
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Smolander, Kari; Rossi, Matti; Pekkola, Samuli
Heroes, Contracts, Cooperation, and Processes

Published in:
Information and Management

DOI:
10.1016/j.im.2020.103407

Published: 01/03/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Smolander, K., Rossi, M., & Pekkola, S. (2021). Heroes, Contracts, Cooperation, and Processes: Changes in
Collaboration in a Large Enterprise Systems Project. Information and Management, 58(2), Article 103407.
https://doi.org/10.1016/j.im.2020.103407

https://doi.org/10.1016/j.im.2020.103407
https://doi.org/10.1016/j.im.2020.103407

Information & Management 58 (2021) 103407

Available online 7 December 2020
0378-7206/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Heroes, contracts, cooperation, and processes: Changes in collaboration in a
large enterprise systems project

Kari Smolander a, Matti Rossi b,*, Samuli Pekkola c

a Lappeenranta University of Technology, Department of Information Technology, P.O.Box 20, 53851, Lappeenranta, Finland
b Aalto University School of Business, Department of Information and Service Management, Finland
c Tampere University, Department of Business Information Management and Logistics, Finland

A R T I C L E I N F O

Keywords:
Enterprise systems
Software development
Large-scale systems

A B S T R A C T

Enterprise systems are developed and tailored in large, long-term projects, sometimes spanning for decades,
whereby a network of parties comprising customer and developer organizations, subcontractors, and consultants
work together to deliver a successful system. This collaboration is complex; the network and the operating
environment are in a constant flux, which creates conflict and challenging situations. Collaboration and ways of
working evolve through various crises, internal and external incidents, and project phases. This means that
project management practices, communication patterns, contracts, and ultimately personal relationships change.

This longitudinal, qualitative, single case study analyzes a 20-year-old enterprise systems development project,
whereby different incidents and crises initiated changes to collaboration practices and the drivers for collabo
ration. We identified four collaboration modes — contract mode, cooperation mode, personified mode, and
process mode — each of which was the main driver in different development circumstances. As a key contri
bution, we propose the seed of a mid-range theory that provides heuristics for responding to different types of
crises that might occur while developing large-scale systems.

1. Introduction

Contemporary enterprise systems development involves partnership
between the customer organization, the developer organization, and
their departments and subunits such as the IT department and business
units that require a new system. Quite often, the systems are devel
oped—or otherwise, a premade package is configured, tailored, and
integrated—by a group of development organizations, each contributing
adequate domain knowledge, technical expertise, skills, and infra
structure [1,2]. In this network of organizations, there can be any
number of subcontractors and parallel projects. All these relationships
put extra demand on the team’s ways of working and collaboration
practices.

Collaboration practices and relationships are not static or rigid. The
dynamics and practices of enterprise systems development evolve over
the course of various crises, incidents, and project phases. This means
that, for example, project management practices, communication pat
terns, contracts, and ultimately personal relationships might change,
whether intentionally or unintentionally. These changes disrupt the
system’s development, as they cause uncertainties and discontinuities.

Enterprise systems development is understood here to exhibit the same
issues as other types of information systems (IS) development. The
development process is complex, nonroutine, and uncertain [3] and
requires close coordination between heterogeneous sets of stakeholders
([4], [5]), with the added complications of long implementation phases
and a critical impact on the user organization’s health [6]. However,
quite little is known about how control dynamics change during a
project, how control evolves over time, and what the consequences of
those changes are [3]. Some examples of research in this area include the
work of Newell et al. [7] and Nandhakumar et al. [8], but their focus is
on short-term changes and survival strategies rather than on long-term,
evolving relationships. Even in studies on construction-related mega
projects such as next-generation nuclear power plants [9] it is assumed
that there is a deliberately chosen governance model used to guide the
project. There are studies on contract changes between parties but there
the focus is on renewing or altering the contracts, not on their evolution
over time [10].

These issues motivated us to study how collaboration and control
([4], [11]) between software vendors and clients have evolved over
time. As there are no existing theories on the evolution of collaboration

* Corresponding author.
E-mail addresses: kari.smolander@lut.fi (K. Smolander), matti.rossi@aalto.fi (M. Rossi), samuli.pekkola@tuni.fi (S. Pekkola).

Contents lists available at ScienceDirect

Information & Management

journal homepage: www.elsevier.com/locate/im

https://doi.org/10.1016/j.im.2020.103407
Received 21 January 2019; Received in revised form 24 November 2020; Accepted 28 November 2020

mailto:kari.smolander@lut.fi
mailto:matti.rossi@aalto.fi
mailto:samuli.pekkola@tuni.fi
www.sciencedirect.com/science/journal/03787206
https://www.elsevier.com/locate/im
https://doi.org/10.1016/j.im.2020.103407
https://doi.org/10.1016/j.im.2020.103407
https://doi.org/10.1016/j.im.2020.103407
http://crossmark.crossref.org/dialog/?doi=10.1016/j.im.2020.103407&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information & Management 58 (2021) 103407

2

in large-scale and long-term enterprise systems projects, we chose an
inductive theory-forming approach for our study. Using the grounded
theory, we examined an enterprise systems development process that
lasted more than 20 years within a large, industrial enterprise. We
interviewed the main participants of the development and analyzed the
events that occurred during the development process. We focused on
these research questions:

How does collaboration in large-scale enterprise systems development
change between main development partners?
What kind of collaboration modes exist?

This focus guided our data analysis and helped us understand project
collaboration and control over time. As a result, we propose a middle-
range theory [12–14] on how collaboration changes within enterprise
systems development.

In this article, we describe a longitudinal case whereby the forms of
collaboration changed over time, in response to both external shocks
and internal issues related to project organization and performance.
From these observations, we identified collaboration patterns in the
development of an enterprise system over its lifecycle, from concept to
near retirement. Our findings illustrate four different collaboration
modes—contract mode, cooperation mode, personified mode, and pro
cess mode—each of which is a main driver of development under
different circumstances. We explain how different kinds of triggers in
fluence and change the mode of collaboration. This knowledge is valu
able to those who wish to improve interorganizational practices for
enterprise systems development and seek a better theoretical under
standing of enterprise systems development. The results of this study
make collaboration planning possible in enterprise systems develop
ment and aid the mitigation of unexpected project incidents and their
effects.

The paper is organized as follows. First, a brief outline of the research
area is presented. Second, the research process, data collection, and
analysis methods are explained. Third, the case, its timeline, and related
incidents are described. Fourth, the case is analyzed, and the collabo
ration modes are discussed. Finally, the case and its findings are brought
to a larger context to discuss their novelty and relationship to the pre
vious literature.

1.1. Research area

Enterprise systems, the most well-known examples of which are
enterprise resource planning (ERP) systems, aim to integrate informa
tion flows across the organization to increase the organization’s
competitiveness [6,15]. In this section, we briefly present studies on
enterprise systems development, specifically from the perspective of
collaboration and control between participating stakeholders and user
organizations. As our research approach is purely inductive, this section
will not produce a research framework. Instead, we will briefly position
our research within the context of other approaches.

Enterprise systems integrate a company’s core business processes
[16,17]. They are designed to automate the flow of information, mate
rials, and financial resources [18,19] within a company and across a
supply chain or network. In the past, they were mostly developed
in-house as custom IS. This practice changed when there was a dire need
to renew systems in the anticipation of Y2K. Packages at various levels of
maturity and for different domains were provided by vendors, such as
Baan and SAP [6], as either general-purpose enterprise systems or
industry-specific packages [20]. The implementation of systems requires
a number of stakeholders from various organizations to collaborate in a
complex development network ([4], [11,21]). This form of collabora
tion is prone to errors and sometimes fatal misunderstandings [22].

The implementation of enterprise systems is studied predominantly
through the lens of critical success factors (see, for example, Shaul and
Tauber [23], [24]), and Holland and Light)[25]. In these studies,

enterprise systems development is often perceived as a linear process
with a specific start and end point and a set of separate phases, whereby
certain conditions must be met. Robey et al. [26] suggested already in
2002 that instead of linearity, a continuous dialectical learning process
is at play and should be studied over time.

Despite the large body of success factor studies, the implementation
and adaptation of enterprise systems is prone to failure [8,27–29]. One
explanation may be the complex and collaborative nature of ERP
development [3,23]. Although these collaborative practices are easily
disturbed [22], the different mechanisms, patterns, and changes that
cause the disturbance have rarely been studied [30,31]. In this study, we
refer to collaboration as a practice whereby at least two parties work
together to achieve a common goal or cocreate value in the form of
system enhancements [32].

In the IS field, it is assumed that development goals can be achieved
through controlled and coordinated development activities ([4], [33];
[22]). For instance, there is a vast amount of literature on controlling
outsourced and offshoring system development. Wiener et al. [3] pro
vide a comprehensive review of the studies on control in information
systems projects. Kirsch et al. [34] present an example of the notion that
control in collaboration is something that is first chosen and then
exercised. Similarly, Gulati et al. [35] and Juell-Skielse et al. [36]
discuss different types of fixed agreements among organizations that
frame the form of collaboration. Ward et al. [31] concretize this by
studying the internal stakeholder’s power-interest-rights in imple
menting ERP. Tiwana and Keil [37] study is notable, as they found that
attempted control and realized control are disconnected, particularly
with regard to controlling external work during enterprise systems
implementation.

Survey-based studies on control modes are particularly limited in
their relevance to long-term projects, whereby the mode of collaboration
must be renegotiated and changed during the course of the project. The
control dynamics literature, coined by Wiener et al. [3], provides ex
amples of cases where critical incidents that occurred over time changed
the control mode. Gregory et al. [38] develop the idea of control bal
ances that change over time and emphasize the shared understanding
between different parties and stakeholders (see also [31]). Gopal and
Gosain (2012) highlight that while there is a great deal of research on
control mode choice, there is a gap in the current understanding of the
effect of organizational controls on project performance. Our longitu
dinal study attempts to fill this gap and seeks to understand how
collaboration changes over an extended period of time, particularly in
response to external events that force changes to the control
arrangements.

In enterprise systems development, numerous specialists and stake
holders from different organizations collaborate, interact, and influence
each other within a development network [11,39,40]. The different
stakeholders have been listed, but mostly at a very high level [41].
Chang et al. [1] studied the mechanisms for controlling consultants in a
distributed ERP implementation setting, while Levina and Vaast [42]
Rosenkranz et al. [43], and Yeow et al. [44] focused on the communi
cation between parties during development, from a boundary-spanning
perspective.

Collaboration has been studied mostly from the perspectives of
project work, project management [45,46], knowledge dissemination
[47–49], or in a certain development phase [31]. All these studies pro
vide snapshots of the development projects, not long-term relationships.
Some example cases that focus on longitudinal activities include the
studies by Levina and Vaast [50] and Lyytinen and Newman [51], but
the focus of these works is not on changes in collaboration over time.

