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Electromagnetic interaction with uniaxial metamaterials
N. Tedeschi', F. Frezza', and A. Sihvola?

! Department of Information Engineering, Electronics and Telecommunications, “La Sapienza” University of Rome, Rome,
Italy, ! Dapartment of Radio Science and Engineering, Aalto University, Espoo, Finland

Abstract In this paper, the reflection behavior of a particular class of metamaterials, strongly connected
with the realization of the DB boundary conditions (so called due to the vanishing of the normal
components of the D and B fluxes) and the soft and hard (5H) boundary conditions, is presented. The
metamaterial under study is modeled as an anisotropic, uniaxial, material with both permittivity and
permeability dyadics. We consider several characteristics of such medium: presenting the critical angle

of total transmission for the SH/DB material, analyzing its behavior as a function of the longitudinal
permittivity and permeability, for both positive and negative values, and presenting its applications to the
electromagnetic absorbers and to the polarization inverters.

1. Introduction

Electromagnetic metamaterials are widely studied in the literature, and in the last decade several structures
have been proposed with characteristics beyond those of natural media. Their applications concemn several
areas, e.g., enhancing antennas properties, electromagnetic absorbers, frequency filters, guiding surfaces,
beam focusing, and many others [Capoline, 2009]. An interesting area where the metamaterials seem to be of
great importance is the realization of electromagnetic boundary conditions: starting from a condition on the
electromagnetic components on an interface, there are several materials that are able to realize such condi-
tion, e.g., the perfect electromagnetic conductor (PEMC), or the DB boundary condition [Lindell and Sihvala,
2009; Nayyeri et al., 2013]. The former requires the cancelation of the tangential components to the interface
of both the electric and magnetic fields. The latter requires the cancelation of the perpendicular components
of both the electric flux density, D, and the magnetic flux density, B:

n- Dy n-B (1)

where i is the unit vector perpendicular to the interface. It is important to emphasize that given a boundary
condition, several materials are able to realize it. For example, the realization of the DB boundary condition has
been proposed by means of an anisotropic, uniaxial medium with both permittivity and permeability dyadics,
both with the optic axis perpendicular to the interface and with zero axial components. However, another
medium that realizes such boundary condition is a certain exotic material labeled as uniaxial skewon-axion
medium [Hehl and Obukhov, 2003; Lindell and 5ihvola, 2009]. Other boundary conditions proposed in the lit-
erature that are of great interest for both the electromagnetic theory and applications are the so-called soft
and hard (5H) boundary conditions [Kildal, 1988]. Such conditions require the cancelation of a component
tangential to the interface of both the electric and magnetic fields: the condition is either soft or hard, depend-
ing on the direction of such component, if it is either perpendicular or parallel to the plane of incidence,
respectively. The 5H boundary conditions and the DB condition can be merged in a more general boundary
condition called SH/DB boundary condition. It requires the cancelation of the electric and magnetic fields
along a generic direction, let us call such direction &

c-E c-H 2)

The realization of such boundary condition has been proposed by means of a uniaxial material with the optic
axis along ¢ and with zero longitudinal components of the permittivity and permeability dyadics [Tedeschi
et al.,, 2013a). Another possible realization has been proposed by means of a uniaxial skewon-axion medium
[Lindell and Sihvola, 2013]. These media present many applications [Elser et all, 2006; Silverinha and Engheta,
2007; Alekseyev et al., 2010; 5un and Yu, 2012; Engheta and Ald, 2011]. For example, in electromagnetic cloaking
[Valagiannopoulos and Tsitsas, 2012; Engheta and Ala, 2008] and in imaging [Culthaoglu et al., 2014].
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In the present paper, we want to analyze the behavior of the anisotropic uniaxial medium, able to realize the
5H/DB boundary condition, in several situations. We will consider the condition 7= ffﬂr the metamatenal,
we call such relation as matching condition. This kind of materials have been widely studied in the literature.
First of all, in the isotropic case, they are useful for reducing backscattering reflection in anechoic chambers
and from stealthy objects. Furthermore, when anisotropic metamaterials are considered, the matching con-
dition can be obtained with a proper designing of the structure: if the medium is designed with inclusions in
Cartesian arrangement, then the eigenaxes of both the permittivity and the permeability are the same. To
get also the same eigenvalues for the two dyadics requires balancing between the electric and magnetic
moments in the three directions [Lindell et al,, 200% Karilainen and Tretyakov, 2012]. The electromagnetic
absorbers realized by metamaterials are an example of application where the matching condition must be
satisfied. In Landy et al. [2008], a perfect metamaterial absorber, working at the microwave frequencies, has
been presented. Afterward, several other metamaterial absorbers have been proposed in different frequency
ranges [Grant et al., 2011; Dayal and Ramakrishna, 2012]. The analysis of such absorbers has always been done
in the simplifying assumption of isotropic metamaterials. Under such hypothesis, the permittivity and per-
meability of the material at the absorbing frequency respect the matching condition ¢ = u. However, being
structurally stratified metamaterials, they are anisotropic media, either uniaxial or biaxial, depending on the
transverse shape of the unit cell with respect to the stratification direction. As a consequence the matching
condition for these metamaterials is an equality between dyadics.

