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A B S T R A C T   

Redesigns of public transport networks are complex undertakings requiring a careful balancing of 
several conflicting perspectives (e.g., user requirements vs system performance) and aims (e.g., 
increasing spatial coverage, increasing frequency). Current assessment tools omit an explicit focus 
on navigability, often identified as a key aspect of the user perspective. For understanding the 
multidimensional perspective of navigability, this research introduces an assessment framework 
with both system and journey-level measures. The system-level measures provide an overview of 
redesigns based on static network representations. The journey-level measures are based on 
journey trajectories generated with a customized routing algorithm, assessing the distributive 
effects of the redesign. The framework is applied to public transport networks from nine cities 
with recently implemented redesigns, namely Amsterdam, Auckland, Austin, Baltimore, Colum-
bus, Helsinki, Houston, Indianapolis, and Wellington. Results indicate that the redesigns have 
improved navigability both from a system-level and user perspective in general. However, in 
some cases, improvements in navigability come at the cost of increased travel time and number of 
transfers. Furthermore, the results suggest that the redesigns have differing emphasis within the 
regions, for different times of day, and for different aspects of network structure. The results are 
discussed both from the perspective of the case findings and for drawing more general planning 
and policy recommendations. Finally, this research provides a basis for further transdisciplinary 
approaches, encouraging connections between transport modeling and complex networks 
approaches.   

1. Introduction 

Large changes in demand patterns, the need for regaining lost ridership, or enabling opportunities for urban growth are some of the 
reasons why cities redesign their public transport network (PTN) (Boisjoly et al., 2018; Nielsen et al., 2005; Walker, 2011). Such PTN 
service transformations can involve additions of transport modes, upgrades to a higher right-of-way, as well as changes in spatial (e.g., 
route alignment, station location) or temporal structure (e.g., shortening headways, extending service hours). Examples of imple-
mented PTN redesigns include Santiago de Chile (Muñoz et al., 2009), Barcelona (Badia et al., 2017), Helsinki (Weckström et al., 
2019), Jönköping (Nielsen and Lange, 2007), Melbourne (Currie and Tivendale, 2010), Portland, and others (Thompson and Brown, 
2012). As funding for PTN redesigns usually comes from constrained public sources, their planning in practice requires a careful trade- 
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Contents lists available at ScienceDirect 

Transportation Research Part A 

journal homepage: www.elsevier.com/locate/tra 

https://doi.org/10.1016/j.tra.2021.02.015 
Received 11 May 2020; Received in revised form 26 January 2021; Accepted 24 February 2021   

mailto:christoffer.weckstrom@aalto.fi
mailto:milos.mladenovic@aalto.fi
www.sciencedirect.com/science/journal/09658564
https://www.elsevier.com/locate/tra
https://doi.org/10.1016/j.tra.2021.02.015
https://doi.org/10.1016/j.tra.2021.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tra.2021.02.015&domain=pdf
https://doi.org/10.1016/j.tra.2021.02.015
http://creativecommons.org/licenses/by/4.0/


Transportation Research Part A 147 (2021) 212–229

213

off between the system perspective and user requirements. Such practical trade-offs usually have to be made in the context of path 
dependence of the current PTN structure (Cats et al., 2020), and challenging institutional rationalities (Hrelja et al., 2017; Legacy et al., 
2017; Lowe and Hall, 2019; Weckström and Mladenović, 2020). 

Distributed effects of PTN changes casting light on equity challenges are rarely assessed in planning practice, even if we know that 
different travel times and transfers that users experience around the city shape PT usability (Curtis et al., 2019; Karner, 2018; 
Weckström et al., 2019; El-Geneidy et al., 2016). Such PTN factors, as travel time and the number of transfers, impact usability in a 
subjective manner, as individuals have varying needs and capabilities across population and time. Despite this subjectivity, travel 
times and transfers are easily definable and measurable, and are therefore useful when assessing PTN redesigns from an accessibility 
equity perspective (Boisjoly and El-Geneidy, 2017). However, in addition to benefits, the redesigned PTN may impose many usability 
and travel experience challenges (Abenoza et al., 2017; van Lierop et al., 2018; Carrel and Walker, 2017). One aspect likely to impact 
PTN usability is navigability. Together with simpler fare systems, improved passenger information, and high frequencies, navigability 
is one of the aspects that are emphasized in modern PTN planning guidelines (Nielsen et al., 2005; McLeod et al., 2017; Mees, 2010; 
Weckström and Mladenović, 2020). For PTN to be usable, users need to have knowledge of the available services, or in the case of 
unfamiliar destinations, take more time to plan their trip. In particular, an easily navigable PTN requires less time and cognitive effort 
for route planning and route choice (Rüetschi and Timpf, 2005; Gallotti et al., 2016). In relation to immediate usability, navigability is 
essential in the long-term for developing a PT use habit (Kim et al., 2017). 

From a user perspective, navigation in PTN happens on two levels: on the network level, by finding the correct combination of 
routes connecting the origin and destination, and as wayfinding, when navigating on access or transfer legs. In this context, there are 
several factors making PT route choice more challenging than for journeys using other modes. At the core of this challenge is the fact 
that PT trips are inherently multi-modal, as PT services typically do not offer a door-to-door service but involve access and transfers by 
walking or cycling. In addition, PTNs are not static networks such as roads, but are temporal networks, where connections between 
certain nodes only exist at a certain point in time, thus resulting in swift temporal variations in journey opportunities, and thus choices 
(Ortúzar and Willumsen, 2011; Weckström et al., 2019). Due to the multi-modality, the same challenges involving pathfinding in 
private modes apply to the wayfinding on access and transfers (Timpf, 2002; Rüetschi and Timpf, 2005). In contrast, navigation on the 
network level is hindered by factors decreasing network legibility such as the need to transfer and the presence of overlapping services 
(Rüetschi and Timpf, 2005). In addition to overlapping routes, people tend to be more aware of trunk routes or other routes with visible 
infrastructure (Dziekan, 2008). Finally, navigability aids such as maps, schedules, and route planners also shape the perception of the 
PTN (Raveau et al., 2014; Guo, 2011; Farag and Lyons, 2012; Hochmair, 2009). 

Despite the acknowledged importance of navigability and existing knowledge of its behavioral underpinning, there is still a gap in 
PTN assessment frameworks that would account for both necessary trade-offs in planning practice and systematic ways of quantifying 
navigability. With this in mind, the aim of this research is the development of navigability assessment measures both for a system-level 
overview and detailed temporal-level analysis, building upon knowledge from transport modeling and complex networks. The pro-
posed assessment framework is applied to navigability changes brought about by large-scale PTN redesigns in nine cities in the Global 
North, drawing implications for PTN planning. The outline of this paper is as follows. The next section will present a background on 
measuring PTN navigability from various modelling perspectives and elaborate on the research rationale. Section 3 describes the 
performance measures developed, while Section 4 describes redesign cases, the data used, as well as the performance measurement 
framework implemented. Results are presented in Section 5 which are discussed from an analytical perspective along with policy and 
planning perspectives in Section 6. Finally, conclusions and pathways for further research are outlined in Section 7. 