Previous research on enterprise systems development has mostly
assumed that collaboration practices or collaboration modes, are
decided in a prestudy phase and then stay the same through the entire
development life cycle until the system is released for use, transferred to
maintenance, or abandoned. However, stories and reports from large-
scale development projects provide a more complicated view of the

K. Smolander et al.

Information & Management 58 (2021) 103407

3

emergence of systems through a disorganized process [38,52]. In most
cases, the development effort is restarted several times, and the collab
oration mode is renegotiated each time [8]. Because there are no studies
or theories on the evolution of collaboration in large-scale information
systems projects, there is a need to understanding how collaboration and
control evolve over extended periods of time, as these are the conditions
in which most of these systems are developed and evolve.

2. Research process

2.1. The case: birdie at factory

Factory is a global manufacturer of materials and common goods. Its
annual turnover is more than 8 billion euros. It has operations,
manufacturing, and sales on all continents. At the beginning of the
1990s, Factory realized that it needed to renew its sales and logistics
systems. It was decided that a fully customized enterprise system for
sales and logistics would be built to replace several legacy systems and
to overcome the problem caused by year 2000. This system came to be
called Birdie.

Birdie is an enterprise-wide system that includes sales, logistics, and
production planning components that are fully integrated and used
across the globe. The system is highly distributed, running at more than
50 sites and communicating through asynchronous messaging. Birdie is
also fully integrated into enterprise-wide administrative systems and
manufacturing systems as well as machinery at each manufacturing site.
SAP R/3 is the backbone of enterprise-wide administration and control
functionalities such as accounting. Each manufacturing site has its own
set of manufacturing execution systems that are integrated with Birdie.
Birdie includes a full set of logistics functionalities; however, over time,
an increasing number of external logistics systems have been integrated
to Birdie. Now, after more than 20 years, many of the logistics func
tionalities have moved outside of Birdie.

2.2. Interpretive and inductive research approach

Qualitative research methods are essential when human behavior,
organizations, and management are studied in their real-world context.
We have chosen the grounded theory, originally developed by Glaser
and Strauss in 1967, as the research method, due to its ability to
inductively reveal the essence of real-world action [53]. As an inductive
research method, it is suitable for approaching complex organizational
phenomena [54]. Enterprise systems development includes both a
technical and a social component, which emphasizes understanding the
stakeholders and their interactions, and the effect of the technical issues
that the stakeholders face.

The objective of a grounded theory study is to construct a theory as a
collection of categories that detail the subject of the research. This
theory can be substantive (i.e., pertain to a specific area of the study) or
formal (i.e., be general and conceptual) [53]. By acknowledging this
distinction, we consider our result substantive, or contextual [14],
which means that it details the subject and is transferrable, rather than
generalizable [55]. Gasson [55]. It further describes that “a substantive
theory is generated when the researcher can define a core conceptual
category in the data and identify key patterns of relationships between
the various theoretical and conceptual categories that apply across data
samples.” In our study, collaboration change emerges as the core cate
gory. It is described through project incidents and the properties of
different collaboration modes that are formed and altered by project
incidents and changing circumstances.

The grounded theory approach is particularly suitable for dealing
with phenomena that are not well understood and that require a better
theoretical explanation that is grounded in observations. Complex
organizational processes, such as collaboration and how it changes and
is changed in large-scale enterprise systems development, exemplify
such an area. In our study, we deemed grounded theory suitable for

several reasons. First, we could not identify a theory that could explain
the dramatic changes in collaboration in the observed project. One of the
researchers was very familiar with the project and its 20-year long his
tory. We were therefore aware of different changes in collaboration and
their nature. The grounded theory as a method uses relevant literature
and theories, but this is done after an emergent theory has been iden
tified from the data [55]. The purpose of the literature is to relate the
findings to similar fields or situations. The grounded theory is most
useful when no applicable theories exist or when the theories cannot
adequately explain the phenomenon. In the beginning of our study, we
were not able to identify any specific theory that could explain well all
the essential project incidents and changes in collaboration over time.
Therefore, we deemed, based on our pre-understanding of the project
and its history, that an a priori theory would have constrained our
interpretation and explanation too much. Second, we expected that we
would encounter many different perspectives on the project events, their
importance, and their effects. Therefore, we concluded that it is essential
to use a methodology that incorporates constant comparison and
interpretation. Third, all the researchers were proficient in using the
grounded theory. Based on our combined experience, research contexts,
and interests, we saw grounded theory as a feasible research method
ology for the given purpose.

A middle-range theory (Merton, 1949) is another way to describe the
use and purpose of grounded theory. Middle-range theories attempt to
predict and explain only a subset of all organizational phenomena [56].
They make different assumptions about organizations, consider prior
ities differently, and lead to practice prescriptions that are different from
other middle-range theories. Each middle-range theory is based on
unique research strategies and tactics (ibid.). A middle-range theory can
partially explain the phenomena in different domains [13]. Those who
use such theories seek to tell a causal story rather than the full story, and
they acknowledge that it cannot explain everything (ibid.). Our purpose
here is similar. We attempt to explain and abstract how and why
collaboration changed over a long period of time in a particular context,
first during the development project and then later during system
maintenance. In this sense, we are building a middle-range theory for
the context of large-scale and long-term project collaboration.

Fig. 1 shows the main phases of the research process. They are pre
sented sequentially for the sake of clarity, although, following the nature
of grounded theory, the analysis tends to happen in parallel with the
coding, as the theoretical understanding gradually improves. The use of
both axial and selective coding required frequent discussions between
the three researchers to confirm the interpretations and to provide fresh
theoretical views to advance the analysis. Their use also required going
back and forth from the theoretical conclusions to the data, and vice
versa, to confirm the theoretical conclusions and to aid the naming of the
codes, which explains the cyclical structure in Fig. 1.

2.3. Data collection

The data were collected through theme-based interviews between
February and May 2013. The data collection began with discussions
with our contact from senior management within the user organization.
The research goals were briefly presented to the contact to identify the
right interviewees in the user organization. In general, the snowball
technique [57] was used. To select the interviewees, we sought out those
who had important responsibilities and experiences during various parts
of the enterprise systems project and maintenance period.

The interview questions were open-ended, which focused on the
interviewee’s experiences during the enterprise systems project. The
interviews included only a few general questions, which then led to
more detailed discussions that depended on the interviewee and their
background and answers.

We heard many vivid stories about different events and incidents
that occurred during the course of the project. The stories included the
timing and order of events and opinions of causal connections between

K. Smolander et al.

Information & Management 58 (2021) 103407

4

the circumstances, the events, and their consequences. This information
enabled us to form a triangulated and combined narrative of the project
and the changes in the collaboration that occurred during the develop
ment and maintenance of the enterprise system.

In total, we interviewed 17 individuals from Factory, the user or
ganization; integrator, the developer organization; and Middleware
Consulting. The interviews lasted between 26 and 73 min, the average
being 45 min. Table 1 lists the interviewees, their roles, their organi
zations, and their temporal project responsibilities. However, because of
the long timespan of the project, which spans from 1994 onwards, most
of the interviewee’s roles and responsibilities had evolved over time.
Some individuals were intensively involved in the early implementation,
whereas others only had experience working with the recent system

changes. Some of the interviewees were no longer at the company.
For this research, it was not possible to access the project archives, as

they contained highly confidential material about sensitive business
decisions. However, in the 1990s, the first author of this study worked as
a developer at Integrator and saw the early phases of the project
(1994–1997) from a very close distance. He had management and
development responsibilities at Integrator and had experience with the
same technologies and development style in an adjacent application
area; in his role, he experienced similar crises and their consequences as
those we examine in this project. The first author stayed informed on the
project and the companies under investigation for the 20 years that
followed through various professional and research activities. His
knowledge and experience made it easier for us to understand and
interpret the interview data. In addition, the interpretations contained
in the project narrative were confirmed by two managers who have had
major responsibilities concerning the system since the inception of its
development.

Our study is longitudinal. Although the data were collected during a
limited timeframe, our study approaches time as a social construction
whereby “what is critical is not just events, but the underlying logics that
give events meaning and significance” ([58], p.273). Although the in
terviewees from Factory and Integrator emphasized different view
points, their views on actual events, along with their descriptions of the
reasons for and effects of those events, converged well. Naturally,
Integrator emphasized more development practices, problems, and so
lutions, whereas Factory highlighted business operations and internal
issues at the user sites. However, the companies’ long, shared history,
which spans from the 1960s to the present, contribute to a common
understanding of these events.

2.4. Open coding

All the interviews were audio-recorded and later transcribed for
analysis. Atlas.ti was chosen as the coding tool, as it provides easy-to-use
functionalities for managing text and attaching codes to portions of text.
The open coding, performed by the first author, started with a closer
scrutiny of the incidents that occurred during the enterprise systems
development project. The first author coded the particulars of each
incident fully inductively, without an a priori analysis framework, as
required by the grounded theory [54,57].

At the beginning, we tried to understand how decisions were formed
and why actions were taken in relation to the incidents. However, after
coding three or four interviews, a coding scheme started to emerge. This
included conditions, decisions, and individual events related to each
incident, in combination with the interviewees’ presumptions and the
effects of the incidents.

Fig. 2 shows an example of open coding, using a corporate IT man
ager’s explanation of how the project became more cooperative after an
architecture crisis occurred early in the project. In total, the open coding
produced 200 codes, which were classified as events, conditions, de
cisions, presumptions, and effects (Fig. 3).

2.5. Axial coding

In the axial coding phase, the relationships between the codes and
categories were identified. Moreover, new categories based on those
relationships were formed. A partial excerpt of a network diagram
depicting some of these relationships is presented in Fig. 2. The figure
illustrates how the axial coding began. Each project event and decision

Fig. 1. Research process.

Table 1
The interviewees.

Interviewee Role Organization Responsibility in the project

F1 Corporate IT
manager

Factory Project leader, 1995–2000

F2 IT manager of a
business area

Factory Project and maintenance
management
responsibilities since 1995

F3 Program manager Factory Business analyst,
1995–2002; business
analyst in an interfacing
system, 2002–2010

F4 Enterprise
architect

Factory Responsibilities in
interfacing systems,
1999–2010; development
and maintenance
responsibilities,
2010–present

F5 Representative of
sales

Factory Analyst at Integrator,
1995–1997; area
responsibilities since 1997

F6 IT support
manager

Factory Area responsibilities since
1995; rollout
responsibilities

F7 Representative of
logistics

Factory Area responsibilities,
1995–2006; now working
with a related logistics
provider

F8 Corporate IT
manager

Factory Project leader, 2000–2004,
interfacing systems
responsibilities, 2004–2009

I1 Vice president Integrator Birdie project manager at
Integrator, 1999–2005

I2 Service owner Integrator Technical support,
2001–2009, maintenance
service responsibilities,
2009–present

I3 Continuous
service manager

Integrator Analyst, 2004–2011,
maintenance manager,
2011–present

I4 Infrastructure
manager

Integrator Hardware and facility
responsibilities, 1995–2001

I5 Project manager Integrator Birdie project manager at
Integrator, 1995–1997

I6 Lean software
developer

Integrator Birdie developer since 1999

I7 Service manager Integrator India-based offshore
maintenance manager,
2011–present

M1 Middleware
manager

Middleware
Consulting

Middleware Consultant,
1996–1998

M2 Technical
consultant

Middleware
Consulting

Middleware Consultant,
1996–1998

K. Smolander et al.

Information & Management 58 (2021) 103407

5

was scrutinized, and all the related codes were connected to each other.
For example, specific issues in the tailor-made system created perfor
mance problems, which, in turn, required a decision to be made
regarding the architecture reorganization. These relationships were
created by comparing items in the dataset, examining how they were
related, and determining whether there were any causal relationships
between the items.

