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a b s t r a c t 

Realizing the potential of edge computing and networks connecting the edge and the 

cloud, researchers from academia and industries have increasingly developed techniques 

and tools for edge infrastructures and applications. This paper focuses on supporting com- 

plex edge application interactions, which span different layers and subsystems in edge- 

cloud environments. This paper addresses (i) diverse types of software components for 

emulating realistic functionality and configurations, like data transformation and service 

API interoperability, and (ii) techniques for connecting emulated scenarios to real edge 

software development and operations, and to IoT and cloud counterparts. We present 

IoTCloudSamples as a software framework with (i) modeling and implementation of 

diverse types of IoT, edge and cloud elements for complex edge scenarios, (ii) methods 

for constructing and steering emulations to study the interoperability across layers among 

different edge platforms and protocols, and (iii) extensive emulated scenarios and exper- 

iments integrated with real-world IoT and cloud services. IoTCloudSamples supports 

the approach of edge-simulation-as-code to allow the reuse and runtime steering of realistic 

emulation operations. We will present examples from our real-world projects concentrat- 

ing on edge analytics applications. 

© 2021 The Author. Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Edge computing [1,2] has increasingly attracted many researchers from academia and industries to develop novel solu- 

tions for many application domains, like connected cars, indoor shopping analytics, city transport analytics and smart facto- 

ries [3–5] . An adequate edge computing system for testing and simulating realistic edge scenarios must connect IoT devices 

to edge infrastructures to cloud data centers through different types of networks and middleware, using a variety of software 

frameworks. In the literature, researchers have widely used simulation techniques to study interactions and characteristics 

of complex designs in the edge. Unfortunately, edge simulations tools [6–9] , many based on discrete event simulations, are 

far from the real need from the developer. First, these simulation techniques mainly focus on network and compute resource 

usage and on theoretical performance and energy consumption analysis. However, a typical edge application requires many 

elements, including data, software components, diverse protocol supports, to name just a few. The developer must also sim- 

ulate application-level data flows, service interactions and analysis algorithms, at the same time with studying network and 
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Fig. 1. Focused simulation activities for edge application interactions. 

infrastructure behaviors. Therefore, discrete event simulation approaches alone are not adequate. Second, the scale of edge 

applications is large and changing. While existing simulation approaches, e.g., discrete event simulations, can bring theo- 

retical simulation results of very scalable networks and infrastructures, they lack support for realistic settings, such as the 

dynamics of real containers and application-level service models in real edge software designs. 

Given the state-of-the-art (see our detailed discussion in Section 5 ), we focus on supporting edge application develop- 

ers to simulate their applications and complex interactions within the applications in connection with selected underlying 

edge infrastructures. 1 These simulations and tests have to be positioned in concert with IoT, network functions and cloud 

counterparts. As shown in Fig. 1 , we focus on simulation activities for the application-level interaction first (the innermost 

block in Fig. 1 ), before expanding our work to other activities, such as core edge platform and infrastructure interactions 

(e.g., resource management for edge applications), cross IoT, edge, network functions and cloud interactions at the platform 

and infrastructural level, and then to relevant, external IoT, edge, network functions and cloud services. For such interac- 

tions, application data, software service units, application protocols, stakeholder relationships, etc., are the key aspects to be 

simulated. 

Our goal is to provide a framework for edge application-level interactions within ensembles of IoT, Edge, Network Func- 

tions and Clouds [10] . In complex scenarios, the developers usually need to address key engineering aspects of their edge 

applications, such as, integration among services, interoperability, application-level performance, data transformation, and 

runtime deployment. Such simulation features are not available in existing discrete event simulation tools. We aim to en- 

able new simulation designs and tests to be real-world as much as possible through the use of real artefacts and services for 

simulation. To this end, our approach is to enable symbiotic simulation engineering for edge systems and applications through 

edge-simulation-as-code . This paper presents IoTCloudSamples as a software framework, which includes different types 

of IoT, edge, network functions and cloud elements, samples of data and testing scenarios for different purposes. We make 

the following contributions: 

• Diverse types of elements: we provide various service units and providers, covering IoT, edge, network functions and 

cloud functionality for simulations; they are implemented as containerized microservices. 
• Symbiotic simulation techniques: our simulation is based on real-world artefacts and can be connected to real, running 

edge and cloud systems. 
• Edge-simulation-as-code approach: we present various techniques and steps to build simulations through coding, follow- 

ing DevOps processes. 
• Real world scenarios: we include many realistic simulation scenarios as case studies for broad edge interaction studies. 

In this paper, we do not present some common aspects of using simulation techniques, such as, simulating system scal- 

ing and failures. The diversity of business goals and the pervasiveness of application protocols, services and interactions in 

different scenarios in edge computing steer our simulation features towards edge software development methods, interac- 

tions integration pipelines, data transformation, interoperabilities and service reusability. Thus, IoTCloudSamples utilizes 

service and virtualization concepts to enable key requirements from the developers, leveraging real infrastructures to test 

different types of interactions in combination with runtime steering of IoT, edge and cloud services. We will explain our 

1 We use the term “simulation” here because the developed applications include certain parts emulating realistic requirements. However, components in 

our work are either real software or mockup/simplified ones running in realistic environments. The scenarios and applications designed and built with the 

help of our approach can be real-world, being deployed and operational in real edge and cloud infrastructures. Nevertheless, such designs and applications 

are mostly not completed in the view of business functionality and are mainly for feasibility study and research. Therefore, the term “simulation” in this 

paper should be interpreted in this setting. 
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Fig. 2. (Simplified) developer needs and elements required by simulation scenarios. 

key requirements in Section 2 and key designs in Section 3 . We have implemented IoTCloudSamples and released it as 

an open source under GitHub. We will present various examples on how to use IoTCloudSamples for simulating edge 

applications in Section 4 and will discuss our future plan in Section 6 . 