First of all, we consider the reflection coefficient for several values of the transverse components of the per-
mittivity and permeability dyadics, obtaining an analytical expression for the angle of total transmission
predicted in Tedeschi et al. [2013a]. Moreover, the reflection by an interface with a uniaxial medium with
negative electromagnetic characteristics is analyzed. Furthermore, we consider the relation between the DB
medium and the perfectly matched layer presented in Tedeschi et al. [2013b], and we show its behavior with
respect to an isotropic matched material, often applied in the literature to model the metamaterial absorbers.
Finally, we analyze the reflection at the interface of a particular uniaxial metamaterial able to invert the polar-
ization of the incident wave, i.e., an interface where the reflected wave has an opposite polanization with
respect to the one of the incident wave.

In section 2, we briefly summarize the theoretical results for the generic uniaxial medium presented in
Tedeschi et al. [2013a]. In section 3, we consider the reflection at the interface between an isotropic medium
and the uniaxial one in some spedal cases. In section 4, the conclusions are drawn.

In the following, we assume a time dependence of the form e, Moreover, the dyadics T and % are the
dimensionless, relative electric permittivity and magnetic permeability, respectively. Furthermore, we indicate
all the unit vectors by bold letters with a hat, e.g., €.

2. Theoretical Formulation
In this section, we define the problem of the reflection of a plane wave by a uniaxial medium.

Let us consider a plane wave propagating in an isotropic medium in the half-space z < 0, see Figure 1. The
half-space z= 0 is filled with a uniaxial medium with the following relative permittivity and permeability
dyadics:

= el, 4+ e.e¢ and o= pely + pi e 3)

with i, =1-cc being the two-dimensional unit dyadic. When the longitudinal part of these dyadics is zero,
the interface with this medium realizes the boundary conditions in (2). Let us note that this medium is quite
different from an ordinary uniaxial medium, in fact, the ordinary uniaxial media have only the electric per-
mittivity, i.e., the permittivity is a dyadic, but the permeability is a scalar quantity. The implementation of the
SH/DB with this medium is easily obtained when the longitudinal characteristics approach zero: in fact, in this
case, the components of the electric and magnetic field parallel to the optics axis approach zero, too.

The dispersion equation in this uniaxial medium is the following:

(ko5 k—eckd) (kT k= k) =0 @)
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Medium 1 (z < 0) where k is the propagation vector of the
£ L f:leclmrnagnetu: wave and k, = @/
is the transverse wave number. From the
dispersion equation, the polarization vec-
tor of the two waves, allowed to propa-
gate in the medium, can be obtained as
a function of the optic axis ¢ and of the
propagation vector k:

Medium 2 (z = 0)
E, 0 7

Figure 1. Geometry of the problem. 1/ = = 1 - .
he=—7 (c— kﬂkf) hy=F (nﬁx{;?

The polarization vectors of the electric field are dimensionless; on the other hand, the vectors of the magnetic
field have the dimensions of an admittance.

Starting from the expressions (5) and (6) and following a procedure similar to that developed in Chen [1983],
the reflection and transmission coefficients of the interface with this medium can be evaluated. The explicit
expression of such coefficients is presented in Tedeschi et al. [201 3a]. The reflection coefficients are in a matrix
form, connecting the incident and the reflected waves in both the polarizations:

'E:E - r'l'l r'l] . E]'E 7
E™ Iy Ty E}r'“
The obtained expressions are of particular interest because they allow us to compute the electromagnetic
wave reflected by a general uniaxial medium with any values of the parameters (3).