2.6. Selective coding

The codes related to project incidents illustrate an initial set of di
mensions that describe variations during the course of the project his
tory. Each and every incident varied along those initial dimensions:

• Processuality—were the incidents seen as having been resolved by
personal contribution or by established processes?

• Cooperation—was the development driven by a deliberate will to
cooperate or by legal and commercial contracts?

• Process maturity—were development actions ad hoc by nature, or
were they planned and controlled?

• Customization—was the development driven by the requirements or
by the package to be installed?

• Customer–supplier—who drove the development during and after
the incidents, the customer or the supplier?

We were able to identify changes on these dimensions during and
after each project incident. This notion steered our interest toward the
collaboration between the main partners of the enterprise systems
development project. How the collaboration evolved as the project in
cidents occurred seemed important. The project, described in detail
below, was complex and involved many crises related to the coded in
cidents. By looking more closely at these dimensions, we can explain the

crises and incidents in relation to changes in the collaboration.
Our approach to selective coding can be described as theorizing from

process data with grounded theory strategies [59]. Instead of using a
priori process theories and testing them with time series or event his
tories, we delved into the experiences of the actual process participants
and formed our grounded theoretical understanding of the events,
attaching patterns and meanings to those events and incidents. We
selected “changes in collaboration” as the core category and started to
refine its meaning and occurrence with the initial dimensions as
described above. Soon, we understood that collaboration is dynamic: it
does not stay similar over time but changes in response to incidents and
varying project needs. We continued the analysis of how and why
collaboration changed during the course of this project and what kind of
collaboration patterns prevailed after the changes occurred. We looked
closer at the dimensions described above and associated them with
project incidents. Two of the dimensions, processuality and cooperation,
were particularly essential in this theorizing process. Selective coding,
by associating dimensions and project incidents, resulted in conceptu
alization [60] that included four modes of collaboration and four related
propositions.

3. Project incidents

A project incident is a major event that occurs during a project, such
as a crisis or an internal or external event that changes practices, con
ditions, or relationships; a technology change; an architecture change; a
project organization change; or a major requirement change. The in
cidents and their consequences were studied in a long-term enterprise
systems project that lasted 20 years, from 1994 to 2014.

In the analysis, we identified the major incidents in the development
process of Birdie, from the investment decision to its current use. These
incidents are then used to describe how collaboration between the

Fig. 2. Example of open coding.

Fig. 3. A network diagram in axial coding.

K. Smolander et al.

Information & Management 58 (2021) 103407

6

parties involved in the development of Birdie evolved during its life
cycle.

The most important incidents related to the development of Birdie
are listed in Table 2 and described in detail below.

3.1. Decision to build a custom system (1995)

The development of Birdie started at the beginning of the 1990s with
an initial study of the requirements and how packaged ERP systems
could support the company. The conclusion was that no existing ERP
package could support the desired functionality and business processes
well enough, because of the domain and its complex value chain.
Although the main products of Factory were bulk raw materials sold to
other businesses, the production items had unique identities that needed
to be tracked over their whole lifetime for logistics and quality
assurance.

As there was no packaged ERP with a suitable conceptual model of
bulk titles and unique items in the 1990s, Factory decided to build a
unique system fully tailored to its needs. It was evident that Integrator
would deliver the system. A part of Integrator originated from Factory’s
IT department. The company had also built many of the operative legacy
systems that the new system would replace. Thus, there were already
established collaboration practices, domain knowledge, and close per
sonal relationships between Factory and Integrator at many levels,
which had developed through the development and maintenance of
many individual systems. Despite these close and personal relationships,
the decision to build Birdie as a requirements-based, tailored system was
seen as a rational decision, which was made after careful research and a
weighing of the alternatives, including an evaluation of SAP and other
packaged ERPs.

3.2. Integrator aspires to build a general product for the industry (1995)

The business domain where Factory operated had strategic impor
tance for Integrator. Integrator hoped to achieve a global presence in
this domain. Hence, when Factory concluded that no existing packaged
ERP fulfilled its needs, Integrator saw an opportunity to build a general
product based on Birdie that could be offered to other global enterprises
in that business domain.

The decision to use Birdie as a basis for a general enterprise systems
product increased the complexity of the project and created hidden
motives and agendas in the interactions between Factory and Integrator.
While the development was previously based upon common practices,
good will, and personal relationships, now, an opaque component
entered whereby some stakeholders speculated about future benefits
from the competitors of Factory. This was particularly evident in the
selection of development tools and libraries. It was perceived as
important that no license fees for tools and libraries were included, and
that these elements were selected for long-term product development
with portability, and not for rapid and flexible customer-specific
implementation.

3.3. Project start and technological crisis (1996–1998)

Despite careful consideration, the project started with a technolog
ical crisis. The requirements and business processes were reasonably
well understood by both Factory and Integrator, but the selected tech
nology was unstable. Software and systems development in the 1990s
can be characterized by immature technologies, constant changes in
technology, and new development tools and platforms. This was also the
case for Birdie. It was originally developed as a POSIX compliant C++

application for Windows NT clients, using UNIX servers and a relational
database that replicated over data communications networks that were,
at the time, unreliable. The platform included a homemade class library
for fat clients and a proprietary messaging service that was planned to be
used globally for business transactions. The messaging service that was
used for delivering transactions between sites was performing well, but
the client class library was still immature in its development when the
implementation of Birdie began. In addition, most of the developers
were not familiar with the platform. Their earlier experience was mostly
in character-based UNIX and MPE systems. These challenges accumu
lated, causing slowness at the start and confusing the developers.

The first steps in the implementation of Birdie were not easy. The
biggest obstacles were poor performance and inadequate scalability,
both of which were a result of the wrong architectural choices. The first
deployment of Birdie was scheduled in 1997. It soon became clear that
this would not happen. The selected architecture for fat clients and the
extensive interactions with database servers could not produce the
required performance for real-life situations. The client library gener
ated too much interaction with the database servers because of a
fundamental flaw in the architecture design. This caused insurmount
able performance problems. In addition to being a severe business crisis
for Integrator, the awareness of crisis grew both at Integrator and at
Factory. The project costs started to grow, and the schedules began to
slip. It became clear that it would not be possible to replace the legacy
systems before 2000. At this point, Factory understood that the contract
it made with Integrator was overly optimistic and would not substan
tiate as such.

3.4. Architecture reorganization (1998)

Factory’s proactive problem-solving activities were essential to
overcome the crisis. Factory’s project manager took the lead, and
through his personal connections, he hired external experts from Mid
dleware Consultants to redesign the architecture of Birdie. This pro
duced another crisis at Integrator, as many of the key technology experts
felt that their expertise was ignored. They decided to resign.

Table 2
Main project incidents.

Year Incident Description

1995 Decision to build a custom
system

Factory compares packaged ERPs
with its requirements and decides to
build a custom system.

1995 Decision to build a general
product for the industry
field

Integrator aspires to reach new
markets with the decision to build a
general product that is based on
Birdie.

1996–1998 Project start and
technological crisis

Full-scale development starts. Very
soon, the project encounters a crisis
related to the selected technological
approach.

1998 Architecture reorganization The technological crisis is resolved by
cooperation between Factory and
Middleware Consultants.

1998 Merger Factory merges with a competitor of
about the same size.

2000–2004 Rollouts Birdie is installed and taken into use
globally in approximately 50
production sites and sales offices.

2000 Abandonment of product
development

Integrator concludes that it is not
possible to make a general product of
Birdie because of its very Factory-
specific features.

2000–2002 Move to maintenance New development is gradually
replaced by a more maintenance-
oriented development.

2002, 2008 Change in technology The server-operating systems and the
database management system are
changed for commercial reasons.

2006, 2010 Offshoring Maintenance and further
development are offshored first to
Europe and later to India for cost
reasons.

K. Smolander et al.

Information & Management 58 (2021) 103407

7

This incident and the recovery process can be characterized as a
phase of improvisation, intensive cooperation, and personal contribu
tion. Many of the interviewees told stories about this phase: the crisis
was resolved through personal contribution and cooperation in reor
ganizing the code and testing the new architecture in real situations.
Factory also understood that to overcome the crisis, it must provide
some new benefits to Integrator. The compensation described in the
original contract was not viable for Integrator from a business
perspective. This understanding, along with a very good business cycle
in the field, made it possible to emphasize collaboration in the project.

3.5. Merger (1998)

While Birdie was gradually getting back on track, new, unexpected
external events created concerns. Factory decided to merge with an in
ternational company of about the same size. This was a source of much
uncertainty and had to be handled by the project managers. For
example, after the merger, it was not clear which system—Birdie or its
counterpart at the other company—would be selected for the new,
merged Factory.

The headquarters of the other company was located in another
country, which created additional pressures. Many interviewees
mentioned that there was a feeling of competition between the coun
tries. The employees in both countries wanted to have a say in the sys
tem. As Birdie was at the very core of the Factory value chain, it was of
utmost importance for the business units to have a working and usable
system.

The process of selecting the system to handle the core value chain of
the new Factory was not straightforward. This process also included a
political component, as both of the former organizations in the new
Factory wanted to have a system that would be beneficial for their in
dividual interests. In this discussion, Birdie was saved by the fact that
there was no evident and ready-to-use alternative. It also received some
unexpected external support from another large enterprise, which
selected the same Middleware solution simultaneously, despite the fact
that some believed it would soon become an obsolete technology. Fac
tory decided to deploy Birdie at its core production sites globally in
2001. In 2004, the decision was made to deploy Birdie at all possible
sites.

All of the above overlapped with the architecture reorganization of
Birdie, which means that Birdie and its technology were in flux as the
business environment made tectonic moves.

3.6. Rollouts (2000–2004)

After all the crises and uncertain periods, Birdie was successfully
deployed to manage Factory’s core value chain, with observed benefits.
By the end of 2004, Birdie had been installed and deployed at 33 Eu
ropean sites. The number of deployments meant that Factory and Inte
grator together needed to create explicit processes for testing, change
management, and rollout implementation. Because of the large number
of sites, the rollouts were done in parallel. This generated additional
needs for defined processes.

In the spirit of collaboration, the rollouts were managed and orga
nized by Factory, and the implementations were supported by experts
from Integrator. At the time, Factory had hired a new project manager
for Birdie. One of the first things the new manager observed was the lack
of change and quality management processes. There was a clear need to
“professionalize” recurring activities in the implementation. ITIL [61]
was seen as a solution for moving toward professional change and
quality management practices.

3.7. Integrator abandons product development (~2000)

Roughly in 2000 (the exact timing cannot be determined from the
data), Integrator concluded that Birdie would be a unique solution and

would not yield any new product opportunities. The data suggest that
this decision influenced processes and attitudes at Integrator. There was
less need to focus on IPRs; the goals were less diverse, and customer-
specific processes were easier to promote.