2. Artefacts for emulating edge computing interactions 

2.1. Key requirements 

Within an edge application, the developer has to deal with a set of diverse types of elements covering infrastructures, 

platforms, protocols and data. These elements come from different subsystems and providers for IoT, edge, network functions 

and cloud resources. Examples of interactions in a quite straightforward edge analytics application are (i) taking IoT data as 

messages from an MQTT message broker, then (ii) transforming the data into another format (e.g., CSV to JSON), before (iii) 

passing the transformed data to another messaging system (e.g., Apache Kafka) for near-realtime processing and allowing 

only certain services to receive the result from the near-realtime processing. Thus, a simulation of an edge scenario requires 

many types of artefacts, including software, data and processes, which are common, domain- and application-specific. More- 

over, the simulation must incorporate the roles of stakeholders inherent in edge computing, such as a service provider with 

high cost and quality versus a service provider with free usage and no quality agreement. 

Fig. 2 describes a high-level view of a simulation scenario from the developer’s view. Although the main objective of the 

simulation scenario might target to edge computing aspects by leveraging Edge elements (e.g., edge broker, flow processing 

engine and edge AI), the simulation scenario will have (i) IoT elements for acting as data sources for and objects being 

controlled by the Edge elements, (ii) Network Functions elements for acting as network features among the Edge, the IoT and 

the Cloud, and (iii) Cloud elements for acting cloud services used by the edge. Such elements are also associated with data 

sources used for simulations, and with application-level protocol, network and service configurations. Conceptually, these 

elements and their artefacts – software, data, and configurations including processes – can be offered by the developer and 

the provider, whereas the provider might be communities, public organizations or real-world pay-per-use providers. 

To leverage these artefacts, in a realistic manner, besides simulation artefacts, we must provide additional techniques to 

integrate simulations with real-world services. The key requirements for such simulations are: 

1) RQ1 – Provide diverse types of artefacts close to real design and deployment : adequate software elements covering differ- 

ent aspects must be provided. We have the following types of elements: 

• IoT elements: include, e.g., sensors, actuators and samples of data. They are used for simulating data sources and IoT 

systems being controlled at the edge. 
• Edge elements: include, e.g., edge-based brokers, message processing and edge-based AI [11] . They are used to simulate 

processing, storage and message capabilities at the edge. 
• Network Functions elements: include, e.g., firewall, routers and network controllers. They are mainly used for simulating 

network functions. 
• Cloud elements: include, e.g., databases, big data processing and infrastructural computing resources. They are used to 

simulate cloud backend services for the edge. 

Furthermore, many of these elements must be composed and interacted through known application protocols, such as 

LoRaWAN, MQTT, AMQP and REST, and can be controlled at runtime to allow the realistic design of today’s edge applications. 
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2) RQ2 – Simulate service models : due to the widely offering service models, e.g., pay-per-use models in IoT, cloud and 

edge computing [12,13] , the simulation should be based on the composition and steering of the above-mentioned elements 

as a service. Generally, existing artefacts belong to not only the developer creating simulations but also other providers (and 

some are freely available). Furthermore, even though an artefact belongs to the developer, the developer might use it for 

simulating a service provisioned by a third-party (hosting) provider. For example, a customized message broker based on 

MQTT can be configured by the developer, but be deployed into an edge machine, offered by a provider, to simulate a pay- 

per-use IoT Data Hub. For this reason, we need to distinguish available artefacts from available services for simulations. The 

latter are either acquired or provisioned for the simulations but they are from other providers. In practice, we have diverse 

types of providers for IoT, Edge, Network Functions or Cloud elements. 

3) RQ3 – Simulate application-level scenarios considering dependencies among layers and subsystems: edge interactions 

across layers exist in application-level scenarios. Different studies have shown that edge interactions are complex [14,15] , 

thus simulating a single layer, e.g., compute resource provisioning and management, is not enough. Many interactions can 

be simulated within a subsystem, for example, examining how edge infrastructures would scale when processing IoT data 

using edge flow engines. In this case, a simulation needs all elements mentioned in RQ1 but the simulation study would be 

focused only on Edge elements. However, other studies, such as, controlling data aggregation and ingestion flows to/from 

the edge from/to the IoT/Cloud, require us to steer different subsystems of IoT, Edge, Network Functions and Cloud elements. 

4) RQ4 – Reuse infrastructures and able to control different layers as well as to combine simulated elements with real sys- 

tems : Instead of doing simulation for a single layer or making changes in every layers of a single simulation, we should 

allow multiple simulations running atop another simulation. One example is to develop a simulation for the infrastructural 

layer across IoT, Edge, Network Functions, and Cloud by using appropriate platform services. Then, atop such an infras- 

tructural simulation, additional simulations about application-/domain-specific interactions can be added, for example, how 

data transformation would behave or how reliable application services would fluctuate when changing the infrastructural 

resources. 

2.2. Approach 

Our approach supports simulating edge scenarios by using real deployable and runnable artefacts with a minimum im- 

plemented and emulated business logic, followed symbiotic engineering principles. Given the complexity of interactions, it is 

hard to provide a simple script or a single language based on that everything can be generated for the simulation. Therefore, 

our method is edge-simulation-as-code and is characterized by: 

• Provide ready-to-use elements for simulations so that the developer just needs to specify configurations of elements and 

deploy them for simulations. 
• Enable modification and addition of elements so that the developer can tailor existing elements and add new ones for 

simulation easily. 
• Provide provisioning and steering utilities for controlling elements, like in real development environments, so that the 

way the developer create and control simulations is like that for a real software systems in edge computing. 

This leads to not only providing a software framework but also incorporating our best practices and experiences of the 

typical DevOps activities and tools that the developer uses in design and execution of edge applications. 

3. IoTCloudSamples framework and techniques 

We present three core aspects for supporting simulation of edge interactions. First, we present a software framework 

with diverse types of elements for building simulations. Second, we present our techniques, based on edge-simulation-as- 

code principles, for development and operation activities during the DevOps of simulation scenarios. Third, we present 

methods for including extended software ecosystems into simulations based on IoTCloudSamples . 

3.1. Software framework design 

Fig. 3 presents key concepts in IoTCloudSamples . Key concepts in our simulation are Unit, Provider, 
Configuration, Artefact, Scenario and Stakeholder . 