The components of the reflection matrix depend on the transmitted wave vector in the anisotropic medium.
The components of such vector parallel to the interface are the same of the incident wave vector, while the
component perpendicular to the interface can be computed by the following expression:

2

- . (8)

r"z

1
= . = .2 Lz, -
o e Dol (kf,:u;) (ko-5k,)- ek
[ [

il

uy -

This expression holds in TE polarization; the expression in TM polarization can be obtained by the
duality principle.

3. Reflection at the Interface With Uniaxial Metamaterials

In this section, the behavior of the coefficients developed in Tedeschi et al. [20132] is analyzed in some
interesting cases, i.e., for some particular anisotropic media.

In the following, we will often consider the condition E = f for the metamaterial, we call such relation as
matching condition.

If the matching condition holds, the reflection matrix becomes symmetric and the diagonal elements become
equal to one another, because the matenal presents the same response to the electric and the magnetic
fields. Moreover, we suppose that the propagation vector of the incident wave, the optic axis, and the vector
perpendicular to the interface are coplanar. In this case the nondiagonal coefficients are zero, as usual for uni-
axial materials [Chen, 1983]. The behavior of the diagonal coefficients is shown in Figure 2 as a function of the
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Figure 2. Magnitude of the reflaction coefficient I";; as a function of the azimuthal incident angle, when medium 1 is air
and medium 2 has a = 307, longitudinal parameters e, = u. = 0,001 and for different values of the transversa
parameters ¢; = gz 1 (solid line), 1.5 {dashed line), and 10 (dotted line). The incident wave has the propagation vector
on the (y,z) plane.

azimuthal incident angle &, when & = 30°, &, = u. = 0.001 and for different values of the transverse parame-
ters. We can see that the reflection coeffident approaches zero inthe cases g, = g, = 1and g, = g, = 1.5, for
two different values of the incident angle, let us call these values “critical angles,” 8. We have to emphasize
that the function is continuous in a neighborhood of 8. It becomes discontinuous only in the limit &, u. — 0.
The aritical angle can be defined as the incident angle for which the transmitted wave is parallel to the optic
axis: in this case, in fact, the wave is totally transmitted [Tedeschi et al,, 2013a]. In the limit &., g, — 0, the Snell
law holds, and the condition for the critical angle can be written as follows:

Ay SN = o fep iy sine 9)

In the case ¢, = u; = 1, the critical angle is &, = & = 30°: being the transverse parameters of the
uniaxial medium equal to unity, when the incident wave is parallel to the optic axis, it does not “see”
differences between the two media. Therefore, the reflection coefficient is zero at this angle. In the second
case, when ¢ = i = 1.5, the total transmission occurs for a larger value of the incident angle: in fact,
because of the difference between the refractive indexes, the transmission angle is parallel to the optic axis
for an incident angle 8, > a; applying equation (9), we find the value 8, = 0.85 rad. In the third case, when
& = pp = 10, the transmitted wave vector is never parallel to the optic axis and the reflection coefficient is
never zero, because the relation (9) returns a value of sin # greater than unity. The amplitude of the reflection
coefficient for angles greater than the critical angles is equal to unity because of the total reflection effect,
due to the small values of the longitudinal permittivity and permeability. On the other hand, for values of
the incident angle lower than the critical angle, the reflection coefficient is close, but not equal, to unity. It
can be shown that, when the longitudinal parameters approach zero, the reflection coefficient around zero
approaches unity.

In order to show the behavior for the case of zero axial permittivity and permeability, in Figure 3 the magnitude
of the reflection coefficient |7y, | is shown at normal incidence, &, = 0, as a function of the anisotropy, i.e,asa
function of the longitudinal properties, ¢, and y_, of the dyadics. The optics axis forms an angle & = 30° and the
transverse properties of the dyadics have been considered equal to unity, &, = g, = 1. From Figure 3, itis dear
that the interface behaves as a perfect reflector when the longitudinal properties approach zero, i.e, when
the interface behaves as a SH/DB boundary. The reflection coefficient approaches zero when the longitudinal
characteristics become equal to unity, because the uniaxial medium becomes a vacuum. For greater values
the reflection coefficient grows slowly. If we consider negative values of ¢, we find that the material behaves
as a perfect reflector until a certain critical value €} < 0, and for lower values, the magnitude of the reflection
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Figure 3. Magnitude of the reflaction coefficient "y, as a function of the longitudinal parameters of the second

medium, £, = ., when medium 1 is air and medium 2 has @ = 307, transverse parameters ¢, = g = 1. The incident
wave has the propagation vector on the (y, 2) plane, iLe., @, = 907, with & = 0°.