3.8. Move toward maintenance (2000–2002)

In 2000, an official decision was made to end the development
project and move Birdie to a maintenance organization. However, major
development efforts were ongoing until 2002. As releasing new versions,
bug fixes, and features to a very large install base was difficult and
complex, ITIL was gradually taken once again as the basis for process
development, now for the development of maintenance processes.

3.9. Technology changes (2002, 2008)

In 2002 and 2008, the tight connections to certain technology pro
viders were cut. The key technologies in Birdie’s application and data
base servers were changed, and both changes were made for cost
reasons. In particular, it emerged from the data several times that the
database technology was changed after Factory felt that the database
provider became greedy and wanted to increase profit margins. No
major difficulties with regard to either change were emphasized in the
data. However, both changes were moves toward a more impersonal
direction with regard to technology. In both cases, the new technologies
were standard products offered by Microsoft.

3.10. Offshoring (2006, 2010)

The costs were also a determining factor when Factory decided to
offshore the maintenance of Birdie. They signed a contract with Inte
grator to nearshore the maintenance to a cheaper country in Europe in
2006 and to later offshore it to India in 2010. Again, both changes
entailed new requirements for the processes of managing changes and
testing its functionality. Nearshoring and offshoring also moved the
maintenance organization toward a more impersonal direction. The old
practice, which involved maintaining the personal relationships be
tween Factory and Integrator, was no longer possible—at least not to the
same extent as before.

3.11. Epilogue

At the time of the interviews (2014), Birdie was widely used at
Factory. It was also considered a success, despite the initial problems.
Birdie seemed to serve the core value chain of Factory well, probably
better than any packaged ERP ever could have. Yet, most of the in
terviewees argued that such tailored development would not be possible
any more. Doing so would go against the current trends in systems
development and IT management. A roadmap for the future of Birdie
was under construction, and it was unclear which direction the devel
opment would take. Some interviewees thought it was probable that
Birdie would continue to run for at least five years from the time of the
interviews.

4. Analysis and findings

4.1. Interorganizational collaboration modes

We examined the incidents in Birdie’s development history under
closer scrutiny and used open coding to identify the specifics of each
incident. First, we wanted to see how the incidents emerged and what
kind of decisions and actions the user organization took in reaction to
them. We wanted to understand how much of the decision-making was
rational and how much involved reacting to external and internal events
and the arbitrary conditions of the moment. In this investigation, we
used a coding scheme whereby we identified the conditions, the

K. Smolander et al.

Information & Management 58 (2021) 103407

8

decisions, and the individual events related to each incident.
Upon closer inspection, it became clear that most incidents caused

major changes in the collaboration between the main parties, Factory
and Integrator. The project incidents, along with their resulting changes
and crises, caused breakdowns in collaboration, forcing changes to the
collaboration mode. We reconsidered these incidents and changes to be
breakdowns [62], as we were not able to explain them easily using
existing theories such as Gregory et al. [38] control configurations. It
therefore seemed critical to understand what happened to the collabo
ration during and after the incidents. The decisions and actions taken
were not entirely reactive and random, but they were related to
emerging awareness of the different collaboration possibilities caused by
the incidents.

Using axial coding, we identified patterns in the changes in collab
oration after and during the identified project incidents. In later steps of
the analysis, we explain why and how the collaboration between the
main parties changed during and after the incidents as well as what
determined the direction of the change.

Using selective coding, the entire dataset was reinterpreted from the
perspective of changes in collaboration. Important categories that
emerged included contracts, cooperation, personification, and pro
cesses. The more we investigated the data, the more plausible it seemed
that there were four different and independent “modes” through which
collaboration took place:

- Contractual mode: Collaboration is defined by legal contracts be
tween the parties. The project incidents and their consequences are
handled according to formal business contracts that define the roles
and responsibilities of the parties.

- Cooperative mode: Collaboration is based on mutual interests and
voluntary cooperation. The parties observe the answers to the in
cidents and their consequences from their common points of interest,
so that the solution is beneficial to both parties.

- Personified mode: Collaboration happens between individuals. The
incidents and their consequences are dealt with by the key persons
who may then delegate responsibilities in their respective organi
zations. The relationships between the key persons may have
developed over years of collaboration. The key persons acknowledge
each other’s expertise and recognize the areas of trust.

- Process mode: Collaboration is a process that can be planned and
designed. The incidents and their consequences are resolved through
a defined process that determines the parties and procedures. Typical
defined processes include those related to change and quality
management.

The following quotation exemplifies the contractual mode in
1996–1998. It describes the collaboration mode during a project crisis,
when there was growing tension at both Factory and Integrator and a
desire to toss out the complicated, rigid, and restrictive contract and
instead adopt the cooperative mode. Factory understood that following
the contract strictly would not lead to any success. Instead, a more
flexible and equal collaboration mode, accompanied by control agree
ments, was needed:

“I think that was the most challenging part: to give up the initial
mindset of ‘you have the stuff, and we have the money.’ You’ll deliver
the stuff, and we’ll pay you. We have this agreement, which juristically
binds us to do things. You just have to obey it.” (Corporate IT Manager,
Factory).

During the development of Birdie, the incentive to cooperate mate
rialized during the technological crisis in 1996–1998. After unsuccessful
attempts to resolve the problems, both organizations realized that they
had the common objective to rescue the project:

“Let us say this. Usually, projects are saved by the fact that the
customer and the vendor are equally deep in the [rude expression
removed]. Then, there is a willingness to proceed and get the thing
sorted out.” (Middleware Consultant)

At Birdie, the cooperation mode extended so far that the project
organizations at Factory and Integrator were de facto merged without an
explicit renegotiation of the contract. The customer took the lead and
reorganized the project:

“The main element was that we couldn’t continue as earlier. There
were two separate projects: the customer had one, and the vendor had
another one, each with their own agendas, etc. So, I decided to establish
a joint project. I set its steering group, and I continued as its chairman, in
charge of this whole thing and overseeing everything.” (Corporate IT
Manager, Factory)

Adopting the personified mode means that heroic individual ac
complishments and the importance of individual expertise are empha
sized. This occurred when the technological crisis had to be resolved.
The customer-side project manager made an alliance with the supplier’s
infrastructure manager and invited an external consultant to resolve the
Middleware problem:

“I had this personal relationship. I realized that we’re going to ride
for a fall. So, I invited that guy here. He flew over on a morning flight, we
sat in [the local restaurant], and I told him everything. I had all the
documents, and I explained which is which. Then, we had lunch. After
this, he said that we are really in trouble, but he is going to help us out.”
(Corporate IT Manager, Factory)

“But we had some common history. Me and [Project Manager, Fac
tory] had worked together [on an earlier project]. There, we faced these
issues on a smaller scale. He managed the project. I was the infra pro
vider, a kind of safety. And we applied these experiences, and I argue
that it was quite useful for both of us.” (Infrastructure Manager,
Integrator)

Later, when the crisis was resolved, the importance of recurring
processes grew. The process mode was adopted in change and quality
management. However, the switch from the cooperative mode to the
process mode was not simple. Instead of focusing on the essential and
continuous process of managing change and quality, the project orga
nization had concentrated on resolving the immediate and fundamental
development problems at hand. No plans, models, or processes were
established for managing the frequently recurring actions in change and
quality management:

“When I came in, I thought it was chaos. Like I said, nobody knew
how many change requests there were, what kind, and where they were.
They were nowhere; they were in different places. Then, we made it
systematic. We established the whole testing model, the whole change
management, how to make new releases, how many weeks can we use
[Integrator] and where, how much they do, where the acceptance
criteria are, and how many changes we may accommodate. If there are
acute changes, when can they come, the last 20 percent. When each
person tests it, and then we could develop the testing process as well. In
the beginning, it felt that the stuff from [Integrator] hadn’t been tested
at all.” (Project Manager 2, Factory)

4.2. Incidents and their effect on the collaboration mode

Again, we went through the data and analyzed what promoted and
demoted a certain collaboration mode in the context of a project inci
dent. This analysis is summarized in Table 3. The “+” sign in a cell in
dicates that the item promoted the collaboration mode, and the “-”
indicates that the item demoted the collaboration mode. Because of the
extensive space required, it is practically impossible to display all the
evidence related to the items in the table. We do, however, illustrate the
evidence with a detailed example of one incident, “Project start and
technological crisis.”

At the beginning of the project, ingredients from each collaboration
mode were present. A contract was made between the parties according
to the specified requirements. A user-oriented approach promoted the
cooperative and personified modes, and the established ways of working
between Factory and Integrator promoted the cooperative and process
modes. Factory’s do-it-yourself culture probably also promoted the

K. Smolander et al.

Information & Management 58 (2021) 103407

9

personified mode. Integrator’s decision to build a product was a move
toward the contractual mode. This move introduced new legal issues and
hidden objectives that demoted cooperation. It also elevated the role of
certain experts at Integrator.

The technological crisis was solved partly by moving from the
contractual mode to the cooperative mode. Despite this move, there was
a factor that promoted the contractual mode as well. Factory realized
that it had trusted Integrator’s capabilities too much (awareness of over-
trust in the supplier):

“We were a little amateurish. I guess at Factory, we trusted too much
that Integrator knew what they are doing. But they didn’t. They just
continued on the same basis as before but didn’t confirm the func
tioning. So, this was maybe the most amateurish mistake from the very
beginning of the project.” (IT Manager, Integrator)

However, the awareness that the contracts were unrealistic demoted
the original contractual mode (unrealistic contracts):

“The objective was for it to become a kind of customer-supplier
project, and we ordered everything with invitations to tender, and so
– so we started to do it.” (Corporate IT Manager, Integrator)

This contract principle did not work. The increasing awareness of the
crisis and Integrator’s business crisis had a decisive effect on the
collaboration mode. It promoted the cooperative mode:

“Then, it really hit the roof. I got an invitation to Integrator’s
meeting. There was their whole management team. Then, project
management, and then Integrator’s CEO said plainly that if this does not
work, the company will be bankrupt.” (Middleware Consultant)

“Maybe it was partly that—partly the risks realized—and it was
about the ambitions. It was the biggest system that they had ever made.
At the same time, they took this object-oriented approach. The skills and

expertise risks realized, and, in a way, they thought too much of
themselves, their skills and their experience.” (Middleware Consultant)

The crisis strengthened the role of Factory, the customer, also in
technical details (customer-driven technology selection). We interpreted
that this stronger role on the customer’s part promoted cooperation.

“[Factory Project Manager] then managed to also persuade Inte
grator to support this, even though this was a huge change. It took a year
for Integrator to recode the two-level architecture to the new three-level
architecture, adding Tuxedo in-between.” (IT Manager, Integrator)

The crisis also required improvisation and ad hoc actions (ad hoc
crisis management). We interpreted this as a move to the personified
mode.