3.1.1. Units 

A Unit is a basic software component, which is categorized into IoT, Edge, Network Functions and Cloud. A Unit is 

associated with an Artefact that can be a standalone executable program, a dockerized container or a service running in 

a set of (virtual) machines/containers. Units are diverse: some units are complex, e.g., a MongoDB database, which might 

require a deployment with several machines/containers. Other units, like a firewall, might interface to low-level APIs, which 

are not necessarily accessible to the developer. The key aspect of IoTCloudSamples is that Units are services and are 

executed in virtualized/containerized environments. Thus, they can be instantiated on-demand and controlled at runtime for 

real edge and cloud scenarios. 

4 
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Fig. 3. (Simplified) conceptual view of key elements in IoTCloudSamples . 

Table 1 

Examples of units for protocol bridges. In many scenarios, we need to integrate different protocols. This subclass of units provides 

common bridges for different APIs and protocols for exchanging data. 

Units Description 

PubSubToCoAP a bridge between generic MQTT and AMQP brokers with CoAP servers to transform messages 

between MQTT/AMQP protocols and the CoAP protocol 

RESTtoAMQP a bridge between REST HTTP calls and AMQP brokers 

http2datastorage a bridge HTTP server to Google Storage, allowing simulating HTTP to Google Storage native 

protocol 

mqttamqpbridge a bridge between MQTT brokers and AMQP brokers, allowing simulating message relay and 

protocol interoperability 

mqttkafkabridge a bridge between an MQTT broker and a Kafka messaging system 

Table 2 

Examples of domain and application-specific units. 

Units Description 

port-control-service a service simulating a seaport control, which accepts requests from vessels and other stakeholders 

portAlarmService a service simulating alarm management within a seaport 

portVessel a service simulating a vessel, which is approaching a seaport 

portalarmsensor a service simulating alarm sensors in a seaport 

testRig a service simulating a remote rig system whose objects can be controlled to move in a space 

We have common, domain-independent units as well as domain- and application-specific units for simulations. Examples 

of common units are sensors, actuators, message brokers, flow engine and storage. Domain-specific units are dependent on 

scenarios and applications domains; examples of domain-specific and application-specific units could be protocol bridges 

shown in Table 1 and application-specific units shown in Table 2 . 

3.1.2. Providers 

Units provide basic functionality but they do not reflect the business model that the stakeholders want to simu- 

late in scenarios. In order to support the service and pay-per-use model in simulations, we develop Providers , which 

provision and manage units as resources for simulations. Providers are associated with Artefact and will provide 

Units as resource instances. However, Providers can be controlled to enable different business and service models, 

allowing Units instances for different purposes. Thus, we can simulate many service providers of the same type of re- 

sources. Given a type of Units , we can use different providers of the same type: e.g., an MQTT broker can be from a real 

cloud IoT Hub provider or from an emulated edge MQTT provider in an edge machine by the developer (on-premise). This 

is useful for testing scenarios in which different providers of the same type of resources offer different quality of services, 

security settings and locations. Currently, we have the following types of Providers: (i) from existing real cloud and edge 

5 
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Table 3 

Examples of some providers implemented. 

Units Description 

IoTCameraDataProvider a service provider interfacing to several real cameras to offer camera data as a resource for simulation 

alarm-client-provider a provider for creating alarms for different users 

bigQueryProvider a wrapped provider for emulating big data resources atop Google BigQuery 

ingestion-provider a service provider supporting simulating services for data ingestion 

sensor-provider a service provider supporting simulating sensors (creating, controlling and removing sensors) 

dockerizedserviceprovider a generic service provider for running dockerized services, which are common or application-specific 

kubernetesFirewallProvider a service provider for creating firewall as a network function for a Kubernetes environment 

mosquitt-mqtt-provider a service provider that can be used to create MQTT brokers for different users 

test-rig-provider a dockerized rig service provider for simulation of control of movable objects 

vessel-provider a provider for simulating vessel creation for companies 

providers in the market, (ii) by simply creating instances from common units available in open sources and public repos- 

itories, and (ii) by developing common and domain-/application-specific providers based on assumption business models. 

Similar to Units , most Providers can be deployed as container-based services (e.g., Docker or Kubernetes). Table 3 

shows some examples of providers which we have developed. 

3.1.3. Data 

The data must be close to realistic cases. In our framework, we consider to enable the developer to use widely available 

public datasets and private real datasets. Furthermore, there are many open IoT testbeds and public platforms that we can 

use to obtain data. When the data is not available, our method is to emulate data created from real datasets. In this case, 

we use existing scripts and libraries, such as Faker 2 and mock-data-generator 3 to create emulated data based on real 

data. For example, Listing 1 shows an example of creating simulated data based on real format of emission data from a 

seaport (based on a real sample from Valencia). 

Listing 1. Creating emulated data for a scenario. 

Currently, IoTCloudSamples provides some sample of data collected from real systems. Examples are from monitor- 

ing real Base Transceiver Stations 4 , network monitoring data, or public cameras collected and shared only on-demand. 

2 https://github.com/marak/Faker.js/ 
3 https://www.npmjs.com/package/mocker- data- generator 
4 A small set of data is published at: https://github.com/rdsea/IoTCloudSamples/tree/master/data/bts whereas many months of data are kept confidential. 
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Table 4 

Examples of scenarios. 