2. Background 

2.1. Modeling PTN navigability 

This section summarizes previous research that provides a basis for developing an assessment framework involving temporal 
variations and a user-centered perspective of the PTN. Previous attempts to model the PTN navigability range in focus from a user 
perspective to a way of exploring network topology. Without an intent to summarize decades of research of user perspective in PTN 
modeling, we have to recognize that, navigability as finding and selecting a satisfying route between a set of origins and destinations, 
can be a complex undertaking (Dziekan, 2008; Ortúzar and Willumsen, 2011; Liu et al., 2010). In particular, PTN route choice as a part 
of PT traffic assignment has been studied extensively. The modern PTN route choice modelling is anchored in the behavioral 
perspective on the interaction between the PTN and its users, taking into account various travel factors such as travel time, transfers, 
monetary cost, comfort, and available information (Liu et al., 2010; Cats et al., 2020; Gentile and Noekel, 2016; Prato et al., 2012). For 
example, this strand of literature underlines the importance of associating the number of transfers with travel time for understanding 
route alternative utility. In recent years, efforts for developing more dynamic transit assignment modeling, combined with new data 
from smart cards and stated-preference surveys, have contributed to a higher level of understanding of users’ PTN route choice (Liu 
et al., 2010; Nuzzolo and Comi, 2016). Furthermore, recent previous work simulating choice set generation in large-scale networks 
with multiple modes had provided additional understanding on assessing the quality of route choice sets for different user types 
(Rasmussen et al., 2016; Hoogendoorn-Lanser and Van Nes, 2004). 

Looking specifically at PTN navigability measures, Timpf and Heye (2002) suggested measuring the complexity of transfer points 
and complete journey trajectories by combining measures describing the PTN and the street environment at transfer points. For the 
PTN, the in and out degrees of the node was used, while the environment was described by the number of street crossings and a dummy 
variable indicating if the boarding platform was visible from the alighting platform (Timpf and Heye, 2002). Woyciechowicz and 

C. Weckström et al.                                                                                                                                                                                                   



Transportation Research Part A 147 (2021) 212–229

214

Shliselberg (2005) used a framework based on the spatial, procedural, and landmark knowledge defined by Lynch (1960) to measure 
navigability. Each type of knowledge was measured on a network level using a set of measures. The spatial knowledge dimension 
corresponds to ease of memorizing a part of the system as a cognitive map and then apply it to other parts of the system. This is 
measured through the repetitiveness of route patterns and how well the route hierarchy fits with the road hierarchy. In addition, the 
complexity of the PTN was measured through the number of routes. Procedural knowledge is related to travel paths through the city. 
Procedural knowledge was measured through the proportion of route trajectories on arterial roads and how split PT routes were 
because of one-way streets. Moreover, the continuity of the route with regards to road corridors was used as a measure. Lastly, 
landmark knowledge was described through a single indicator, measuring how well PT hubs were associated with commonly known 
urban landmarks. 

In complex network research, the concept of navigability has been used to describe the complexity of finding a route between nodes 
in a network. Navigability measures have been used to characterize nodes, paths between nodes, or the whole network. Several ap-
proaches for measuring navigability in PTN’s have been proposed, with the main difference in methodology being the assumption of 
users’ knowledge about the network, as complete or incomplete. Cajueiro (2009) suggested navigability measurement using a hybrid 
measure that combined random and informed navigation. Information was given a value as a ratio of movement cost. This ratio at the 
critical point where random and informed navigation was at balance was used to characterize the network (Cajueiro, 2009). The same 
approach was used to characterize the stations of the London and Boston metro networks. The stations were characterized using hiding 
and access scores. The hiding score describes the ease to find the destination node starting from the other nodes, while the access score 
describes the ease to find the other nodes from the origin node (Cajueiro, 2010). Barberillo and Saldana (2010) measured the in-
formation required to encode the optimal path between stations in the Barcelona, Paris, New York, and Moscow metro networks, using 
the search information measure. The measure is based on the probability of selecting the correct route among all the available services 
on each station belonging to the path. Also here network-wide score as well as defining hide and access scores for stations were 
presented (Barberillo and Saldana, 2010). Gallotti et al. (2016) used a modified version of the search information measure. Unlike the 
original measure, here the possibility of multiple optimal paths does not affect the measure, as the PT user only needs to find one path. 
This research tried to simulate a situation where a PT journey is planned using a map. Furthermore, the methodology was anchored in 
the theory of the cognitive limits of humans. Using the methodology, the world’s 15 largest metro systems were studied, including also 
multimodal networks of Paris, New York, and Tokyo. These were shown as being significantly more cognitively difficult to grasp 
compared to the metro networks alone. 

As one of the additional efforts, Lee and Holme (2012) used a combination of greedy, random, and optimal routing to study railway 
networks among others. The greedy routing used the angle to the destination as a variable to decide which was the next step in the 
search. The greedy routing simulated the combination of limited local information to the complete lack of system-wide information 
about the optimal path. Navigability was defined as the ratio in distance (number of steps in the network) required by the greedy or 
random routing compared to the optimal path (Lee and Holme, 2012). De Domenico et al. (2014) used random walks to study the 
navigability of London’s rail-based PT networks under random failures. The use of random walks was justified by the inherently 
incomplete knowledge of the partially failed system. Navigability is defined as coverage: the average number of distinct nodes reached 
within a time limit when assuming a random walk can start at any node (De Domenico et al., 2014). Finally, a few studies have 
explored the relationship between the diversity of journey alternatives and PTN robustness or vulnerability. As one of the examples of 
this research, Yang et al. (2017) used the average number of reasonable journey alternatives generated by Dial’s stochastic loading 
algorithm between all origins and destinations as a measure for robustness. Stop vulnerability was measured as the change in average 
diversity if the stop in question was removed. Frappier et al. (2018) measured robustness between origin and destination by 
considering the independence of the trajectories of journey options. This was implemented by first calculating the independence level 
of the journey alternatives, by taking into account the length of sections overlapping with other journey alternatives and the number of 
overlapping journey alternatives. Diversity was then defined as the sum of the independence level of the journey alternatives. 