“Then, [Factory Project Manager] came to our offices one Monday
night. He tried to get us to understand that this would totally fail. Then, I
jumped up and said, ‘Yes, now I understand.’ We got lots of internal
hassle, but I called my boss at eight in the evening and said that now I
need half a million euros. For what, he asked, and I said that now we are
going to buy the biggest servers possible and that they will be flown here
from California; otherwise, we will be doomed. He listened to me and
said, ‘Okay.’ I called [hardware vendor’s] sales director at home and
said, ‘Call California, and tell them to put six power servers on the plane
immediately,’ and so it went.” (Infrastructure Manager, Integrator)

Moreover, personal relationships played an important role in
resolving the crisis (solutions through personal relationships):

“We had a seminar at [location], and [Factory Manager] was among
the participants. I said then that indeed, this is interesting, and then
[Factory Manager] came in the first row. There were about 150 partic
ipants, and he asked me to have a chat and said they have a little
challenge at Birdie, and could we come and help? I said, ‘Yeah, I have

Table 3
Incidents and their effect on collaboration mode.

Incident Contractual mode Cooperative mode Personified mode Process mode

Decision to build a custom
system

þ requirements þ user-drivenness þ user-drivenness
þ established way of working

- based contract þ established way of working þ do-it-yourself attitude
Product development

decision
þ secure supplier’s legal
position - supplier’s hidden objectives þ technology and product experts

Project start and
technological crisis

þ awareness of over-trust in the
supplier þ awareness of crisis

þ solutions through personal
relationships - project reorganization

- unrealistic contracts
þ customer-driven technology
selection þ ad hoc crisis management - ad hoc crisis management
þ supplier’s business crisis

Architecture reorganization

þ awareness of over-trust in the
supplier

þ compensation for supplier
losses

þ expertise through personal
relationships

- trial-and-error approach

þ use of external problem-
solvers

þ customer-driven problem-
solving

þ opinion that “we need world-class
expertise”

- unrealistic developer beliefs

þ competition among suppliers - competition among suppliers
þ management’s risk-taking
confidence - awareness of crisis
- resignation of key developers

Merger

þ responsibilities of merged IT - competing systems þ clear decision points with
competing parties

- decisive events with contingent
results

þ competition among suppliers - fractions and parties - more stakeholders þ more stakeholders
þ use of consultants to confirm
decisions - cultural differences

- increase in the scale of the system
þ awareness of process needs

þ more external parties - location and ownership issues
þ added requirements and
changes in needs

Rollouts þ customer-driven process þ clear management support
þ recurring activity

Abandoning product
development

- less need to protect IPRs
þ less-diverse goals

þ customer-specific processes þ easier to fulfill customer
requirements

Move to maintenance þ use of standards - business as usual

- complex releases þ change management
- very large install-base þ use of standards

- testing requirements
þ complex releases
þ very large install-base
þ testing requirements

Changes in technologies þ cost control for licenses
- more generic attitude to expertise
- partner greediness

Offshoring
þ focus on costs - focus on costs - added distance þ offshoring requires clear

processes þ scale-down - personnel
- personnel changes

þ personnel changes changes þ personnel changes

K. Smolander et al.

Information & Management 58 (2021) 103407

10

been waiting for this.’ [Factory Manager] came to the project as a fresh
manager, which was surprising to me. I had known [Factory Manager]
for a long time.” (Middleware Consultant)

As in many crises, the processes were neglected, and the project
organization was reconstructed (project reorganization), which
demoted the process mode, at least at the beginning.

“I think it was a very cohesive project team. And then, we had no
possibilities for virtual interaction as we now have. It became a com
munity. And we widely used the capabilities and skills of various
parties.” (IT Support Manager, Factory)

The architecture reorganization meant returning to the contractual
mode, although cooperation and personification were still considered
important. Factory understood that it had trusted Integrator’s capabil
ities blindly, so it had to build a new contractual basis for the project. A
new kind of compensation for Integrator’s losses was embedded in the
contract. This, in addition to the contractual mode, enabled and sup
ported the cooperative mode. The use of external problem solvers, the
Middleware Consultants, emphasized the contractual basis. These data
also indicate that there was some competition among the suppliers,
which may have demoted cooperation. There was also an opinion that
there was a need for “world-class expertise” to solve the architecture
problem. This need was met by the personal efforts and cooperation
between certain key persons, such as Factory’s project manager, In
tegrator’s infrastructure manager, and the Middleware Consultants. The
parallel resignation of Integrator’s key developers was a step toward
more impersonal responsibilities. As the project was still in a state of
crisis, a trial and error approach and personal efforts prevailed. This
clearly prevented the relevance of the process mode.

Although the merger was an enormously important event for Fac
tory, it did not produce immediate changes to the project collaboration.
Perhaps because of the very recent crisis and the architectural challenge,
the project collaborators continued to work in the cooperative mode.
From the long-term perspective, the merger brought along pressure to
move from the cooperative mode to the contractual mode and the pro
cess mode. An increase in the number of stakeholders and in the system’s
scale required more impersonal, defined processes. In addition, the
merger brought new requirements and essential changes to Birdie.
These, in turn, required better management processes. However, after
the technical architecture challenges were resolved, most of the de
cisions concerning Birdie were political. For example, political struggles
between the parties at Factor’s different locations required additional
consideration:

“Then they would have taken a similar system into use from [another
country of Factory]. Birdie ran them over; they did not succeed. They
had quite massive systems. It’s quite a political struggle—which system
they use at big companies. Each system has its own proponents. It’s a
tough struggle, and they tried to undermine Birdie from [another
country], until based on the [consultant] statements and everything,
Birdie moved them aside.” (Project Manager, Integrator)

The political fights required committed and politically skilled per
sons. We heard stories about situations where Birdie was in deep
trouble. We interpreted these situations and their results as quite
contingent: the decision concerning Birdie could also have been
negative.

The rollouts promoted the process mode. The rollouts were a
recurring activity (44 in total), requiring well-defined processes for
different teams. Explicitly articulated management commitment also
promoted these processes. Although Factory led the rollouts, the process
still required intensive cooperation between Factory and Integrator. Our
interpretation is that Integrator’s decision to abandon product devel
opment promoted the cooperative mode, as it created better opportu
nities to build customer-specific processes for Factory.

The move to maintenance also promoted the process mode. Change
management, testing, and releasing required clear processes, which
were taken from the ITIL standard. As the project was no longer in crisis
mode, maintenance was seen as business as usual. The situation

promoted the contractual mode, while demoting the cooperative and
personified modes. Instead of being based on cooperation and personal
relationships, the development was now becoming an impersonal pro
cess based on the business contract.

The move to maintenance was the only project incident that included
technical features that directly affected the collaboration mode. The
technical features (e.g., complex releases, a very large install base, and
testing requirements) (see Table 3) required well-defined processes and
improved management. All the other items in the other areas of Table 3
related either to the social, organizational, or business context. While
the items may include a technical component, the main effects and
consequences are not based primarily on the technical qualities.

While it may sound like the changes in technologies were a technical
decision, they mostly resulted from a business decision: a reaction to
increasing license costs. It was also a transition out of the personified
mode. The companies selected Microsoft technologies, a more generic
choice that did not require direct personal connections to the technology
provider. Offshoring maintenance was yet another step toward the
process mode. It removed the personal relationships between Factory
and Integrator that had been present and required new maintenance
processes and a new contract between Factory and Integrator, which
thus changed control of the project.

5. Discussion

5.1. A mid-range theory of four collaboration modes

The history of Birdie can be explained by the alteration of the four
collaboration modes: the contract mode, the cooperative mode, the
personified mode, and the process mode. We believe that understanding
these high-level collaboration modes is as important as understanding
more concrete artifacts [42–44] in boundary-spanning cooperation.
Each collaboration mode was emphasized differently during and after
every project incident. Table 4 distils the theoretical model derived from
this study and characterizes the collaboration modes by defining their
essential features. We consider this the parsimonious presentation of an
inductively created middle-range theory that explains the collaboration
modes and their changes in the context of large enterprise systems
development projects.

This middle-range theory can be described as follows. A specific
collaboration mode is a reaction to a condition or incident—or more
likely, a chain of incidents. The contract mode is a reaction to the need to
define the division of costs and responsibilities as early and as clearly as
possible. This is similar to outsourced development arrangements and
can be traced back to transaction cost economics [63]. It can thus be
argued that the contract mode is typically seen as the mode of choice

Table 4
Collaboration modes and their features.

Is reaction to,
solves the
problem of

Regularity Emphasizes Requires

Contract
mode

Division of
costs and
responsibilities

Management-
induced
system
development

Plans and
commitments

Clear
contracts

Cooperative
mode

Lack of clarity
in the context

Cooperative
development
of new
solutions

Cooperative
action, the
spirit of “us”

Common goals

Personified
mode

Imminent
problem-
solving needs

Improvised
problem-
solving actions

Individual
achievements

Influential
persons

Process
mode

Constant
planning needs

Planned
development
actions

Change and
quality
management
practices

Defined and
implemented
processes

K. Smolander et al.

Information & Management 58 (2021) 103407

11

when starting projects because it transfers much of the risk from the
buyer to the seller. The contract mode is suitable when there are very
clear requirements, the work can be divided effectively, and the parts of
development can be isolated. The cooperative mode is adopted when the
context is unclear, such as in the case of Birdie’s technological crisis. The
cooperative mode is forced by difficulties in dividing responsibilities in
response to an acute crisis or a problem that spans functionalities and
responsibilities. The personified mode is often a reaction to imminent
problem-solving needs that require improvisation and ad hoc actions;
this mode can work very well when there are acute crises that can be
pinpointed into a single origin (e.g., the actions of an architecture guru
or a senior decision-maker). Any long-lasting “normal” situation that
emphasizes planning needs promotes the process mode; the process
mode is effective in the context of continuous development and both
routine and planned maintenance after major development efforts. In
the modern development context, the process mode can be implemented
through continuous practices and principles such as those labeled as
DevOps [64].

Each mode emphasizes different elements of systems development.
The contract mode sees systems development as a management-induced
action, emphasizing plans and commitment from the management. In
the cooperative mode, extensive cooperation is required to realize new
solutions [65]; the cooperative mode emphasizes the spirit of “us” in
cooperative action. In the personified mode, improvised
problem-solving actions are normal; this mode clearly emphasizes in
dividual achievements. The process mode is business as usual, whereby
planned development actions are executed; during the development of
Birdie, change and quality management [66] were emphasized in rela
tion to the process mode.

Each collaboration mode has also different prerequisites; if these are
present, the mode is more likely to be a good solution to the encountered
problems. The contract mode requires clear contracts, clear

requirements, and an effective division of work for the isolated parts of
the project. It is not possible to adopt the cooperative mode without the
identification of common goals [67], even if that goal is simply to
resolve common problems and difficulties; this can create a dynamic and
extended mode of cooperation that goes beyond what is specified in the
contract. The personified mode requires influential persons who are
committed and able to use their influence, skills, and personal re
lationships; in this case, these individuals created their own networks
across organizations and solved problems with their influence. For the
process mode, defined and implemented processes are required,
particularly in the areas of change and quality management; in this case,
these processes were needed and established when the system was
installed and adopted by multiple global sites. We believe that similar
things happen in most projects near deployment.