Scenarios Simulation goal Related artefacts, data and protocols 

Base Transceiver Station (BTS) Analytics Understanding edge infrastructural resource 

scalability; data transformation; access control; 

integration with cloud 

IoT sensors; edge broker; edge data ingestion; 

firewall; cloud storage; Hadoop; MQTT/AMQP and 

REST 

Test Rig Understanding uncertainties in edge/IoT control REST-based edge control service; actuators; 

sensors 

Accessing Video Data in seaport data interoperability; protocol interoperability; 

runtime dynamic resource provisioning; 

integration with cloud services 

camera data; edge container-based execution 

platform; Google Storage 

Access data in a seaport data transformation and integration; middleware 

interoperability; protocol interoperability; data 

interoperability with different stakeholders 

sensor data; MQTT/AMQP brokers; flow 

engine/Node-RED; edge container-based 

computing platform 

3.1.4. Scenarios 

From Units , Providers and data, the developer can create different simulation scenarios. Each scenario describes a 

system to be designed that might be used for different purposes. In our framework, Scenario is abstract and is linked 

to various artefacts. One type of artefacts is the system topology of service units and providers that can be specified in 

common structures like TOSCA 

5 or resource ensembles [16] . When services in a topology are deployed and executed, the 

elements for the simulation are started, and the simulation runs and can be controlled. Artefacts in scenarios, scripts for 

running scenarios, and logs of scenarios are currently managed by the developer. Depending on simulations, bootstrapping 

and simulation control programs can be simple or complex, e.g., written in Python or JavaScript programs to invoke APIs of 

service units and providers in the simulation. Following edge-simulation-as-code , we consider the freedom of the developer 

to write such programs. We provide some scenarios extracted from real projects in Table 4 . 

3.1.5. Prototype 

IoTCloudSamples – available in GitHub 6 – is implemented with Python and JavaScript/NodeJS with various state- 

of-the-art technologies, e.g., Kubernetes, Docker, MongoDB, BigQuery and Node-RED. Simulations are carried out in virtual 

environments of containers and virtual machines. Thus, we leverage both public and private cloud and edge infrastructures 

for running simulations. The deployment of simulation scenarios can be accomplished manually for selected elements in the 

simulation or automatically by existing tools available for service deployment in virtual environments. 

3.2. Simulation-as-code and its DevOps 

In edge-simulation-as-code , we consider three main phases, each includes many typical activities in DevOps, but focusing 

on edge-simulation-as-code : 

Phase 1 (Devs)– Design and development of scenarios: 

• Search simulation artefacts and services for Units and Providers : this includes artefacts in existing local repositories, 

potential artefacts from public repositories, such as DockerHub, and available artefacts and services from public edge and 

cloud systems. 
• Identify missing Units : most common units, but domain-specific or application-specific ones, are usually available. Like 

any design, these missing units have to be identified by the developer. 
• Identify Providers and their business models : the developer has to decide which types of providers and their business 

models for the simulation scenario. The simplest case is to have only one provider and one business model defined by 

the developer. However, usually simulations will mix different provider profiles, such as a simulated provider for Edge 

elements and Google Cloud Platform as another provider for Cloud elements. 
• If needed, build and modify Units and Providers : common situations are that the domain-specific and application- 

specific units are missing and, while units are available, no suitable provider exists. In this case, additional effort needs 

to be spent for building and/or tailoring units and providers. Since the goal is for simulation, the effort for developing 

core functionality of such units and providers will be light, while the interface/APIs and the service implementation must 

be performed properly to allow the integration with other services. 
• Build/configure suitable configurations for Units and Providers : this is typically dependent on the goal of the simula- 

tion. 
• Identify external utilities for scenarios : during the simulation, the developer might need to manipulate some common 

features, e.g., network bandwidth manipulation. In this case, finding suitable utilities, which are used in real systems, is 

more appropriate. 

5 https://wiki.oasis- open.org/tosca/TOSCA- implementations 
6 https://github.com/rdsea/IoTCloudSamples 
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Fig. 4. Example of using Postman to check a flow engine unit created by a flow engine provider deployed in an edge machine (the flow engine unit is 

based on Node-RED). 

The developer can combine different ways to perform simulations, such as provisioning using manual tools, writing 

scripts to deploy simulations or services, and running simulations: 

Phase 2 (Ops)– Provisioning and execution of scenarios – since the whole framework is based on virtualized services, 

key activities in Phase 2 (Ops) are quite similar to typical operation activities in cloud engineering: 

• Create topologies of resources as service to be deployed : the topology includes Units and Providers . Typical models for 

service topology structures can be used. Such topologies can be created manually or generated by existing tools. 
• Deploy and provision Units and Providers : many deployment tools can be used but the developer can also use 

command-lines and scripts provided together with Units and Providers , such as from Docker, Kubernetes, and 

Google Cloud Platform. 
• Run simulation : this is similar to running any service system in virtual environments. As elements in a simulation are 

service-based, we can use tools or code to invoke service APIs to run the simulation. For example, Fig. 4 shows how to 

use Postman to check a service in a simulation. 

During the simulation, the developer can steer the simulation. Common steering operations are, e.g., to change infras- 

tructural elements, inject data processing flows, and to add new elements into the simulation. This will be done in the 

following phase: 

Phase 3 (Steering) – Simulation steering for scenarios : since it is code and many APIs are available during the test we 

can steer the services. Such actions can be done through code. For example, the following excerpt shows to control creation 

and deletion of service units during the simulation: 

8 
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Extra tools can also be used, for example for searching artefact or automatically deployment. In our work, for certain 

simulations, we also use rsiHub 7 for discovery. Since our approach relies on software artefacts that can be instantiated as 

services and external realistic services, many activities in Phase 2 and Phase 3 can be interwoven by utilizing suitable 

tools. For example, using dynamic techniques [16] , one can perform runtime changes of the topology and resources for the 

simulation. 

3.3. Integration with external, real software ecosystems 

The key related software in our framework are (i) external providers and (ii) utilities for connecting external providers 

with simulations. Such utilities can be developed by the developer as the developer knows which real services should be 

included. In this case, the developer can follow convention and best practices and examples in IoTCloudSamples to 

build connectors and adaptors. Then, within simulation steering code, invocations of the newly deployed services can be 

written and executed. This allows the elasticity of external services in existing simulations. Another way is to leverage some 

existing utilities for discovery and deployment of simulation elements, such as rsiHub [16] . 

4. Illustrative examples and experiments 

4.1. Edge analytics in seaport examples 

We used several scenarios at a seaport to illustrate simulation examples. Our seaport analytics scenarios are extracted 

from the H2020 Inter-IoT project 8 . Other available examples are for edge analytics for telco infrastructures and for a remote 

rig lab. 