2.2. Research rationale 

From the above background, there are three areas for developing PTN navigability assessment in the context of redesigning PTNs. 
First, there is a need for moving beyond the assumption that PTN has a static network structure, with only specific PT modes available 
(e.g., analysis of a metro system in isolation from other urban PT modes, and as a static network). In contrast, the development of an 
assessment framework has to explicitly include temporal variations brought about by the schedule structure. As PTNs are inherently 
schedule-based systems, the available journey alternatives especially those involving transfers may change depending on the time of 
day, even minute to minute. Moreover, many urban PTNs include several modes and rights-of-way, which influence navigability. 
While having choices is generally considered as positive, choice overload may have many negative impacts such as decision avoidance 
(Schwartz and Ward, 2004; Schwartz, 2004). The decision avoidance between journey alternatives may nudge persons away from 
public transport. Second, there is a need for moving beyond the assumption that users move in PTN with a random movement, as often 
assumed in complex networks models. In contrast, deeper user understanding requires the development of an assessment framework 
that accounts for existing knowledge of user route choice. Specifically, PT users do not move randomly, as they are often well aware or 
at least have the opportunity to find out about their travel options. Third, there is a need to move towards assessment frameworks that 
are useful for explicitly dealing with trade-offs inherent in PTN planning practice, while also being computationally usable. Such a 
trade-off requires finding a fine balance between the model’s capability in representing reality, and the model’s simplicity, for 
straightforward implementation (Silva et al., 2017; Boisjoly and El-Geneidy, 2017). Thus, on the one hand, the formulation of the 
assessment framework has to go beyond focusing on describing PTN topology in general terms. For improving the model’s capability, 
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we need to account that the navigability that a PT user experiences does not solely lie in the PTN topology, but in the journey options 
that are available for desired origin–destination pairs. On the other hand, usefulness for planning practice requires accounting for 
limiting data requirements, as well as keeping application procedures understandable and transparent. The last point about trans-
parency relates to the use of open data, which has been recognized as one of the major opportunities for developing PTN planning 
methods (Davidsson et al., 2016; Kujala et al., 2018a). 

3. Methodology 

Here, we elaborate on the formulation of performance measures used to describe the changes brought about by the PTN redesigns in 
general and the navigability changes in particular. 

3.1. System-level static network measures 

The measures in this section are based on a static network representation of the PTN within a specific time window. The stops are 
represented as nodes, while an available PTN service to the next node forms a directed edge with a geographic length. This is 
commonly called space L topology (Sienkiewicz and Hołyst, 2005). Public transport is traditionally based on fixed routes (or lines) 
making it easier to convey the service. However, this is often a simplification of the actual service structure, in which routes typically 
consists of bidirectional service and sometimes include scheduled inconsistencies in stopping pattern, for example, to adapt to different 
demand levels or to provide service on depot trips. To take into account the inconsistencies that can be present in routes, route variants 
based on individual trips are used instead. The schedule of a route consists of trips forming time-dependent sequences of stops. Ignoring 
the time dependency, the trips using the same sequence of stops are lumped together, forming route variants. Route variants have a 
given service frequency depending on the number of initial trips and a length based on the sum of all edge lengths in the sequence. 

The Number of route variants measure, which is calculated as a simple count of route variants, gives a straightforward approximation 
of the PTN complexity. Average route overlap describes the network structure, through the presence of overlapping routes. The measure 
is adapted from Derrible and Kennedy (2011) and calculated as: 

λ =

∑
iRi

R
, (1)  

where R is the sum of all edge lengths and Ri the length of route variant i. Average frequency F is calculated on a similar basis, however, 
with route variant frequency fi as weight. In effect, this results in the sum 

∑
ifiRi, the service kilometrage (vehicle kilometers per unit of 

time), in the numerator. Average frequency is thus calculated as 

F =

∑
ifiRi

R
. (2)  

Fig. 1. PT services between an origin–destination pair. The figure is adapted and modified from Kujala et al. (2018b). The icons for different travel 
modes are adapted from Google’s Material Design icon collection (https://material.io/icons/), licensed under Apache Lice.nse version 2.0. 
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This measure gives some indication of the level of service offered in the PTN on average. However, to give a more complete indication 
of the service offered, this is complemented with the High-frequency service prevalence measure Hf⩾ft , that describes the relative pro-
portion of the route variants with frequent service, that is the proportion of service kilometrage produced by the frequent routes, 
calculated as 

Hf ⩾ft =

∑
ifiRi [f ⩾ft]
∑

ifiRi
. (3)  

The equation is limited by the frequency threshold ft, set to 4 trips per hour. Weighted mean service hours S is defined as 

S =

∑
isifiRi

∑
ifiRi

, (4)  

where si is the count of daily hours (X:00 - X:59) in which route variant i has scheduled service. The service hours are weighted by 
service kilometrage. The measure describes the similarity of the PTN during the day. A high value indicates that the same route 
variants operate most of the day, thus making it easier to memorize the offered service. 

3.2. Pareto-optimal journey alternatives and journey trajectories 

For developing journey-level measures, in contrast to the previous works on PTN navigability, this research applies a temporal 
network approach. The temporal network takes into account the scheduled services in addition to the topography of the network. The 
routing algorithm based on the Connection Scan Algorithm (CSA) identifies the journey alternatives that are Pareto-optimal with 
regards to departure time (later better), arrival time (earlier better), and transfers (lower better) within the desired analysis time 
window (Kujala et al., 2018b). These sets of journey alternatives are the fastest travel options at all points of time when using a desired 
maximum number of transfers. We will explore the concept using Fig. 1 showing a set of transportation options forming a network 
between the origin and destination. PT stops are designated as circles with letters for easier identification. Connections between stops 
are given a travel time, with PT modes also given a direction of travel and scheduled departure times. In the accompanying Table 1, the 
output of the routing process is presented, with each row representing one journey alternative vi. The example uses an analysis time 
window ranging from tstart = 8:00 to tend = 8:30, meaning that departure times tdep needs to be in this range for inclusion. This excludes 
alternatives A and I from the analysis. However, the first journey immediately after the analysis time window I is used to represent the 
time after the last accepted trip and the end of the analysis time window (tend) in measures using time as weight. The column labeled 
“Pareto-optimal” indicates whether the journey is Pareto-optimal if all three journey features (tdep, tarr and b) are considered. 

To define a set of journey alternatives where the next optimal journey alternative in all cases is explicit, the transfers (number of 
vehicle boardings) are given a weight, and the Pareto-optimality is determined again using tdep and the generalized arrival time tarr

′. 
The generalized travel time τgeneralized is calculated as: 

τgeneralized = tarr − tdep + kb, (5)  

where k is a transfer penalty and b the number of vehicle boardings. For instance, if k = 0 this Pareto-optimal set of journeys would 
contain the fastest-paths. However, to avoid journeys with an extensive number of transfers, where avoidable, a transfer penalty of 3 
min is applied to generate the Pareto-optimal journey set based on generalized travel time. The resulting set of journeys are indicated 
by the Generalized fastest-path column. 