We can distill this analytic generalization in the form of propositions.
These propositions are not mutually exclusive. The modes can be mixed
or concurrent and occur in different parts of organizations and work
subsystems. The four propositions are:

P1 When the focus of interest is on the division of costs and re
sponsibilities, the contract mode is emphasized.

P2 When there is a lack of clarity in the development context and
common goals among partners can be identified, cooperative
mode is probable.

P3 When there are very imminent problem-solving needs (i.e., a
crisis), influential persons take the lead and the personified mode
appears.

P4 When there are constant planning needs and regular planned
development actions, the development moves to process mode.

Fig. 4 shows examples of how these propositions occurred in the
project, i.e., how collaboration modes were emphasized in and after

Fig. 4. Project incidents and collaboration modes.

K. Smolander et al.

Information & Management 58 (2021) 103407

12

project incidents. Thin arrows show examples of occurrences of a certain
condition during the project. Thick arrows (P1−4) show how a certain
mode existed and provided grounding to the propositions. The collab
oration modes existed simultaneously throughout the development of
Birdie, but their relative emphasis varied a lot during the project’s his
tory. The observations from the parties at Birdie indicate that during and
after each incident, the project organization may start to emphasize
another mode. This transition can happen without any deliberate deci
sion, or it can be explicitly decided. A reaction to an incident can be
followed by changed awareness with regard to the requirements of the
project collaboration. From the history of Birdie, we can explicitly
identify shifts between all four collaboration modes.

5.2. Implications for research and practice

We have presented a single case study of a large project with a long
and winding history. As such, it is not unique. The individual issues that
the project contributors encountered, including a heavy emphasis on
contracts as the basis for cooperation [68], overreliance on heroic ac
tions by individual developers [69], and the evolution from reliance on
individuals to more impersonal processes [70], are typical for large
enterprise system projects and for most ISD projects that span a long
period of time and involve several organizations. Our study, however,
differs from previous studies (c.f. [35]) in that it observes collaboration
change over a long period of time, as is done in the process-theorizing
research [3,38]. We also analyzed both how the individuals perceived
change and how the change affected the project and the organization.
Therefore, we see our approach as a holistic one, with direct evidence
and grounding to real-world observation of a specific enterprise systems
development case. In this sense, our approach differs from—and enri
ches—for example, the work of Ring and van de Ven [71] and
Juell-Skielse et al. [36], who theorize about interorganizational
collaboration in general, and Yeow et al. [44], whose work stresses the
role of specific boundary objects and a boundary organization (see also
[43,72]). Our collaboration modes resemble Gulati et al.’s (2014) and
Juell-Skielse et al. [36] modes, but they see them fixed at the beginning
of collaboration and to stay intact for the duration of the project.
Furthermore, we offer a richer view of what causes changes in collab
oration and collaboration levels as compared to recent control dynamics
studies [38,73], as we demonstrate that issues outside of the direct
collaboration context (e.g., technology changes or the outsourcing of
partner goals) also influence collaboration. We thus respond to Sab
herwal [74] call for the study of the processual aspects of interorgani
zational dialectics through longitudinal studies.

Next, we discuss our results in relation to earlier research and the
implications for enterprise system development practices.

5.2.1. Research contribution
We observed changes in collaboration over the course of a long

development project. We identified four basic modes of interorganiza
tional collaboration in the development process: contract mode, coop
erative mode, personified mode, and process mode. The choice between
them (or the need to apply one or more) is a reaction to environmental
conditions, which are most often business related. The collaboration
modes are not mutually exclusive; however, while they may exist
simultaneously, one collaboration mode is usually emphasized at any
given time. The selection of a collaboration mode depends on the given
situation (Table 4 and Fig. 4). When a certain collaboration mode is
emphasized by the project partners, it strongly influences on how the
project continues. We do not claim that we have identified the causal
relationships between project incidents and collaboration modes.
Instead, we describe what kind of problems the project partners attempt
to resolve when they adopt certain collaboration modes or when a new
collaboration mode emerges.

Different collaboration modes address different problems, emphasize
different forms of collaboration, and require different tools, artifacts,

and practices. We propose that certain types of issues can be addressed
by the movement to certain collaboration mode (Table 4 and proposi
tions in Fig. 4). Previous research has identified partially related con
structs, such as control configurations [38], collaboration-related
objects [39,50], boundary organizations [44,72], and boundary span
ners [75,76] as objects and carriers of cooperation and knowledge across
organizational boundaries. We complement these constructs with the
four collaboration modes and propositions of when they should be
emphasized.

Our distinct contribution is that unlike most past studies, particularly
those based on success factor models [24,25,77], we studied the evo
lution of the relationships between the development parties over a long
period. Previous studies have often assumed, either explicitly or
implicitly, that rational decision-makers select the presumably optimal
collaboration mode in advance and use it throughout the duration of the
project, moving through different phases of collaboration but main
taining the same mode [74]. In contrast, we observed that in a prolonged
development context, different kinds of changes in the external and
internal contexts or different stakeholders and their goals force the
parties to renegotiate their deals and to adjust the collaboration mode
accordingly. Although it is probably impossible to predict the exact
consequences of certain events on the collaboration mode, our findings
explain the types of collaboration problems that partners can potentially
resolve by adjusting their collaboration mode. This is described in the
first column of Table 4.

Tsoukas and Chia [78] claim that organizations are composed of
change. They are “sites of continuously changing human action” and “a
patterned unfolding of human action.” Our findings suggest that this is
particularly true in the context of interorganizational systems develop
ment, whereby temporary development organization is constantly
changing and reacting to internal and external project incidents and
their needs. Furthermore, collaboration cannot be easily studied at
either the individual or organizational level. Instead, one must under
stand the changes at both levels, as their relative importance varies over
time and according to the development situation. From this perspective,
we respond to the calls for studying systems development through
process approaches and in real-world settings [51] and to calls for
studying processual aspects of coordination evolution [74].

Although a systems development project initiates changes to the
organization, the project itself is often seen as a stable entity through
which the partners work toward an established goal. Our findings
question this view and position the concept of a project as a volatile
process [78,79]. Hussenot and Missonier [80] view organizations as
structures of events, which is a natural way to understand organizations.
It became much easier to interpret our case organization when we
started to analyze it as a series of incidents instead of a set of organi
zational entities. Similarly, Hernes and Weik [81] pre sented a theo
retical classification for how organizations can be presented as
processes. The classification is based on how structure (i.e., independent
entity) is applied to an organization, which they call “entification,” or
the process of conceptualizing entities in the analysis. They argue that
there is no natural split between the process and the entity and that there
are different ways to divide them. Instead of viewing the project as a
stable environment where information and artifacts flow from entity to
entity, our case was blurred and dynamic. To use Hernes and Weik’s
terminology, we had an endogenous view of the process whereby the
process constantly reproduced itself. Our collaboration modes thus show
how temporary organizational arrangements are produced. Changes in
control, triggered by the changes in the project context, tend to be
recursive (c.f. [38]).

Our findings are also in line with Langley et al. [79] view on the
importance of process conceptualizations. They posit that there is a need
for process approaches that use longitudinal and rich process data, and
they approach systems development as a continuously and dynamically
changing process that cannot be fully predicted. It is quite easy to draw
the analogy from Langley et al.’s call for process theories to recent

K. Smolander et al.

Information & Management 58 (2021) 103407

13

changes in software development, whereby agile [82] and continuous
approaches [83,84] are the reality in many organizations. In enterprise
systems development, agile and continuous approaches are still in their
infancy, which calls for future research and empirical observation of
these practices.

Previous research has proposed different ways of collaborating,
including outsourcing arrangements [68], controlling consultants [1],
and forming partnerships [85]. Our work went beyond simply identi
fying the incidents and collaboration modes by revealing the existence
of several collaboration modes and the shifts between these collabora
tion modes in response to incidents or events. We believe that this
mid-range theory can help researchers interpret events that occur within
a collaborative project and identify successful practices that can be used
to overcome the problems that arise during projects and potentially
change the course of the project radically if needed. The results do not
provide a recipe for success. However, they are important for any
initiative that attempts to improve practices and life cycle models for
large-scale enterprise systems development. Our work demonstrates
that in all kinds of cooperation arrangements, it is important to monitor
not only the performance of the partners [1], but also the overall ways of
working; this can inform active decisions about the most suitable
collaboration mode. We believe that similar events can occur also in
large infrastructure and embedded software projects (e.g., 737 MAX
issues in [86]) as they do in enterprise systems development.

5.2.2. Implications for practice
Our theoretical results have direct practical implications. First, they

can be applied when considering and planning outsourcing and part
nerships. Second, the changes in the collaboration mode over time
should be considered in development methods and processes. Third,
although predicting changes in the collaboration mode is difficult, the
changes can be expected when a development project progresses or
when an incident occurs. For example, in most cases, the transition to
maintenance yields a shift from the cooperation mode to the contract
mode. Similarly, recurring tasks such as rollouts may necessitate the
utilization of the process mode.

Our main practical implication is that while it would be convenient
to define the ways of working in advance—for example, as part of a
procurement contract between the parties [68]—and then see the pro
cess unfold until the IT artifact is delivered, this is highly unlikely. This
means that managers need to be receptive to developments and be able
to shift to a different collaboration mode when external conditions or
internal issues arise during the course of a project.

Another practical implication is that even in the most well-defined
and well-executed projects, the form of cooperation and the communi
cation style must change during the shift from development to mainte
nance or DevOps [87]. This is particularly emphasized in high-risk
projects that are developed in the cooperative or personified mode. In
these cases, the collaboration mode needs to shift to the contract mode
after the exploration and innovation phase is complete and the devel
opment is handed over to a maintenance team.

5.3. Limitations and evaluation

The validity of qualitative research is always difficult to evaluate.
Maxwell [88] listed aspects of validity, including descriptive validity,
interpretive validity, theoretical validity, generalizability, and evalua
tive validity. Descriptive validity, or credibility [53], refers to the ac
curacy of the data—for example, recording the events correctly and
accurately reflecting on the events and discussions. We used the same
interview protocol for all the interviews but allowed each interviewee to
provide detailed descriptions of emerging topics. All the interviews were
fully recorded and transcribed, including important nonverbal
communication and breaks.

Interpretive validity refers to the researcher’s capacity to correctly
interpret what the interviewees intended to communicate through their

statements and behavior. The first author has followed the development
of Birdie since its inception, by working in Integrator in the 1990s. The
first author performed the open coding, but the axial coding and selec
tive coding interpretations were iteratively discussed and confirmed
with the other authors. In addition, the case descriptions and related
interpretations were also discussed with and confirmed by a key stake
holder at Factory.

Theoretical validity refers to the researcher’s concepts and the
theorized relationships in the context of the phenomena. The essential
question is whether the researcher has provided an accurate theoretical
explanation of the phenomena. We believe that the identified patterns,
concepts, categories, and dimensions fit together well to create a theo
retical explanation of the phenomena.

A single descriptive case study cannot be generalized to a population.
However, we consider the generalization as theoretical [89], i.e.,
abstraction of concrete events and actions to theoretical constructs. As
for the evaluative validity, where the evaluations made by the re
searchers are assessed, we suggest extending the study to other cases.
Interpretations typically reflect the history and worldview of the
researchers.