4.1.1. Simulation software artefacts 

Artefacts are available in our prototype in GitHub. Some common Units and Providers in IoTCloudSamples used 

for examples are: 

IoT cameras : in our scenarios, in the seaport, there are many cameras, which provide real-time data (and historical data). 

Each camera has metadata about the location, video data format, etc., and is an IoT service unit, whose data can be pushed 

or pulled. There is a camera provider for the seaport that manages cameras and allows consumers to search and request 

camera data resources. Since, in practice, the developer is not allowed to access cameras in the real seaport, we can simulate 

seaport cameras by using public cameras. In our simulation, our IoTCameraDataProvider implementation 

9 interfaces 

to real cameras. 

IoT sensors : in the seaport there are many sensors, which provide information about emission cabins, weather stations, 

weather measurements, emission measurement and sound measurements. Real data was obtained for simulations but no 

direct access to sensors was given. For simulations, we do not need to develop a new domain-specific sensor code for each 

type of sensors. Instead, we use a common sensor code to handle different types of sensor sample data. The common sensor 

code 10 simulates real sensors and data providers by taking existing datasets from the Valencia seaport and replaying them. 

Network Functions : we assume the following service model for a seaport: an edge computing platform provider offers 

various services within the seaport. In the seaport a Network Function provider was used to offer firewall functions that can 

control the traffic in/out the seaport. We emulate this by assuming that the seaport infrastructure is running as a Google 

cloud virtual infrastructure. Our firewall provider leverages Google firewall features 11 . Another way to simulate firewall as 

network function is to build a service atop UFW 

12 . 

Edge computing brokers : in the seaport there is a provider, which can offer message brokers on demand. The broker 

we use in our example is MQTT. If a consumer needs a message broker, the provider will provide an instance of the broker 

for the consumer 13 . 

Edge computing workflow engines : In the seaport there is a provider which can offer a data processing workflow 

engine that a consumer can use. The data processing workflow we use is Node-RED and a data transformation provider has 

been developed for simulating data processing tasks 14 . 

Cloud services : there are many cloud services available outside the seaport. We use, e.g., Google BigQuery, Google Cloud 

virtual machines and Google Storage. Furthermore, the computing brokers and computing workflows (like in the edge situ- 

ation within the seaport) can also be provided as cloud services. 

7 https://github.com/rdsea/HINC 
8 https://inter-iot.eu/ 
9 https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/IoTCameraDataProvider 

10 https://github.com/rdsea/IoTCloudSamples/tree/master/IoTProviders/sensor-provider 
11 https://github.com/rdsea/IoTCloudSamples/tree/master/NetworkfunctionsUnits/SimpleFirewallController 
12 https://help.ubuntu.com/community/UFW 

13 https://github.com/rdsea/IoTCloudSamples/tree/master/IoTProviders/mosquitt- mqtt- provider 
14 https://github.com/rdsea/IoTCloudSamples/tree/master/InterOpProviders/nodered-datatransformer-provider 
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Fig. 5. Activities and interactions in provisioning and accessing services. 

Fig. 6. Interactions in obtaining data units. 

Domain- and application-specific services : we use some of the services given in examples in Section 3.1 for vessels, 

vessel providers, truck providers, cranes providers, and port management services. 

4.1.2. Accessing video data in seaport 

Simulation scenario : a consumer within the seaport requests some cameras and obtains the video camera data by 

pulling the data itself (using HTTP). Another consumer outside the seaport does the same. Assume that an emergency hap- 

pens, the consumer outside the seaport asks the camera provider to reconfigure resources and push the data to an outside 

cloud service, e.g., Google Storage. As a consequence, the network function in the edge must allow “pushing data” to Google 

Storage. 

Study goals : we can use this scenario to simulate interactions with edge services with real, external services. We can 

also study performance of data transfers between the edge and the cloud at the application level. 

Simulation setup : based on the designed scenario, the developer has several activities for setting up the simulation. 

Fig. 5 shows activities of developers, possible software artefacts, their instances of units and providers and extra utilities. Key 

activities are Search Artefact, Deploy Artefact, Run Program and Check Data are corresponding to activities in Section 3.2 . The 

main simulation control program is simple_find_and_push.py which is used to control services. Except that Google 
Storage and real Camera Services are available from third parties (public and pay-per-use), other artefacts are pro- 

vided by IoTCloudSamples and we also use rsiHub utilities for artefact discovery. 

Examples of simulation actions : Fig. 6 presents further detail of how actions are done within the simulated scenarios. 

For the simulation, the developer can develop code to perform different tasks, such as, to find cameras, retrieve data and 

push data to cloud services 15 . For example, the following log shows (simplified) results of a request to take the latest camera 

video based on an input geohash and push the result to Google Storage: 

15 Examples of python code are available at: https://github.com/rdsea/HINC/tree/master/scenarios/camerainseaport/src 
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Fig. 7. Combining transformation with virtual sensor services. 

In detail, a protocol broker http2datastorage was deployed as a docker container and the steering program, after 

searched and obtained suitable URIs of data from CameraService , requested the http2datastorage to retrieve the 

data through HTTP API of CameraService and then push the data to Google Storage. To allow pushing data, Firewall 
can be controlled to change the network configuration. 

4.1.3. Data transformation and virtual data-as-a-service 

Simulation scenario : a consumer in the seaport wants to access sensor data in the seaport with the condition of non- 

sharing data exchange middleware. A simulation will be created to allow different ways to request and receive selected data 

in the seaport. 

Study goals : we can use this scenario to study middleware interoperability, communication protocol interoperability, and 

data interoperability. Furthermore, performance issues associated with these interactions can be studied. 

Simulation setup : for non-sharing middleware in receiving data (e.g., due to security and data regulation), a private 

instance of virtual sensor-as-a-service must be provided. We can use the generic virtualdatahubsensor for Virtual IoT 

DataSensor-as-a-service and use DockerizedServiceProvider as a Provider for Virtual Sensor Provider. The idea 

is that when a tenant wants to access a specific type of data, we can create an instance of virtualdatahubsensor 
with the right configuration. The simulation’s simple steering program creates such instances. Fig. 7 shows activities for the 

provisioning and operation. 