coefficient starts to decrease. To understand such behavior, we must consider the transmitted wawve vector at
normal incidence, which can be obtained from the expression (8), by imposing k, = 0:

k, =k ; (10}
€ sin’ a + ¢, cos? a

From this expression, we can see that when ¢, < 0, the k; becomes purely imaginary, i.e,, no wave can propa-
gate in the metamaterial. This condition holds until the denominator under the square root remains positive,
i.e, for e, /&, > — tan? &. When the ratio e/ ¢, becomes less than such critical value, the transmitted wave vec-
tor comes back to be positive and the transmitted wave starts to propagate again. As a consequence the
metamaterial behaves as a perfect reflector fore? < ¢, < 0, with &! = —¢ tan” a.

At this point, we note a strange effect: we saw before that the interface acts as a perfect reflectorwhen e, — 0.
Let us consider now the case in which & = ¢! and & = 0. In this case the interface becomes totally trans-
parent to the radiation for any incident angle. This fact was predicted in the Perfectly Matched Layer (PML)
theory [Gedney, 1996]. In Figure 4, the behavior of the reflection coeffident Iy, is shown as a function of the
longitudinal properties of the dyadics in a neighborhood of zero. In this case, we consider ¢, = w, = 100 and
8, = 60°. As we predicted, the reflection coefficient becomes zero when ¢, = 0.01 = € !, However, when
&, becomes smaller, the interface behaves again as a perfect reflector. We can recognize two different zones:
when g, > 0,01, the reflection coefficient grows with the longitudinal characteristics, as usual, because of the
mismatch between the two media grows. When 0 < ¢ < (.01, the reflection coefficient approaches unity:
this is the total reflection zone.

As we previously said, in the past few years, the possible realization of a perfect metamaterial absorber has
been widely investigated in the literature [Landy et al., 2008; Grant et al., 2011; Dayal and Ramakrishna, 2012].
The proposed metamaterials in such studies are considered isotropic and designed to be matched with a vac-
uum. The previous discussion suggests that enhanced absorbing performances can be obtained by designing
the transverse and longitudinal parameters of a uniaxial metamaterial, as proposed in Tedeschi et al. [2013b].
In fact, an ideal lossless, matched uniaxial medium can behave as a PML, though the absence of dissipation
makes it useless. Moreover, under particular conditions on the transverse and longitudinal permittivities, the
total transmittivity of the interface can be kept also in the presence of losses. Just to show an example, we
consider a comparison between the reflection coefficient, as a function of the incident angle, for the interface
with three different materials: an isotropic metamaterial absorber, of the kind proposed in Landy et al. [2008],
and two different uniaxial metamaterial absorbers of the kind proplosa:l_in Tedeschi et al. [2013b]. In all the
three cases the media are considered matched with a vacuum, i.e,, € = . In Figure 5, the magnitude of the
reflection coefficient I',, in these three cases is shown. The relative permittivity of the isotropic absorber is
€ = 2+ /0.01. The longitudinal and transverse relative permittivities of the two uniaxial media are (let us call
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Figure 4. Magnitude of the reflaction coefficient I"y; as a function of the longitudinal parameters of the second
medium, when medium 1 is air and medium 2 has « = 0°, transverse parameters g = u = 100. The incident wave has
the propagation vector on the (y, z) plane, Le., g, = 90°, with 8, = 60°.

them cases 1and 2): e, = 0.01, &, = 100 + i and &5, = 0.01 + /0.001, &5; = 100 + J, respectively. We can see
that, in case 1, the losses are only in the transverse permittivity, while in the case 2, the losses are both in the
transverse and in the longitudinal permittivities. It is interesting that both the uniaxial matenals have a reflec-
tion coefficient smaller than the isotropic absorber for any incident angle. It can be seen that by increasing
the losses in the longitudinal permittivity of the uniaxial material, the behavior of the reflection coeffident
tends to be equal to that of the isotropic absorber. This result proves how the analysis of uniaxial materials
gives good chances to enhance the characteristics of the metamaterial absorbers. Moreover, it is important
to analyze the effect of the losses on the reflection coefficient for a generic uniaxial medium.