6. Conclusions

In this paper, we observed the changes in collaboration during a
large-scale systems development project, with an industrial corporation
as the buyer and a professional services firm as the developer. Together,
these parties developed a strategic enterprise system over an extended
period of time. Our study found that to succeed in a prolonged collab
orative project, the collaboration practices between the parties must
shift in response to internal and external incidents, whether they are
organizational, technical, personal, or interpersonal. In this case, there
were few technical incidents, and these incidents seemed to be easier to
manage than the interpersonal and interorganizational incidents. We
identified four collaboration modes—the contract mode, the coopera
tion mode, the personified mode, and the process mode—which differ in
their emphasis, requirements, and regularity and can be deployed in
reaction to different situations. The study sheds light on how projects
can survive and prosper, even after traumatic events and changes in the
development environment, by adjusting their collaboration mode
accordingly. Collaboration in large enterprise system projects is never
static and rigid. Instead, incidents force the project partners to adjust
their collaboration mode dynamically to the new situation and its re
quirements. As most large-scale development is executed through
different kinds of outsourcing arrangements, the ability to identify these
collaboration modes and guidance on when to apply them is valuable.

The results contribute directly to the practice and theory of enter
prise systems development. They emphasize flexible collaboration in
enterprise systems development. Collaboration should be considered a
dynamic and flexible process, rather than a rigid and preplanned
approach as stated in the delivery contract. The results also provide
effective tools that practitioners can use to navigate unexpected project
incidents and their effects on collaboration. The identified collaboration
modes are responses to different kind of crises, incidents, and situations
in enterprise systems development. The understanding of how they
require and emphasize different elements and are solutions to different
problems is valuable knowledge for systems development practitioners.

The theoretical understanding developed here is a step forward in
building a comprehensive theory of collaboration in enterprise systems
development. As the conceptualization was based on a single case study,
more research on different contexts is needed. Studying changes in
collaboration entails long-term observation, which will most likely take
place retrospectively, as collaboration modes can be difficult to distin
guish and define while they are in use. We recommend that the phe
nomena be approached qualitatively, such as through ethnography or
longitudinal archive research. Experimenting with action and design
research could provide more insight into this topic. Such studies, no

K. Smolander et al.

Information & Management 58 (2021) 103407

14

matter which research method is used, will provide a more in-depth
understanding of the complex phenomena of interorganizational re
lationships and collaboration, particularly within contemporary IS
development.

CRediT authorship contribution statement

Kari Smolander: Conceptualization, Investigation, Methodology,
Writing - original draft, Writing - review & editing. Matti Rossi:
Conceptualization, Writing - original draft, Writing - review & editing.
Samuli Pekkola: Conceptualization, Writing - original draft, Writing -
review & editing.

Acknowledgement

Academy of Finland, Finland, grant #259454. Peter Wallenberg
Foundation, Finland, grant #PWS2016.0006.

References

[1] Jyt Chang, Etg Wang, Jj Jiang, G. Klein, Controlling ERP consultants: client and
provider practices, J. Syst. Softw. 86 (5) (2013) 1453–1461.

[2] S. Sawyer, A market-based perspective on information systems development,
Commun. ACM 44 (11) (2001) 97–102.

[3] M. Wiener, M. Mähring, U. Remus, C. Saunders, Control configuration and control
enactment in information systems projects: review and expanded theoretical
framework, MIS Q. 40 (3) (2016) 741–774.

[4] V. Choudhury, R. Sabherwal, Portfolios of control in outsourced software
development projects, Inf. Syst. Res. 14 (2003) 291–314.

[5] Nr Hassan, L. Mathiassen, Distilling a body of knowledge for information systems
development, Inf. Syst. J. 28 (2018) 175–226.

[6] Th Davenport, Putting the Enterprise Into The Enterprise System, Harvard Business
Review, 1998, pp. 121–131. July/August.

[7] S. Newell, C. Tansley, J. Huang, Social capital and knowledge integration in an ERP
project team: the importance of bridging AND bonding, Br. J. Manag. 15 (S1)
(2004) S43–S57.

[8] J. Nandhakumar, M. Rossi, J. Talvinen, The dynamics of contextual forces of ERP
implementation, J. Strateg. Inf. Syst. 14 (2) (2005) 221–242.

[9] I. Ruuska, T. Ahola, K. Artto, G. Locatelli, M. Mancini, A new governance approach
for multi-firm projects: lessons from olkiluoto 3 and flamanville 3 nuclear power
plant projects, Int. J. Proj. Manag. 29 (6) (2011) 647–660.

[10] Kj Mayer, Ns Argyres, Learning to contract: evidence from the personal computer
industry, Organ. Sci. 15 (4) (2004) 394–410.

[11] A. Gopal, S. Gosain, Research note-the role of organizational controls and
boundary spanning in software development outsourcing: implications for project
performance, Inf. Syst. Res. 21 (4) (2010) 960–982.

[12] R. Merton, Social Theory and Social Structure, The Free Press, New York, 1968.
[13] P. Hedström, L. Udehn, Analytical sociology and theories of the middle range. The

Oxford Handbook of Analytical Sociology, Oxford University Press, 2011.
[14] Rm Davison, Mg Martinsons, Context is king! Considering particularism in research

design and reporting, J. Inf. Technol. 31 (3) (2016) 241–249.
[15] A. Momoh, R. Roy, E. Shebab, Challenges in enterprise resource planning

implementation: state-of-the-art, Bus. Process. Manag. J. 16 (4) (2010) 537–565.
[16] S. Alshawi, M. Themistocleous, R. Almadani, Integrating diverse ERP systems: a

case study, J. Enterp. Inf. Manag. 17 (6) (2004) 454–462.
[17] Y. Yusuf, A. Gunasekaran, Ms Abthorpe, Enterprise information systems project

implementation: a case study of ERP in Rolls-royce, Int. J. Prod. Econ. 87 (3)
(2004) 251–266.

[18] Tm Somers, Kg Nelson, The impact of strategy and integration mechanisms on
enterprise system value: empirical evidence from manufacturing firms, Eur. J.
Oper. Res. 146 (2) (2003) 315–338.

[19] Y. Su, C. Yang, A structural equation model for analyzing the impact of ERP on
SCM, Expert Syst. Appl. 37 (1) (2010) 456–469.

[20] S. Sawyer, Packaged software: implications of the differences from custom
approaches to software development, Eur. J. Inf. Syst. 9 (1) (2000) 47–58.

[21] T. Kähkönen, A. Alanne, K. Smolander, S. Pekkola, Explaining the challenges in
ERP development networks with triggers, root causes and consequences, Commun.
AIS 40 (1) (2017) 11.

[22] S. Sarker, As Lee, Using a case study to test the role of three key social enablers in
ERP implementation, Inf. Manag. 40 (8) (2003) 813–829.

[23] L. Shaul, D. Tauber, Critical success factors in enterprise resource planning
systems: review of the last decade, ACM Comput. Surv. 45 (2013) 1–55.

[24] H. Akkermans, K. Van Helden, Vicious and virtuous cycles in ERP implementation:
a case study of interrelations between critical success factors, Eur. J. Inf. Syst. 11
(1) (2002) 35–46.

[25] Cp Holland, B. Light, A critical success factors model for ERP implementation, IEEE
Softw. 16 (3) (1999) 30–36.

[26] D. Robey, Jw Ross, M.-C. Boudreau, Learning to implement enterprise systems: an
exploratory study of the dialectics of change, J. Manag. Inf. Syst. 19 (1) (2002)
17–46.

[27] M. Marabelli, S. Newell, Organizational learning and absorptive capacity in
managing ERP implementation projects, in: Proceedings of the International
Conference on Information Systems (ICIS 2009), AIS Digital Library, 2009.

[28] C. Brown, I. Vessey, Managing the next wave of enterprise systems: leveraging
lessons from ERP, MIS Quarterly Executive 2 (2003) 45–57.

[29] C. Soh, Sk Sia, An institutional perspective on sources of ERP package-organisation
misalignments, J. Strateg. Inf. Syst. 13 (4) (2004) 375–397.

[30] Y. Dittrich, S. Vaucouleur, S. Giff, ERP customization as software engineering:
knowledge sharing and cooperation, IEEE Softw. 26 (6) (2009) 41–47.

[31] J. Ward, C. Hemingway, E. Daniel, A framework for addressing the organisational
issues of enterprise systems implementation, J. Strateg. Inf. Syst. 14 (2) (2005)
97–119.

[32] S. Sarker, S. Sarker, A. Sahaym, N. Björn-Andersen, Exploring value cocreation in
relationships between an ERP vendor and its partners: a revelatory case study, MIS
Q. 36 (1) (2012) 317–338.

[33] Ls Kirsch, Portfolios of control modes and is project management, Inf. Syst. Res. 8
(3) (1997) 215–239.

[34] Lj Kirsch, V. Sambamurthy, D.-G. Ko, Rl Purvis, Controlling information systems
development projects: the view from the client, Manage. Sci. 48 (4) (2002)
484–498.

[35] R. Gulati, P. Puranam, M. Tushman, Meta-organization design: rethinking design in
interorganizational and community contexts, Strateg. Manage. J. 33 (6) (2012)
571–586.

[36] G. Juell-Skielse, Cm Lönn, T. Päivärinta, Modes of collaboration and expected
benefits of inter-organizational E-government initiatives: a multi-case study, Gov.
Inf. Q. 34 (4) (2017) 578–590.

[37] A. Tiwana, M. Keil, Control in internal and outsourced software projects, J. Manag.
Inf. Syst. 26 (3) (2009) 9–44.

[38] Rw Gregory, R. Beck, M. Keil, Control balancing in information systems
development offshoring projects, MIS Q. 37 (4) (2013) 1211–1232.

[39] N. Levina, Collaborating on multiparty information systems development projects:
a collective reflection-in-Action view, Inf. Syst. Res. 16 (2) (2005) 109–130.

[40] J. Damsgaard, J. Karlsbjerg, Seven principles for selecting software packages,
Commun. ACM 53 (8) (2010) 63–71.

[41] C. Koch, ERP – a moving target, Int. J. Bus. Inf. Syst. 2 (4) (2007) 426–443.
[42] N. Levina, E. Vaast, The emergence of boundary spanning competence in practice:

implications for implementation and use of information systems, MIS Q. 29 (2)
(2005) 335–363.

[43] C. Rosenkranz, H. Vranesic, R. Holten, Boundary interactions and motors of change
in requirements elicitation: a dynamic perspective on knowledge sharing, J. Assoc.
Inf. Syst. 15 (6) (2014) 306–345.

[44] A. Yeow, Sk Sia, C. Soh, C. Chua, Boundary organization practices for collaboration
in enterprise integration, Inf. Syst. Res. 29 (2018) 149–168.

[45] O. Volkoff, Ye Chan, E. Peter Newson, Leading the development and
implementation of collaborative interorganizational systems, Inf. Manag. 35 (2)
(1999) 63–75.