The routing process stores journey trajectories as these are the basis of the navigability measures. To achieve consistency in cases 
where multiple transfer locations are possible without changing the overall travel time, the route alternative that maximizes the 
transfer margin is selected in the routing process. The complete trajectory column indicates the order of PT stops on the path from the 
origin O to the destination D. The unique trajectory column shows the stop sequence that determines the uniqueness of the trajectory 
variant Vj. The uniqueness of journey trajectories is defined based on the stops where a PT vehicle is boarded, in addition to the origin 

Table 1 
All journey alternatives between the origin–destination pair of Fig. 1.  

Journey  
alternative vi  

Complete  
trajectory 

Unique  
trajectory 

Trajectory  
variant Vj  

tdep  tarr  b Pareto- 
optimal 

τgeneralized(min)  t′

arr  Generalized  
fastest-path 

pwtfp(min)  

A* Oa(b) D a 1 07:53 08:30 1 × 40 08:33 × – 
B Ocd(e) f(g) D cdf 2 08:08 08:28 3 × 29 08:37 × 8 
C Ocd(e) D cd 3 08:08 08:32 2 × 30 08:38  – 
D Ocd(e) D cd 3 08:08 08:57 2  55 09:03  – 
E Oa(l) D a 1 08:13 08:50 1 × 40 08:53  - 
F Oh(i) j(k) D hj 4 08:19 08:39 2 × 26 08:45 × 11 
G Oh(i) d(e) D hd 5 08:19 08:57 2  44 09:03  – 
H Ocd(e) D cd 3 08:28 08:57 2 × 35 09:03 × 9 
I** Oa(b) D a 1 08:33 09:10 1 × 40 09:13 × 2  
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and destination stops. This approach was selected because it best describing the trajectory choice from a PT user perspective. The PT 
user can wait for a bus or a train on only one stop at a time, therefore the boarding stops are important for the route trajectory. The 
intermediate stops lack importance in defining the journey trajectory as these are depending on the choice of route. The PT user needs 
to know when to alight the vehicle but does not need to consider all the intermediate stops separately. Furthermore, the alighting stops 
at the destination or in the case of a transfer connection were not considered defining the uniqueness of a journey trajectory as these are 
highly dependent on the destination point or following boarding stop respectively. 

3.3. Measuring navigability on a journey-level 

Based on the set of Pareto-optimal set of journey alternatives and their trajectories, a set of performance measures describing 
navigability from a journey-level perspective can be calculated. Contrary to previous simplified navigability measures, here the di-
versity of the available travel options is used as a proxy for navigability. With this in mind, the measures presented here are working on 
the premise that the PT user is familiar with the journey alternatives and instead the navigability challenge is based on the difficulty of 
knowing which alternative to take at a specific time. This is in contrast to previous measures that focus on measuring the complexity of 
the journey itself, for example by wayfinding at transfer points. Here, we focus only on travel time and transfers and do not include 
other decision domains (e.g., choosing departure time for certain trips or choosing housing location in relation to PTN structure). The 
journey alternatives (vi,i ∈ {1,2,…N}) are defined through the trajectory (vi), arrival and departure times, and the number of transfers. 
A set of journeys with the same trajectory are called a trajectory variant (Vj ∋ {i…}). The trajectory variants have an associated 
frequency based on the number of journey alternatives fVj = |Vj|. 

The overall availability of services between two locations can be described through the Number of Pareto-optimal journey alternatives 
(N). However, this value does not reveal if there are any variations in the optimal route. The Number of trajectory variants (V) is better 
suited for measuring complexity. This value is defined based on the number of unique journey trajectories of Pareto-optimal journey 
alternatives. While a multitude of trajectory variants may imply complexity, we can also consider the possibility of there being a single 
route variant of the Pareto-optimal journeys, that alone provides satisfactory service. The Frequency of most frequent trajectory variant is 
defined as, 

fVmax = max(fVj ). (6)  

When considering other Pareto-criteria besides travel time, it is possible to assess the user perspective associated with understanding 
the choice set of the available journey alternatives as the Proportion of generalized fastest-path journeys. The assumption from the user 
perspective is that, for example, choosing between the shortest-time alternative and the alternative not requiring transfers is cogni-
tively more demanding than a case where there is only one alternative available, which fulfills both criteria. The measure is calculated 
as: 

Pfp = Nfp
/

N. (7)  

where Nfp is the number of fastest path journeys. Considering a specific PT user profile, by giving a weight to transfers, the travel time 
and transfers can be combined into a single value, i.e., generalized travel time. When defining the Pareto-optimal set of journeys for 
this PT user profile, we need to consider only the generalized travel time and the departure time. This new set of journey alternatives 
differ from the initial journey set in that each of the journey alternatives i has an associated time span before the departure, pre-journey 
waiting time pwti, in which no other journey departs. In our example from Fig. 1, journeys B, F, H, and I are Pareto-optimal, when 
considering a transfer penalty of 3 min per transfer. This set of journeys has unique departure times, forming a sequence of non- 
overlapping events and therefore having definable pre-journey waiting time. This was not the case for the initial set of Pareto- 
optimal journeys considering transfers separately, due to the journey alternatives B and C having the same departure time. Pre- 
journey waiting time is calculated as follows: 

⎧
⎨

⎩

pwti = tdepi − tstart, IFtstart > tdepi−1

pwti = tend − tdepi−1 , IFtend < tdepi

pwti = tdepi − tdepi−1

(8)  

The pwti for the generalized fastest-path journey alternatives of the example case are shown in Table 1. To quantify the time in which 
the journey alternative is a valid alternative the user can consider (i.e. the alternative has not departed, and there are no other options 
before it), we relate the pre-journey waiting time to the duration of the analysis window T = tend −tstart. Thus, we calculate the 
prevalence Pj as a fraction of the analysis window: 

Pj =

∑
pwti

T
, i ∈ Vj. (9)  

The following measures, based on prevalence Pj, thus only considers the generalized fastest paths, not all Pareto-optimal journeys. The 
Probability of the most prevalent trajectory variant is calculated as the maximum of Pj: 

Pjmax = max(Pj). (10)  
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From a PT user perspective, this measure describes the probability of choosing the optimal route option, given correct knowledge of the 
journey path that is optimal most frequently. A variation of this measure is given by considering the Probability of the most prevalent first 
boarding stop. 

Psmax = max(Ps), s ∈ [0, 1, 2, …S], (11)  

where s are the initial stops of journey alternatives Vj. From a PT user perspective, this measure describes the probability of selecting 
the optimal route option given that the departure stop with the most prevailing journey alternative is known. The first boarding stop is 
defined as the stop where the passenger first accesses a PT vehicle. Here, the first boarding stop is seen as creating a lock-in limiting the 
available journey alternatives. At this stop, the PT user can still select any of the available trajectory variants that pass through the stop. 
Therefore, it always holds true that Psmax⩾Pjmax. The Diversity of journey alternatives is calculated as Simpson’s diversity index (Simpson, 
1949): 

D =
∑V

j=0
P2

j . (12)  

The above measure describes the probability that two journeys departing at a random time point within the analysis window follow the 
same trajectory. From a PT user perspective, multiplication can be pictured as occurrences of two consecutive days. A low value of D 
implies a high diversity. 