Examples of simulation actions : a consumer wants to process data from the MQTT broker using a separate workflow 

engine within the seaport. The simulation is reconfigured with a new Node-RED instance and the consumer adds a work- 

flow into Node-RED. Second, another consumer wants to access the sensor data from the broker but finds that the data is 

in CSV, thus the consumer wants to deploy a resource to transform CSV data to JSON. Two possible solutions: (i) a new 

component is deployed that takes data from MQTT and transforms the CSV to the JSON 

16 or (ii) a new Node-RED instance 

is created and a workflow for data transformation is pushed into the instance. The two cases achieve the same goal but 

have very different techniques. Another situation is that a third consumer needs multiple sensor data from different bro- 

kers, MQTT and RabbitMQ, but the third consumer wants to receive data only through MQTT. Based on the consumer needs, 

a virtualdatahubsensor will be deployed to use mqttamqpbridge to translate data from RabbitMQ broker to MQTT 

broker. 

4.1.4. Data exchange and control in emergency situation 

Simulation scenario : in this scenario, we assume there are alarms occurring in a seaport. The alarms are propagated 

through an MQTT broker. Usually, there are some analytics applications subscribing the alarms queues in the broker. One 

16 https://github.com/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/csvToJson 
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Fig. 8. Units and providers for simulating emergency in a seaport. 

of such alarms analytics applications finds alarms related to terminals in the seaport. It queries a PortControlService (PCS) 

to obtain the list of vessels approaching the seaport. Based on the information about the vessels and the service providers 

of the vessels, the alarms analytics application creates new brokers as resources, or connects to existing communication 

means of the vessel providers, to share the information about the situations. The application can also send requests to ask 

vessels to stop or change the arrival plan. Similarly, another analytics application can inform other relevant objects around 

the terminals (e.g., by using geohash to query cranes and trucks) and request them to stop or change the plan. Another 

analytics program can request camera providers (for cameras close to the terminal, using geohash to filter the cameras) to 

provide videos to separate channels that can be accessed by polices and other relevant third parties. 

Study goals : Since vessel/truck/crane providers accept different forms of data and application protocols, we can study 

interoperability issues in data transformation and protocol integration. Furthermore, we can study online response time and 

error handling in interactions between services. 

Simulation setup : in addition to common units and providers, various related application-specific artefacts are ex- 

emplified in Section 3.1 . We use a common MQTT broker for alarms and portalarmsensor to generate samples of 

alarms. AlarmService simulates an alarm analytics application. A REST port-control-service simulates the PCS. 

The PCS has APIs for querying vessels and for updating vessels positions. A set of vessel emulators – portVessel emu- 

lates the movement of vessels. A vessel emulator subscribes information from its providers via a queue. Vessel providers, 

based on vessel-provider , accept a different format of data (JSON/CSV with different structures) and use differ- 

ent protocols (MQTT, AMQP and REST). Cranes and trucks are simulated in a similar manner with their corresponding 

providers. Vessels/trucks/cranes/cameras have their GPS positions so that geohash can be used to query them. For example, 

TruckMonitoringProvider monitors the enters and exists of trucks by obtaining events from RabbitMQ. To simulate 

the diversity of providers, we have different providers for each category of vessels, trucks and cranes. Except RabbitMQ, all 

elements are container-basedices. 

Examples of simulation actions : Fig. 8 shows artefacts, units, providers and activities. To start with the simulation, 

port-control-service , portAlarmService , vessel-provider , TruckMonitoringProvider , MQTT Broker 
and RabbitMQ can be deployed. Then, Gate Sensor is started with real data obtained from the seaport to simulate 

flows of trucks entering and existing the seaport. At the same time, we control vessel-provider to create vessel 
to simulate vessels approaching port terminals. Fig. 9 shows an example of checking truck information and Fig. 10 for 

vessels. As long as vessels and truck are registered within port-control-service , we start to simulate alarms 

by running portalarmsensor . Based on alarms analyzed, portAlarmService will create requests to vessels and 

trucks to ask them to stop or move. We can activate many trucks and vessels and to test if port-control-service 
and portAlarmService can be elastic by changing alarms frequencies and volumes. 

4.2. Creating scenarios by code 

As mentioned, elements of edge applications under simulation and their underlying systems are exposed as (dockerized) 

services. Therefore, many scenarios can be created by writing code to deploy and control these elements at the provisioning 

and operation times. Consider in a simulation scenario, a stakeholder offers an edge flow engine provider based on Node- 

RED and Kubernetes for data transforming. Using a script and command-lines the developer can easily deploy the flow 

engine provider to Kubernetes. During the simulation, assume that the developer plans to create a new unit instance of a 

flow engine for handling new IoT data from a user, the following excerpt can be used to create a new instance when needed 

12 
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Fig. 9. Examples of obtaining truck information during simulation. 

Fig. 10. Examples of checking terminals for vessels. 

for interactions (e.g., before sending more IoT data to test the performance of the flow engine) and then to deploy new flows 

into the instance: 
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Overall, using a combination of scripts, command-lines and Python/JavaScript code the developer can perform both pro- 

visioning and configuration of services for simulations. 

However, the developer can divide the provisioning, configuration and control of simulations into different parts, each 

can be reused. Let us consider an example for simulating the analysis of monitoring data for Base Transceiver Stations (BTS). 

We have obtained real IoT data about power management, electricity, temperature, etc. However, to test designs, we need to 

simulate various subsystems: create and control sensors (IoT), edge message brokers and edge-to-cloud data ingestion, cloud 

services and firewall as a network function. The whole process might follow the principles of DevOps by developing and 

testing individual subsystems before connecting them to create a complete scenario. Listing 2 shows the main deployment 

gluing various parts to create the scenario 17 . 

Listing 2. Example of creating scenario. 

Basically, this way helps to reuse various snippets for simulation scenarios. We can have a stable and reusable version 

for provisioning and controlling certain parts of a scenario, e.g., a subsystem of sensors and IoT protocols, a subsystem of 

message brokers, infrastructural resources and network functions, or a subsystem of cloud services, and then reuse these 

parts in different scenarios. 