[46] L. Liu, P. Yetton, Sponsorship and IT vendor management of projects, J. Inf.
Technol. 25 (1) (2010) 56–64.

[47] M. Tortoriello, R. Reagans, B. Mcevily, Bridging the knowledge gap: the influence
of strong ties, network cohesion, and network range on the transfer of knowledge
between organizational units, Organ. Sci. 23 (4) (2011) 1024–1039.

[48] M. Skerlavaj, V. Dimovski, Kc Desouza, Patterns and structures of intra-
organizational learning networks within a knowledge-intensive organization,
J. Inf. Technol. 25 (2) (2010) 189–204.

[49] P. Trkman, Kc Desouza, Knowledge risks in organizational networks: an
exploratory framework, J. Strateg. Inf. Syst. 21 (1) (2012) 1–17.

[50] N. Levina, E. Vaast, Innovating or doing as told? Status differences and overlapping
boundaries in offshore collaboration, MIS Q. 32 (2) (2008) 307–332.

[51] K. Lyytinen, M. Newman, Explaining information systems change: a punctuated
socio-technical change model, Eur. J. Inf. Syst. 17 (6) (2008) 589–613.

[52] Nb Moe, D. Šmite, Gk Hanssen, H. Barney, From offshore outsourcing to insourcing
and partnerships: four failed outsourcing attempts, Empir. Softw. Eng. 19 (5)
(2014) 1225–1258.

[53] B. Glaser, Al Strauss, The Discovery of Grounded Theory: Strategies for Qualitative
Research, Aldine, Chicago, 1967.

[54] K. Charmaz, Constructing Grounded Theory, Sage, 2014.
[55] S. Gasson, Employing a grounded theory approach for MIS research. Handbook of

Research on Contemporary Theoretical Models in Information Systems, IGI Global,
2009, pp. 34–56.

[56] Cc Pinder, Lf Moore, The resurrection of taxonomy to aid the development of
middle range theories of organizational behavior, Adm. Sci. Q. 24 (1) (1979)
99–118.

[57] A. Strauss, J. Corbin, Basics of Qualitative Research: Grounded Theory Procedures
and Techniques, SAGE Publications, Newbury Park, CA, 1990.

[58] Am Pettigrew, Longitudinal field research on change: theory and practice, Organ.
Sci. 1 (3) (1990) 267–292.

[59] A. Langley, Strategies for theorizing from process data, Acad. Manag. Rev. 24 (4)
(1999) 691–710.

[60] C. Urquhart, H. Lehmann, Md Myers, Putting the ‘theory’ back into grounded
theory: guidelines for grounded theory studies in information systems, Inf. Syst. J.
20 (4) (2010) 357–381.

[61] A. Hanna, J. Windebank, S. Adams, J. Sowerby, S. Rance, A. Cartlidge, ITIL V3
Foundation Handbook, The Stationary Office, Norwich, UK, 2008.

[62] M. Alvesson, D. Kärreman, Constructing mystery: empirical matters in theory
development, Acad. Manag. Rev. 32 (4) (2007) 1265–1281.

K. Smolander et al.

http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0005
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0005
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0010
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0010
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0015
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0015
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0015
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0020
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0020
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0025
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0025
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0030
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0030
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0035
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0035
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0035
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0040
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0040
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0045
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0045
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0045
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0050
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0050
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0055
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0055
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0055
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0060
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0065
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0065
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0070
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0070
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0075
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0075
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0080
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0080
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0085
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0085
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0085
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0090
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0090
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0090
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0095
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0095
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0100
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0100
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0105
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0105
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0105
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0110
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0110
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0115
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0115
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0120
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0120
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0120
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0125
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0125
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0130
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0130
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0130
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0135
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0135
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0135
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0140
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0140
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0145
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0145
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0150
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0150
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0155
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0155
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0155
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0160
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0160
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0160
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0165
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0165
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0170
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0170
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0170
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0175
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0175
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0175
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0180
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0180
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0180
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0185
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0185
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0190
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0190
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0195
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0195
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0200
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0200
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0205
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0210
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0210
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0210
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0215
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0215
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0215
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0220
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0220
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0225
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0225
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0225
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0230
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0230
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0235
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0235
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0235
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0240
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0240
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0240
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0245
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0245
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0250
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0250
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0255
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0255
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0260
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0260
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0260
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0265
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0265
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0270
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0275
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0275
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0275
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0280
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0280
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0280
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0285
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0285
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0290
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0290
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0295
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0295
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0300
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0300
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0300
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0305
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0305
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0310
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0310

Information & Management 58 (2021) 103407

15

[63] Fk Alaghehband, S. Rivard, S. Wu, S. Goyette, An assessment of the use of
transaction cost theory in information technology outsourcing, J. Strateg. Inf. Syst.
20 (2) (2011) 125–138.

[64] B. Fitzgerald, K.-J. Stol, Continuous software engineering: a roadmap and agenda,
J. Syst. Softw. 123 (2017) 176–189.

[65] M. Hoegl, Hg Gemuenden, Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence, Organ. Sci. 12 (4) (2001)
435–449.

[66] Am Aladwani, Change management strategies for successful ERP implementation,
Bus. Process. Manag. J. 7 (3) (2001) 266–275.

[67] Km Nelson, Jg Cooprider, The contribution of shared knowledge to IS group
performance, MIS Q. 20 (4) (1996) 409–432.

[68] T. Kern, L. Willcocks, Contract, control and ‘Presentation’ in IT outsourcing:
research in thirteen UK organizations, in: Advanced Topics in Global Information
Management, 1, IDEA Group Publishing, 2001, p. 227.

[69] E. Carmel, J. Eisenberg, Narratives that software nations tell themselves: an
exploration and taxonomy, Commun. Assoc. Inf. Syst. 17 (1) (2006) 39.

[70] Jd Herbsleb, D. Moitra, Global software development, Software, IEEE 18 (2) (2001)
16–20.

[71] Ps Ring, Ah Van De Ven, Developmental processes of cooperative
interorganizational relationships, Acad. Manag. Rev. 19 (1) (1994) 90–118.

[72] Sd Pawlowski, D. Robey, Bridging user organizations: knowledge brokering and the
work of information technology professionals, Mis Q. 28 (4) (2004) 645–672.

[73] Lj Kirsch, D.-G. Ko, Mh Haney, Investigating the antecedents of team-based clan
control: adding social capital as a predictor, Organ. Sci. 21 (2) (2009) 469–489.

[74] R. Sabherwal, The evolution of coordination in outsourced software development
projects: a comparison of client and vendor perspectives, Inf. Organ. 13 (3) (2003)
153–202.

[75] A. Gopal, S. Gosain, Research note—the role of organizational controls and
boundary spanning in software development outsourcing: implications for project
performance, Inf. Syst. Res. 21 (4) (2009) 960–982.

[76] Pr Carlile, A pragmatic view of knowledge and boundaries: boundary objects in
new product development, Organ. Sci. 13 (4) (2002) 442–455.

[77] Tm Somers, K. Nelson, The impact of critical success factors across the stages of
enterprise resource planning implementations, in: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, HICSS 2001. IEEE Press,
2001.

[78] H. Tsoukas, R. Chia, On organizational becoming: rethinking organizational
change, Organ. Sci. 13 (5) (2002) 567–582.

[79] A. Langley, C. Smallman, H. Tsoukas, Ah Van De Ven, Process studies of change in
organization and management: unveiling temporality, activity, and flow, Acad.
Manag. J. 56 (1) (2013) 1–13.

[80] A. Hussenot, S. Missonier, Encompassing stability and novelty in organization
studies: an events-based approach, Organ. Stud. 37 (4) (2016) 523–546.

[81] T. Hernes, E. Weik, Organization as process: drawing a line between endogenous
and exogenous views, Scand. J. Manag. 23 (3) (2007) 251–264.

[82] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a systematic
review, Inf. Softw. Technol. 50 (9–10) (2008) 833–859.

[83] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, Pearson Education, 2010.

[84] E. Laukkanen, J. Itkonen, C. Lassenius, Problems, causes and solutions when
adopting continuous delivery—a systematic literature review, Inf. Softw. Technol.
82 (2017) 55–79.

[85] A. Tiwana, Systems development ambidexterity: explaining the complementary
and substitutive roles of formal and informal controls, J. Manag. Inf. Syst. 27 (2)
(2010) 87–126.

[86] G. Travis, How the Boeing 737 Max disaster looks to a software developer, IEEE
Spectr. (2019).

[87] M. Hüttermann, DevOps for Developers, Apress, 2012.
[88] Ja Maxwell, Understanding and validity in qualitative research, Harv. Educ. Rev.

62 (3) (1992) 279–301.
[89] As Lee, Rl Baskerville, Generalizing generalizability in information systems

research, Inf. Syst. Res. 14 (3) (2003) 221–243.

Kari Smolander is professor and Head of Software Engineering Department at LUT Uni
versity, Finland, and an adjunct professor in Aalto University, Finland. In addition to his
long teaching and research experience, he has worked several years in the industry and in
1990s he was the main architect in the development of the MetaEdit CASE tool. His works
have been published in journals such as Information and Software Technology, Journal of
Systems and Software and European Journal of Information Systems. His current research
interests include change in software and systems development practices and software
development organizations.

Matti Rossi is a professor of information systems at the Aalto University School of Busi
ness. He has been the principal investigator in several major research projects funded by
the technological development center of Finland and Academy of Finland. He was the
winner of the 2013 Millennium Distinction Award of Technology Academy of Finland for
open source and data research. His research papers have appeared in journals such as MIS
Quarterly, Journal of AIS, Information and Management, and Information Systems. He has
been a senior editor of JAIS and Database, and he is a past editor in the chief of Com
munications of the Association for Information Systems.

Samuli Pekkola, Ph.D., is professor of information systems at Tampere University. He has
worked as a visiting associate professor in the Agder University and the Technical Uni
versity of Delft, and held several positions in the University of Jyväskylä. His research
focuses on users in different manifestations of information systems, their management and
acquisition, and enterprise architectures. He has been a principal investigator in several
major research projects funded by European Union, Business Finland, Academy of Finland,
different foundations, or private companies. His research articles have appeared in jour
nals such as Information Systems Journal, Scandinavian Journal of Information Systems, En
terprise Information Systems, Decision Support Systems, and The DATA BASE. He is currently
on the editorial board of four journals in fields of information systems or egovernment, and
a past editor in chief of Scandinavian Journal of Information Systems.

K. Smolander et al.

http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0315
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0315
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0315
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0320
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0320
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0325
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0325
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0325
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0330
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0330
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0335
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0335
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0340
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0340
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0340
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0345
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0345
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0350
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0350
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0355
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0355
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0360
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0360
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0365
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0365
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0370
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0370
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0370
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0375
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0375
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0375
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0380
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0380
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0385
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0385
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0385
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0385
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0390
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0390
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0395
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0395
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0395
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0400
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0400
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0405
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0405
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0410
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0410
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0415
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0415
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0420
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0420
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0420
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0425
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0425
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0425
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0430
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0430
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0435
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0440
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0440
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0445
http://refhub.elsevier.com/S0378-7206(20)30345-1/sbref0445