To help understand the calculations of the values shown in Table 1, we use journey alternative F as an example. Journey F consists 
of the following journey legs:  

• O-h: 5-min walk  
• h-i: 3-min train ride at 08:24  
• i-j: 2-min walk  
• j: 1-min wait  
• j-k: 6-min metro ride at 08:30  
• k-D 3-min walk 

To match the train departure time, tdep = 08:24–0:05 = 08:19. We also find that the arrival time is tarr = tdep + 0:05 + 0:03 + 0:02 +
0:01 + 0:06 + 0:03 = 08:39. The generalized travel time can then be calculated as τgeneralized = 08:39–08:19 + 3 min/boarding * 2 
boardings = 26 min, yielding tarr

′ = 08:19 + 26 min = 08:45. Since we find that tstart > tdepi−1
≡ 08:00 > 08:08 and tend < tdepi

≡ 08:30 <
08:19 are both false, the pre-journey waiting time is calculated as pwti = tdepi

−tdepi−1 
= 08:19–08:08 = 11. Similarly, pwti values for 

other alternatives in the set are respectively 8, 9, and 2 min for B, H, and I. The measures of journey diversity for the example case of 
Table 1 results in the following values:  

• Number of Pareto-optimal journey alternatives, N = 6  
• Number of trajectory variants, V = 4  
• Frequency of most frequent trajectory variant, fVmax = 2  
• Prevelance Pj for the journey alternatives are calculated as: P4 = 11/30, P2 = 8/30,P3 = 9/30andP1 = 2/30  
• Probability of the most prevalent trajectory variant, Pjmax = 11min/30min = 0.367  
• Probability of the most prevalent first boarding stop, Psmax = 17min/30min = 0.567  
• Diversity of journey alternatives, D = (8/30)

2
+ (11/30)

2
+ (9/30)

2
+ (2/30)

2
= 0.300  

• Proportion fastest-path journeys, Pfp = 4/6 = 0.667 

3.4. Journey-level destination sampling 

Routing is performed in all-to-many manner, from all stops as origins to a set of sampled destination stops. A sampling of desti-
nation stops is implemented due to the need to balance comprehensiveness and computing effort for a modeling methodology. The 
choice between how many stops to include in the modelling approach varies between a handful of stops to all the stops. With the 
increase in the number of stops, one can assume that modeling approach is better accounting for the full extent of PTN reality. 
However, the increase in comprehensiveness also increases computing efforts. Thus, sampling is used as a way to balance this inherent 
modeling trade-off. On the one hand, for deciding on the sampling need and approach, the aim was to move away from focusing only 
on a handful of origin–destination pairs for assessment, especially only those in the city center, as often used in accessibility modeling 
(Weckström et al., 2019). A very limited number of stops does not provide a good enough representation of the whole region and 
related PTN in question. For example, an analysis of broader benefits and burdens from PTN redesign has to include a combination of 
stop types, such as stops on the trunk sections and stops further away from the trunk section. On the other hand, the computational 
time depends mainly on the number of stops and events in the network, and the computing hardware used. Here, one has to recognize 
that analysis of all origin–destination pairs of stops would prolong computational time, and would also impose higher requirements on 
computational equipment, often not available in PTN planning processes. As an intermediate approach, the choice of sampling relied 
on experiences from the commonly used approach of tessellations with corresponding centroids (Foth et al., 2013; Farber and Fu, 
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2017; Tenkanen and Toivonen, 2020). However, for the scope of this research, grid-based sampling should also be useful to link to the 
PTN structure changes. In particular, stops directly correspond to PTN routes, but are also not distributed in a uniformly random 
manner across the city, but follow built environment form. In fact, the probability of finding a PT stop in space declines with the 
number of stops in the cell, as stops are relatively close by in space, if there are any in a certain urban area. In addition, for the routing 
algorithm used, it is necessary to record the measures for all stops during the routing process. A set of fewer origin points would thus 
not make the routing process run faster, but merely lose data that has already been calculated. For implementation, the destination 
stops are selected as a spatially stratified sample using a grid tessellation, with 5000-meter * 5000-meter cells. For each cell, a random 
set of destination stops is drawn. The size of the set is proportional to the total number of stops in the cell. If the number of stops in the 
cell is low, it is possible that the cell will not have any stops included. The measures describing a single origin are aggregated by 
calculating the mean for each corresponding origin–destination pair. Origin–destination pairs with no valid journey alternatives are 
excluded from further calculations. As a result of this sampling in the nine case cities, the sample consists of the journey alternatives 
between origins and destination stops where all stops are used as origins, while one-tenth of the total number of stops are destinations. 
For evaluating the sampling procedure, the confidence intervals were calculated using bootstrapping (Efron, 1979). Finally, a typical 
processing time on a modern computer is roughly two to five minutes. This time includes routing and the post-processing of the journey 
alternatives into measures for the cities of this paper between all stops to one destination stop. Such computational times are 
considered reasonable given the fact that PTN redesign processes can last for several months or years, thus allowing the planner to run 
even several iterations during the course of one day. 

4. Case implementation 

This section presents the performance measurement framework implemented to analyze PTN redesigns in the set of nine cities, and 
an overview of the data and the included nine cities. 

4.1. Performance measurement framework 

Given a) the temporality of PTN and associated challenges that users face in making choices, b) the need for more realistic rep-
resentations of those user decisions, as well as c) the need for useful frameworks for planning practice, these aspects require a careful 
trade-off in establishing performance indicators. The first set of proposed indicators bases on a static network representation, using 
stop-to-stop network segments and the unique route variants as starting points (Fig. 2). These measures focus on the macroscopic 
changes of the network and should be the easiest to compute for PTN redesign. The second set of proposed measures bases on the 
variations in Pareto-optimal journey options calculated using routing over the morning peak period, thus emphasizing PTN tempo-
rality and user decisions. With these two levels, the multi-measure approach was chosen to reflect the different perspectives of system- 
level performance (i.e., the network as a whole) and user-level perspectives (i.e., journeys made in the network). Furthermore, the use 
of multiple indicators attempts to account for different user types and preferences (e.g. shifting in usage frequency and familiarity). 
Moreover, to facilitate the assessment of distributive effects, both the overall and spatial distributions of effects are included in the 
analysis. Following the principles of open science, the scripts used for implementing this framework are released online (https:// 
github.com/jweckstr/journey-diversity-scripts). 