Finally, let us consider the case when the incident propagation vector, the optic axis, and the perpendicular
direction to the interface are not coplanar. In this case, when the ratio €,/¢, — oo, the interface behaves
as a polarization inverter [Tedeschi et al., 2013a]. In Figure &, the amplitude of the cross-reflection coefficient
Iy; is shown as a function of & = w, when e, = . = e*;'. The optic axis, on the plane (y, z), forms an

Tl

-1.6 -1 --h.'l v] r:-a 1 1.5
6, [rad]

Figure 5. Magnitude of the reflection coefficient "y, as a function of the incident angle, for three different interfaces:
with an isotropic matched medium with relative permittivity € = 2 + 0,01 (solid line), with a uniaxial medium with
relative permittivities ;. = 0.01, &;; = 100 + i (dashed lina), and with a uniaxial medium with relative parmittivities
€3 = 001 + i0.001, e3¢ = 100 + i (dotted line).
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Figure 6. Magnitude of the reflection coefficient I™y;, when medium 1 is air and medium 2 has a = 45°, longitudinal
parameters ¢, = u, = e;‘l as a function of the transverse parameters. The incident wave is supposad at normal
incidence.

angle & = 45" with the perpendicular to the interface and the incdent plane wave is supposed at normal
incidence. 5ince the matching condition holds, we find that the metamatenal is polarization insensitive, i.e.,
Iy, =TI';; and I, = T, where the minus sign in the second equality depends on the choice of the signs
of the electric field in the two polarizations. For the metamatenial presented, we see that at normal incidence,
the diagonal reflection coefficients are both zero, while the nondiagonal coefficients tend to unity when the
ratio /e, grows. We can understand this behavior investigating the reflection matrix. It can be proved that
when the matching condition holds and the optic axis forms an angle 45* with the perpendicular direction
to the interface, then the eigenvectors of the reflection matrix are ¥, ; = (4, 1) [Tedeschi et al, 2013a]. Such
eigenvectors represent the polarizations that are not changed by reflection on the interface. We can see that
these polarizations are the drcular ones. This is because the circular polarization can be seen as a superposition
of two linear polarizations with the same magnitude. Each linear polarization is inverted, and the reflected
wave is still circularly polarized. As a consequence, if we consider linear polarized waves, an incident wave in
the TE (or TM) polarization generates a reflected wave with TM (or TE) polarization. Therefore, this particular
implementation of the SH/DB boundary has the property to invert the polarization of the incident wave.

————— —
08
06
187
|r | 04
12 |
0.2
- - -
#
o ¥ 1 1 1 1 1
1] 20 40 &l Bl 100

Figure 7. Magnitude of the reflection coefficients 'y, (dashed line) and I"y; (solid line) in the same scenario of Figure 4,
but with an azimuthal incident angle & = 30°.
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This behavior is similar in the obligue incidence case, too. In this case the diagonal coefficients Iy and T'y;
are shown in magnitude as functions of & in the same conditions as in Figure 7. In this case the diagonal
coefficients are not exactly zero, but they are dose to zero.

4. Conclusion

In the present paper, we analyzed the behavior of a particular class of anisotropic uniaxial materials. Such
materials are strongly connected with the realization of the DB boundary condition and the soft and hard
boundary conditions. We studied the reflection coefficients between air and such anisotropic material in sev-
eral scenarios. First of all, we considered the reflection coeffidents for different transverse components of the
permittivity and permeability dyadics, finding that the angle of total transmission depends on such compo-
nents and giving an analytical expression of such angle. Afterward, we analyzed the material as a function of
the axial components of the dyadics, considering both positive and negative values. We find that the mate-
rial behaves as a perfect reflector when the axial permittivity and permeability are either zero or negative but
greater than a negative critical value. An analytical expression of such critical value has been found by study-
ing the perpendicular component to the interface of the transmitted wave vector in the anisotropic materal.
Finally, we presented two important applications of the material to enhance the absorbing performance of a
metamaterial absorber and to realize a polarization inverter.

In future studies, the role of the losses in the behavior of the reflection coefficient needs to be analyzed.
Furthermore, possible realizations of the uniaxial medium in terms of composite metamaterials have to
be studied.
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