4.3. Steering simulations 

The developer would need support for steering simulations when studying complex interactions. Simulation steering 

operations can be applied to, e.g., infrastructural resources, service processing capabilities, and network controls. They are 

very different kinds of steering activities supported at runtime in IoTCloudSamples . The key enabling technique for this 

runtime support is to use APIs of service units and providers (the APIs are mostly implemented through standard protocols, 

like REST, MQTT and AMQP), and containerized capabilities. 

The developer decides the levels of steering: individual service units and providers, a subsystem of units, or the whole 

simulation. We achieve this by using scripts, command-lines and external tools. In most cases, we use steering programs 

written in Python and JavaScript. The following script presents an example of a python-based test that perform a test which 

is a part of three steps for a simple resource slice: (1) create a Node-RED resource, (2) upload a flow to the Node-RED 

resource, (3) remove the flow, and (4) remove the resource. The example script just shows the upload and removal of flows 

into a Node-RED. A flow here can be used for IoT data processing or transformation that can be simulated at runtime: 

17 Available at https://github.com/rdsea/HINC/tree/master/examples 
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From the related existing tools, the developer can also use test tools like Postman to carry out steering operations. 

Furthermore, our external utilities in rsiHub can also allow the developer to update part of the simulation topology, as 

shown in Fig. 11 . When dealing with typical network bandwidth and failure manipulation, common tools like tc 18 and 

Pumba 19 , can be used to control network aspects. Such a tool can be used separately or invoked in the steering code as 

discussed before. 

4.4. Performance measurement and interpretation 

As Units and Providers are software services, well-known monitoring and instrumentation tools and techniques, 

such as Prometheus 20 and Fluentd 

21 , can be used to capture performance information (besides using testing tools like Post- 

man, as discussed before). For example, from the steering example workflow shown in Section 4.3 , we can see that it is 

relatively straightforward to modify the code and capture performance data by instrumenting the Python code. Currently, 

we leave performance measurement to the developer’s work. Note that performance and scaling are strongly dependent on 

constraints set by scenarios, third-party Units and Providers and underlying infrastructures. Measuring and interpret- 

ing performance for a specific scenario must be considered together with the design goal of the scenario. Therefore, we do 

not present performance studies in this section, due to the complexity of the real business design of presented scenarios. 

Since our method for building edge scenarios relies real-world software components reused widely, we recommend the 

developer to focus on interpreting measured performance in suitable contexts. 

Any deployment configuration has a very high impact on user acceptance criteria. Thus, we need to consider the user 

real deployment for analyzing performance. In our experiences, when Providers use Kubernetes to provision resources 

as containerized microservices, scaling service requests in provisioning resources is not an issue, mainly depending on the 

underlying Kubernetes deployment. However, the locations of Providers and clients strongly impact the performance. For 

instance, Figs. 12 and 13 show an example of a performance variability in two different production and test environments 

for the same interactions in creating a resource using GenericLightweightIoTProvider (which creates generic re- 

sources running under external processes). For each environment, with the change of a small number of concurrent clients, 

the response times were quite stable. However, the network latency and bandwidth between clients and providers in two 

environments are different, causing the end-to-end performance responses to be very different. 

4.5. Further discussion 

We have focused on illustrating examples of how to build scenarios. However, we have not presented performance or 

quality assessment associated with simulation scenarios or with effort spent on creating simulations. As part of simulation 

scenario is based on real environment setting and our focus is on supporting interactions at the application and service 

levels, performance evaluation for a specific scenario is left to the developer who builds the scenario. One important aspect 

is whether our framework speeds up the study of scenarios (mainly simulation and/or testing designs). In our work, we 

have used the framework for both research projects and teaching students to build IoT, Edge and Cloud scenarios since many 

18 http://manpages.ubuntu.com/manpages/bionic/man8/tc.8.html 
19 https://github.com/alexei-led/pumba 
20 https://prometheus.io/ 
21 https://www.fluentd.org/ 
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Fig. 11. Snapshot of Pizza utility that can be used to change topologies by adding and removing resources as well as deploying new resources for simula- 

tion. 

Fig. 12. Simple measurements of creation, listing and deletion of resources provided by GenericLightweightIoTProvider . The provider is deployed 

in a local edge server. The server is with 4 CPUs, 2 cores per CPU, Intel(R) Core(TM) i7-5500U CPU 2.40 GHz. The requests were sent from a test client 

running in a laptop in the same network with the provider. 

years. However, we have not had an empirical study to measure the real software development productivity, e.g., in terms 

of development time and cost saving, when using our framework. This is actually challenging as there is no comparative 

framework for us to measure the productivity at such a high-level application-level design and simulation. We believe that 

such an empirical study for existing edge computing simulation tools is also missing to date. However, the empirical study 

is a separate scientific paper itself. 

Compared with some simulation tools, our framework might be considered “incompleteness” – it is not a framework 

that the end user, in our case the researcher and practitioner, can just pickup simulation models, configure parameters and 

run the simulation. This is because our target is to support the simulation with real code, which is close to the application 

design and service interaction models. The disadvantage is that our framework cannot be used to study low-level layers like 

network performance, theoretical scaling, and energy consumption, like in many simulation tools (see the related work in 

Section 5 ). However, with our method, the developer has simulations very close to the realistic scenarios. Furthermore, it can 

be combined with other real software systems to create complex simulation scenarios. In our framework the technologies 

used are also the common ones in edge software development and the steps of performing simulations have also be built 

in best practices and experiences from our real work. Therefore, the developer also benefits from the combination between 

simulation/testing techniques and software development in the same study. 

16 
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Fig. 13. Simple measurement of creation, listing and deletion of resources for GenericLightweightIoTProvider . The provider is running in a small 

Google virtual machine with machine type as n1-standard-1 (1 vCPU, 3.75 GB memory) in us-central1-a. The requests were sent from a client running in 

Austria. 