4.2. PTN redesign cases and data 

The methodology is applied to nine case PTN redesigns (Table 2). The cases were selected based on three criteria. First, the PTN 
redesign needs to be a more notable change in the PTN than yearly or seasonal schedule changes. A PTN redesign can be a complete 
network overhaul or a partial redesign, e.g. in the case of adding a new mode or expanding frequent service. The aim was to find a 
range of redesigns varying in scope, both related to the size of the PTN and in absolute terms. Second, the inclusion of cities was limited 
to PTNs with a somewhat limited spatial extent where most of the PTN can be accessed within the 180 min travel time budget. Lastly, 
the schedule data needs to be freely available both for the time before and after the redesign for the analysis to be possible. The 
calculations are based on the General Transit Feed Specification (GTFS) format. Furthermore, OpenStreetMap (OSM) data was used for 
walking routing. The whole data processing, from converting GTFS feeds into databases to calculating performance measures, was 
performed using the gtfspy package (https://github.com/CxAalto/gtfspy) implemented in Python programming language (Weckström 
et al., 2019; Kujala et al., 2018a; Kujala et al., 2018b). To give an idea of the extent of the changes in each case, Fig. 3 shows the general 
geography of each city and PTN structure before and after the redesign. Maps highlight four different route categories, namely radial, 
cross, orbital, and the feeder route. Categories are determined based on the city center (area with the largest concentration of PT 
service in terms of frequency). Radials terminate within this area, while cross-routes pass through it. Feeders and orbitals are 
differentiated based on the sector served outside the city center. Routes highlighted on the map are those with service frequency equal 
to or higher than 4 vehicles per hour. In the corner of each map, there is an additional graph showing frequency distribution per route 
type. These figures highlight additions and removals of specific types of routes and their alignments based on trunk-feeder or other 
network redesign aspects. As some radial or cross routes have been focused on as trunk lines, one can also see an increase in the feeder 
and orbital routes at several locations. Moreover, several cities have an increase in the coverage area for PT routes after the redesign. 
Finally, frequency distribution graphs show changes in vehicle operation kilometers, indicating changes in frequency and resources. 
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5. Results 

This section presents the changes brought about by the PTN redesigns using two approaches. In Section 5.1 the characteristics of the 
redesign are presented, using static network measures. Section 5.2 tries to quantify the impacts of the redesigns on PTN using level-of- 
service and navigability measures based on Pareto-optimal routing. However, for the sake of brevity, results for only one routing-based 
navigability measure are presented. 

5.1. System-level changes of public transport networks 

To provide a background for the changes in navigability, the characteristics of the PTN and the implemented changes are quan-
tified. To this end, we use a selection of performance measures to describe the initial and transformed state of the PTN networks 
(Fig. 4). While the focus areas of change differ between cities, the direction of change for each measure seems to be similar for almost 
every city. Based on the performance measures, the European and New Zealand cities have higher Average segment frequency than the 
American counterparts, indicating a higher service level. The PTNs of the American cities, with orthogonal street grids, and Amsterdam 
with an emphasis on rail-based PT modes, rely on average on fewer routes on each network segment. In contrast, the initial states of 
Auckland’s and Helsinki’s PTN’s are characterized by high route overlap, while the redesigned networks have brought these cities 
closer to their peers. All cities, although in particular Houston, Baltimore, and Auckland increased the service hours of their routes. 
Furthermore, the mentioned cities along with Austin and Helsinki focused more than initially on routes that run with 15-min headways 
or less. When considering the profiles based on the measures, the changes for Auckland seems to be the most radical, while the system 
of Amsterdam only experienced minor changes. 

5.2. Journey-level changes of public transport networks 

This section presents the findings unraveled using the routing based measures. Fig. 5–7 show the distribution of travel times, 
number of transfers, and navigability (diversity of journey alternatives). Both distributions before and after the PTN redesign are 
shown (panel A) along with the distribution of change (panel B) in the respective figure. There are clear differences in the distributions 
of travel time, with Amsterdam, Auckland, and Houston having a greater range than the other cities. It is worth noting, however, that 
the travel time distribution is highly dependent on the size of the PTN. The PTN of Amsterdam covers the largest area, including 
surrounding rural areas and neighboring towns. The median of average journey speeds in Amsterdam is, however, the fastest at 25 km/ 
h. The median speeds in Helsinki are 23 km/h, with the other cities having median speeds between 14 and 20 km/h. Generally, the 
ranges of travel times correspond well with the distribution of transfers, with Helsinki being an exception with relatively short travel 
times but a high reliance on transfers. The transfer distributions are heavily concentrated around integer values in all cities. However, 
the degree of values between the integer points seems to vary slightly between PTNs with Auckland, Helsinki, Houston, and Wellington 
having more origin–destination pairs with the number of transfers being between integers. This indicates not only altering routes but 
also changes in the number of transfers. For Auckland there seems to be a shift towards the integer points, indicating structural changes 
in the PTN. The distribution of change for all cities range from positive to negative. Houston stands out as a city where the median 
travel times have increased which can be linked to the slight increase in the reliance on transfers (Fig. 6 panel B). However, the link 
between changes in transfers and travel time is missing for Auckland. Austin and Wellington show slight travel time gains, with the 
median of most of the cities’ travel times remaining constant. Auckland and Helsinki perform poorly in navigability (Fig. 7, panel A). 
However, Auckland is among the cities with the largest improvements in navigability along with Austin. In many, the overall dis-
tribution of navigability experienced only minor changes. This was the case especially if the redesign was small in relation to the 
overall size of the network, such as the case with Amsterdam and Indianapolis. 

Fig. 2. Performance measurement framework.  
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The Fig. 8 shows the spatial distribution of change in the average diversity of journey alternatives within the cities. Keeping in mind 
the scale of the diversity of journey alternatives measure, ranging from 1 completely uniform to 0 completely diverse, the red points 
highlight stops with a more uniform set of journey alternatives, suggesting improved navigability. On the contrary, blue points indicate 
stops with added diversity and decreased navigability. Similarly to Fig. 7, the cities show mostly positive outcomes. As previously, 
Amsterdam and Indianapolis show only minor changes, with positive and negative changes in a roughly equal number of stops. In 
Helsinki, Auckland, and Austin the changes seem to be more clearly clustered into larger continuous areas, while for the other net-
works it is common that the stronger changes are clustered into specific streets or intersections. Looking at further details within a city, 
the areas impacted by the heavy rail investments in the western area are clearly visible in Helsinki, with a positive impact on navi-
gability. A similar effect can be seen on the southernmost stretch of Indianapolis’ new Red Line, a new BRT cross-city north–south route 
spanning from Broad Ripple to the University of Indianapolis. In contrast, Amsterdam’s North–South metro line seems to have a 
negative impact on PT navigability in the northern areas that previously relied exclusively on buses. Finally, due to the large sample 
sizes ranging from 0.3 to 3 million origin–destination pairs, the estimated bias found is negligible, ± 6 s of travel time, ± 0.003 
transfers, and ± 0.001 for the diversity of journey alternatives on 95 percent confidence level. 

