 4 is conducted for the dense dataset. The objective is to robustly 

achieve road edges. Here, the road edges refer to the height-changing edges. A road typically contains 

the road surfaces and road shoulders. In this study, the road includes the road surfaces and road shoulders. 
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In order to exhibit the datasets and the detected roads, Figure 25 gives an illustration. Red lines in the 

left figure represent the 2D central lines of the carriageways, which were from topographic database. 

The others are ALS point cloud. In the right image of Figure 25, it shows the resulting road surface 

overlaying on the meshed terrain model. It can be used as visual inspection and accuracy evaluation. The 

final 3D road networks are shown in Figure 26. The reconstructed road types include motorways, highways, 

urban roads, suburban roads, pedestrian and bicycle roads and tracks. The road widths vary from 1 m to 

approximately 40 m. In the right image of Figure 26, the 3D road models are overlapped with the orthophoto.  

   

Figure 25. Road detection and reconstruction from a 2D topographic database and ALS. 

(Left) red lines are the central lines of the carriageways from topographic database. Others 

are ALS point cloud; (Right) detected road points overlaid with meshed terrain (dark blue). 

   

Figure 26. The result of 3D road network reconstruction. (Left) 3D road networks;  

(Right) 3D roads overlaid on the NLS orthophoto (roads in red). 

The evaluation of the road widths is challenging because the practical road widths are not defined  

by the height jumping changes. To prevent an inconsistent road edge definition, we evaluate our method 

by comparing the detected road edges with the interactive measurement from the dense ALS points. The 

height differences between the ALS points and 3D road models are also included in the assessment 

process. Eight roads are selected for the assessments. Table 4 presents the accuracy assessment of the widths 

and heights of the roads. The average width deviation is 22 cm. Its RMSE was estimated as 0.23 m. The 

average height error is 14 cm, with an RMSE of 0.16 m. The width errors are caused by a) noise points 
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around the roads, such as low vegetation close to the road edges, which produces larger detected road 

widths compared with the practical widths; and b) road parallel assumption. We use the average width 

and create parallel lines from the central lines to obtain the road edges. In practice, the edges including 

the road shoulders exhibit zigzag edges, which produce an inconsistency between the actual parallel 

edges and ideal parallel edges. The height errors may be attributed to the variations in the road surface. 

The road heights are extracted from the ALS data. The nearby points of each road node that is located 

in the ALS ground TIN model are included in the height estimation. An average height value of the nearby 

points is assigned to the height of the road node. The same height value is applied for the corresponding 

edge nodes. In most cases, road surfaces are not flat, which creates the potential for errors.  

Table 4. Road width and height accuracy evaluation. 

Road No. 
Road Data from Reference Data (m) Detected Road Width (m) Difference (Absolute Value) (m) 

Width Height Width Height Width Height 

Road 1 39.71 6.26 39.90 6.11 0.19 0.15 

Road 2 8.26 8.54 8.14 8.26 0.12 0.28 

Road 3 26.45 5.92 26.23 5.82 0.22 0.10 

Road 4 32.18 5.14 32.43 5.35 0.25 0.21 

Road 5 19.32 8.42 19.50 8.28 0.18 0.14 

Road 6 14.89 8.06 14.55 7.98 0.34 0.08 

Road 7 9.38 10.17 9.08 10.06 0. 30 0.11 

Road 8 6.71 12.08 6.56 12.11 0.15 0.03 

Average     0.22 0.14 

RMSE     0.23 0.16 

According to this analysis, we construct the following recommendations: 

(i) When only sparse ALS data are available, the average values of the road width ranges from the 

topographic database can be applied for 3D road reconstruction; 

(ii) When dense ALS data are available, the proposed method can be applied for road edge extraction. 

7. Conclusions 

In this study, we investigated the availability of open geospatial datasets for updating a 2D topographic 

database to a 3D database and reconstructed a 3D scene from open data sources. We utilized sparse ALS 

data and developed a building reconstruction pipeline. The pipeline includes voxel-based roof patch 

segmentation, extraction of the key-points representing the roof patch outline, step edge identification 

and adjustment, and CAD building model generation. In addition, we developed methods for road detection 

and reconstruction using a 2D topographic database and ALS point clouds. Our investigation shows that 

when the density of the point cloud was low (e.g., 0.8 points/m2), it was difficult to acquire the road 

edges. When a denser point cloud (8 points/m2) was applied, the road surfaces could be successfully detected 

using a discrete Laplacian operator. The results were validated for both 3D building models and 3D road 

models, and 74.6% of the roof patches were correctly identified for the data with a low point density of 

0.8 points/m2. The average height deviation between the models and the laser points was 16 cm. The 

deviation of the distance between the model points and their nearest laser points was estimated. 6% of 
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these distances were greater than one pixel, while 2.5% were greater than two pixels. The pixel size used 

in model reconstruction was determined by the space between the input points. The results showed that 

as the point density increased, the models approached the original laser points more closely. Furthermore, 

the 3D road reconstruction provided a height deviation of 14 cm and width accuracy of 22 cm. These 

results provide evidence of the great potential of open geospatial data sources for the low cost 3D scene 

reconstruction. Compared to previous studies, our contributions lie in the following: 

(i) The availability of open datasets for 3D scene reconstruction has been demonstrated. The use 

of open datasets reduces the cost of 3D scene reconstruction.  

(ii) The proposed method provided a means of reconstructing 3D buildings from sparse datasets. 

Our method works for both sparse and dense datasets. A dense point cloud provides higher model 

accuracy. In contrast, many previous methods developed based on dense datasets may not be 

applicable for sparse datasets. 

(iii) Our method can produce CAD building models for different roof types, e.g., flat and oblique, 

regularly and irregularly shaped. Furthermore, no extra step is needed to enforce edge to be 

parallel or building regularization.  

(iv) Our study has shown the potential of upgrading the NLS 2D topographic database (e.g., 

buildings and roads) to a 3D database. 
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