5. Related work 

The integration of IoT, edge and cloud has attracted many research and industrial works. Many papers have discussed the 

challenges and requirements for such integration [1,14,17,18] . Our work is focused on the software development challenges, 

especially for end-to-end software systems in edge-cloud continuum. However, we do not focus on programming languages 

like the works in [19,20] . 

Recently we have seen many tools support simulation and emulation of fog and edge computing. Even though compre- 

hensive empirical studies [21] bring valuable insights, new edge designs cannot make use of empirical studies. Therefore, 

for new edge designs, especially w.r.t. task scheduling, compute resources and network structures, simulations and estima- 

tion methods to validate experiments have been intensively used by researchers [3,22] . To date there is no lack of papers 

describing/surveying existing and potential IoT Cloud and edge computing scenarios (and the number is continuously in- 

creasing). Our framework could support design simulation and evaluation with real software artefacts for such scenarios. 

However, it is important to understand the aspects to be supported in our framework. Our goal is not to work at a single 

aspect like deployment or network analytics. Our goal is to support end-to-end IoT-Edge-Cloud applications. Therefore, al- 

though “simulation” is emphasized in this paper – our work targets the developers, who work on the development of (new) 

edge applications and software systems. 

Most edge/fog simulation frameworks are discrete event simulators, many are built from cloud and network simulators. 

A majority of such edge/fog computing simulation frameworks are dedicated for studying infrastructures, especially resource 

management and this direction is quite similar to simulations for cloud computing. MyiFogSim [6] just simulates virtual ma- 

chine migration. EdgeCloudSim [8] concentrates on performance simulation for edge task execution in edge architectures. 

iFogSim [7] simulates many stuffs. EmuFog [23] allows one to define a topology of infrastructures and perform simulations 

of network/fog topology using discrete event simulations. FogNetSim++ [24] focuses on networks in edge/fog and again it is a 

purely discrete event based simulation. Combined different simulations to create a hybrid simulation for IoT/edge scenarios 

is discussed in [25] . However, the simulation methods are not based on real code and systems like ours. From the imple- 

mentation viewpoint, it is based on pure simulation code and tools, e.g., using OMNeT++ and MATLAB. It also does not focus 

on services and interoperability aspects. The work in [26] focuses only IoT devices simulations in edge computing. 

Most of the existing work mentioned above simulate resources at the infrastructure. It is important to note that our ap- 

proach and methods are different from these works because we do not rely on (parallelized) discrete-event based simulation 

and other types of simulators, like agent-based simulator. As we mentioned before, the use of “simulation” in our paper is 

a generic way as the applications to be designed are not 100% real – they include real code, mockup and emulated realistic 

environment. We support symbiotic simulations where models are built and run with real code, although the business logic 

is simplified. Our work is different because we focus on real software artefacts running in real testbeds emulating edge 

systems for cross application interactions. In principle, it is possible to estimate costs in our work through measurement of 

service usage. In our work, using monitoring integrated with services we could obtain the information to determine costs. 

However, in this paper, we have not discussed it as the main point of our work. 

Only a few papers have been focused on scenario simulations. YAFS [27] simulates IoT scenarios but it is also a dis- 

crete event simulation. MockFog [28] uses clouds to emulate fog infrastructures including networks and machines, thus its 

approach is inline with ours through the use of real software. However, it focuses on infrastructures rather application inter- 

actions and application-specific scenarios. Phileas [29] aims to support simulations of Fog services by simulating value-based 
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models mainly in operations for producing, passing and consuming IoT data. In the work of [25] various scenarios are given 

but its simulations are not based on real code and are not focused service integration, interoperability and application-level 

interactions like ours. IoTCloudSamples can enable similar scenarios but we provide more generic realistic software 

components for different layers. 

Overall, most related works focus on common metrics, like performance and scalability through theoretical simulations. 

In this particular paper, we do not present scalability and performance studies for application cases illustrated. The main 

reason is that we focus on the pervasiveness of resources and services in real edge and cloud ecosystems in terms of 

software development, service mode, integration and interoperability in the end-to-end setting of edge systems. In fact, 

using our edge-simulation-as-code , although possible with containers and Kubernetes 22 , it will be hard and expensive to 

study the scalability of a very large number of elements, e.g., at the scale of 10 thousands, in an edge system. For such 

cases, existing simulation tools should be used. Related works also do not enable the study of the stakeholder relationships 

and integration with real-world services and using real-world infrastructures to run emulation. Furthermore, our support is 

based on scenarios, rather than specific issues, like resource management, energy consumption or performance. Integrated 

scenario simulations require various types of artefacts, like IoT, edge, cloud units and data. 

6. Conclusions and future work 

Application scenarios in edge computing are complex, as they need to interact with diverse types of IoT, edge, net- 

works and cloud services. In order to understand and simulate such scenarios, we need various types of artefacts, including 

software, data and processes. In this paper, we have presented IoTCloudSamples as a framework for enabling edge- 

simulation-as-code for edge scenarios with different stakeholders with different artefacts. Our framework allows the devel- 

oper to define complex scenarios to test various high-level aspects, like data transformation and protocol interoperabil- 

ity across layers and subsystems in connection with dynamic changes of underlying infrastructural resources and business 

models. In our framework, we enable possible connections to real systems to make simulations more realistic, supporting 

symbiotic engineering principles for edge computing. IoTCloudSamples is an open source and its artefacts and scenar- 

ios are continuously updated, enabling symbiotic simulations of edge applications. Our key contributions in this paper show 

that realistic simulation scenarios are complex and require various artfacts and strong integration with real software sys- 

tems. Furthermore, we have presented key steps in building simulations for complex edge software systems through typical 

software development activities. 

More integration with network functions, especially with NFV and 5G network services, will be investigated. We are 

integrating mobile elements into our framework. Our tool can support an end-to-end activities for simulation, although 

certain activities require the developer to write code and simulated units. Currently, simulation scenarios are not specified 

via high-level languages and the developer has to manage various types information in a simulation. Our goal is to explore 

scenario-based languages and scenario management to support the developer. Many new aspects, such as transparency and 

accountability, will be our focus in future development. 
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