6. Discussion 

6.1. PTN redesign impacts on navigability 

As indicated by Figs. 3 and 4 the scope of the network redesigns have several similarities despite being in different urban contexts. 
Overall, the results indicate that the redesigns have improved navigability both from a system-level and user perspective. Regarding 
redesign actions, first, there has been a general increase in the number of higher frequency routes. All of the cities have developed their 
frequent bus network either by consolidating infrequent routes into fewer frequent ones or by redistributing resources from less used 
routes. In some cities, this has happened in conjunction with investments in rail-based modes (see Table 2). Second, there is an 
increased focus on orbital journeys with new routes and higher frequencies, often connecting different trunk sections. In a few cities, 
namely Auckland, Helsinki, and Houston, there is also a shift from trunk-branch towards trunk-feeder systems (Weckström et al., 
2019). Through the aforementioned actions, the redesigns have brought a stronger hierarchical structure into the PTNs. Instead of 
providing a large number of direct, infrequent routes with consequently high route overlap, the redesigned PTNs tend to rely more on 
transfers. While all the cities surveyed in this research showed at least some indications of moving towards a more hierarchical network 
structure, many also focused on improving off-peak service and lengthening service hours in general as indicated by Frequent network 
proportion (day) and Weighted mean service hours measures respectively (Fig. 4). In doing this, navigability, when defined as the di-
versity of journey alternatives, has also generally improved. In particular, the cities with the clearest changes on the network level 
(Fig. 4), are showing decreases in the diversity of journey alternatives. For example, the consolidation of low-frequency routes into 
higher frequency ones also consolidates the number of trajectory variants. In addition, on the basis of the results presented here, it 
seems as the key principles of a navigable network are minimizing route overlap and creating a frequent and quick trunk network as the 
PTN backbone. Moreover, it can also be argued that a combination of marginal gains in navigability and increases in peak-hour travel 
time in some cities could have been a result of shifting resources to the off-peak periods. 

Looking further at specific examples from Figs. 4 and 8, one can highlight the cases of Helsinki and Amsterdam, which both had 
metro extensions and partial overhauls of the on-street modes. However, the results indicate that the outcomes of these redesign 
actions are different in the two respective contexts. The whole West Metro corridor in the Helsinki region saw a reduction in the 
diversity of journey alternatives, while the extension to Amsterdam-Noord saw an opposite effect where diversity of journey alter-
natives increased, indicated by around 0.3 and −0.2 units of change respectively (Fig. 8). From Fig. 4, one can conclude that 

Table 2 
Overview of included GTFS feeds.  

City Years Feed validity Type of redesign 

Amsterdam 2017  
2018 

Oct 9 – Oct 15  
Oct 8 – Oct 14 

Metro extension, partial tram and bus network 

Auckland 2016  
2018 

Mar 7 – Mar 13  
Nov 5 – Nov 11 

Bus network 

Austin 2017  
2018 

Oct 30 – Nov 5  
Oct 15 – Oct 21 

Bus network 

Baltimore 2017 
2018 

Mar 13 – Mar 19 
Mar 12 – Mar 18 

Bus network 

Columbus 2017 
2018 

Mar 20 – Mar 26 
Mar 5 – Mar 11 

Bus network 

Helsinki 2014 
2018 

Oct 6 – Oct 12 
Nov 19 – Nov 25 

Metro and commuter train extension, partial bus and tram network 

Houston 2015 
2018 

Mar 30 – Apr 5 
Apr 2 – Apr 8 

Light rail extension, bus network 

Indianapolis 2016 
2019 

Sep 12 – Sep 18 
Sep 9 – Sep 15 

New trunk bus route 

Wellington 2017 
2018 

Sep 18 – Sep 24 
Oct 8 – Oct 14 

Bus network  
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Fig. 3. Public transport networks by route category before and after the redesign, with the corresponding frequency distribution. Only routes with 
service frequency of minimum 4 trips per hour highlighted on the maps. Background map (c) OpenStreetMap contributors, (c) Carto. 
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Amsterdam only showed minor changes in all categories, while the network of Helsinki saw a clear transition towards a similar profile 
as Amsterdam. This example underlines that the complexity that a PT user experience is not mainly about overall PTN topology, but 
about journey options available for desired origin–destination pairs. Thus, we can observe strong emergence aspects, often highlighted 
by complex systems theory. While the system level indicators in Fig. 4 often give an accurate direction of change, the outcomes can be 
thoroughly assessed only using journey-level indicators. Thus, navigability emerges from a multitude of interrelated factors such as 
route alignments, frequency, the synchronicity between routes, service speed, and the walking infrastructure. Due to these complex 
interrelations, it is difficult to establish an explicit causal relationship between the PTN and the navigability outcomes on a nodal basis. 

In relation to the methodology and the research setup, there are several limitations that should be acknowledged, and we further 
reflect on them in relation to future research directions in the Conclusion section. First, we cannot claim that our modeling framework 
accounts for the full extent of diversity in human beings. For example, navigability relates to users’ perceptions and abilities (e.g., 
cognitive workload), which are not the direct subject of study here. Furthermore, there are multiple criteria beyond travel time and 
transfers not accounted for in this research, that impact user decisions related to PT travel on a daily basis. Possible criteria to consider 
in the future include, the selection of departure time for certain trips, walking distances, and the reliability of service. Second, the 
selection of nine case cities required reductions in the depth of study per each case. Furthermore, the sample of nine PTN systems does 
not represent a full extent of cities around the globe, as it does not include all the city scales and contexts. These nine cities have been 
selected due to recent redesigns and curated data availability. Moreover, the analysis for each city does not account for PTN design at 
multiple points in time. Finally, the analysis framework, including the sampling procedure, does not establish straightforward causal 
relationships between the PTN on a system-level and the navigability outcomes measured on a nodal basis, as well as relationships 

Fig. 4. The effect of the redesign on a selection of PTN measures. The measures are normalized on a scale from 0 to 1. Reversed axis indicated 
with *. 
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Fig. 5. The distribution of mean travel times before and after implemented redesigns (panel A) and the distribution of changes in mean travel times 
(panel B). 

Fig. 6. The distribution of mean number of transfers before and after implemented redesigns (panel A) and the distribution of changes in mean 
number of transfers (panel B). 

Fig. 7. The distribution of diversity of journey alternatives before and after implemented redesigns (panel A) and the distribution of changes in 
time-weighted diversity (panel B). 
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between contextual factors (e.g., PTN governance) and the resulting PTN redesigns. 

6.2. Policy and planning implications 

Adding further empirical depth to previous arguments from PT planning guidance documents (Nielsen et al., 2005; McLeod et al., 
2017), this research draws a handful of lessons for planning and policy processes. Overall, although the effects of PTN redesigns from a 
navigability standpoint seems encouraging, it is important to consider the underlying trade-offs and dilemmas faced by those planning 
PTN. Underlining that PTN design belongs to the ”NP-hard” class of problems, the choice set includes a multitude of design elements 
(Magnanti and Wong, 1984; Guihaire and Hao, 2008; Farahani et al., 2013). These elements span from choice of PT modes and 
integration with other modes to spatial elements such as right-of-way and route alignments to the schedule structure including 
headways and service span. Considering the limited resources assigned for PTN operation, and fluctuations in travel demand during 
the day, planners do not only decide upon dividing the resources between routes but also between different times of the day. Besides 

Fig. 8. Spatial distribution of the average change of diversity of journey alternatives. Positive values and red map color indicate a more uniform set 
of journey alternatives, suggesting improved navigability. Background map (c) OpenStreetMap contributors, (c) Carto. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the range of interdependent design elements, PTN redesign processes also include a wide range of often-conflicting criteria, due to the 
dynamic involvement of a multitude of planning actors (Eräranta and Mladenović, 2020). Thus, PTN redesign process often revolves 
around making choices among a set of difficult-to-distinguish alternatives, which all result in unequal effects for different users and 
different criteria. 

The key argument of this research is that PTN redesign processes should add navigability to the list of inherent trade-offs to be 
assessed ex-ante. This addition of navigability certainly does not directly remove labour needed during a PTN redesign process, as it 
requires trading off with conventional measures, such as travel time and transfers. In addition, navigability by itself introduces a 
multitude of, sometimes contradictory, meanings for PTN planning. In particular, navigability impacts range from very specific, 
concerning a particular origin–destination pair at a set time, to the daily and long-term structure of the PTN as a whole. The former is of 
concern for specific mobility patterns with specific destinations and times of day, while a more system-level knowledge of the PTN 
affects the confidence and ability to travel spontaneously to unfamiliar destinations or at unusual times of the day. Moreover, there is 
the long-term comprehension of the network which is disrupted or encouraged by redesign (Dziekan, 2008). Consequently, the ways 
navigability is measured needs to reflect this multidimensionality, necessitating the use of a framework with multiple complementing 
measures taking into account both spatial and temporal dimensions. For instance, schedule changes made to provide longer service 
hours are likely to make the provided service easier to memorize, as the daily schedule structure is more homogeneous. However, these 
changes will not be evident when analysing a snapshot of the journey alternatives at a specific time of day. 

A good example of another trade-off during PTN redesign is that of direct routes versus a system of more frequent trunk routes. The 
clear difference from the user perspective is that the latter has the caveat of requiring more transfers to reach certain destinations. On 
the contrary, direct routes are more straightforward for navigability as long as a few routes can cater to the user’s needs. However, the 
challenge with a structure providing direct connections is that the service will be less frequent (e.g., due to underlying resource 
constraints) and the whole PTN will have a large number of routes and route variants. Thus, PTNs with direct routes are mainly suitable 
when most destinations are concentrated in one location, such as a central business district. On the contrary, the user is more likely to 
familiarize herself with a more diverse set of destinations within a PTN based on trunk-routes, as there are fewer routes to comprehend. 
However, considering the increase in the reliance on transfers, there will be an increase both in the travel impedance in general but also 
in the cognitive load imposed by the journey legs and potential wayfinding at the transfer location (Timpf and Heye, 2002). The 
question of directness versus frequency also has implications for network vulnerability (Yang et al., 2017; Frappier et al., 2018). When 
considering the diversity of journey alternatives, having multiple redundant alternatives adds to system robustness while the presence 
of direct alternatives removes transfer risk. However, in case of transfers being unavoidable, a frequent system reduces transfer times 
and knock-on delays in case of missed transfers. Furthermore, trunk-systems tend to be sparser, requiring longer walking distances and 
more wayfinding at both the origin and destination trip ends. Thus, the two principal strategies of adaptation, i.e., changing the 
number routes and adapting the frequency of a fixed network, will have very different navigability implications for the reasons 
previously stated. For a more thorough assessment, it is thus imperative to measure navigability from multiple angles and at different 
times of the day, highlighting both the network structure and the user perspectives. 

As stated earlier, the complexity of PTN redesigns and PT planning in general is not limited to navigability as defined in this 
research. We acknowledge that there are many more constraints in practice, such as topographical and budgetary limitations, and 
many more objectives, such as robustness or minimizing emissions, especially important having in mind direct effects on the ongoing 
climate crisis. In addition, PTN redesign also relates to other PT policy and governance aspects, such as fare structure, responsibilities 
for service implementation, and PT funding scheme. Thus, providing more specific policy implications for any of the nine case cities, or 
any other city around the world, would also mean significant neglect of the policy context that we know shapes PT planning (Roschlau, 
2008; van de Velde, 2008; Walters, 2008; Weckström and Mladenović, 2020). Moreover, it would also mean neglecting the diverse 
socio-cultural contexts around the world, which relate to various effects from PTN redesign. For example, in some places in the Global 
South, large cities have a significant population with lower income levels, relying solely on PT for daily traveling to job opportunities, 
which often involves traveling long distances. The fact that these cities have a significant population that is both money and time poor 
could mandate different emphasis on assessment, for instance, related to fare structure. 

Given the above challenges, the question remains - how should we conduct PTN redesign processes to find an acceptable balance 
between the variously identified trade-offs while avoiding effects perceived as unfair by some users? Fortunately, we already have 
lessons from in-depth case studies highlighting the procedural aspects of PTN redesign in cities around the world (Currie and 
Tivendale, 2010; Kash and Hidalgo, 2014; Muñoz et al., 2009; Muñoz et al., 2014). These and other case studies highlight the timing of 
assessment tasks and the role of public participation within planning processes. The reality is that PT planning still relies on the 
separation of tasks involving infrastructure and alignment planning, which are usually done first, and tasks involving the development 
of PT schedules. This in-built procedural path dependence means that adverse effects are usually assessed too late in the planning 
process, or even only after implementation of PTN redesign. As an undesired consequence, a redesign can lead to low user satisfaction 
overall, resulting in a modal shift away from PT, or a negative impact on well-being for those PT-dependent users. 

7. Conclusion 

This paper presents a comparative study of the impacts of redesigning PTNs in nine major cities in the Global North, using the 
concept of navigability. The redesigns included in this paper focused on varying aspects of the PTN, which requires attention when 
assessing the navigability impacts from a user and system-level perspective. Previously, navigability was a research topic that has been 
studied using a range of approaches and methods, including network science, wayfinding, and transport modelling. The purpose and 
perspectives of these approaches are different. Network science use navigability as a tool to describe the network on a general level, 
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while wayfinding is a very human-centered, but data-hungry and, in existing research, mainly a place-specific approach. Furthermore, 
transport modelling focuses on predicting behavior, not describing the full complexity of available choices. Consequently, the way 
navigability is currently taken into account in research and practice is rather simple, as only the number of transfers and the number of 
route alternatives in route choice generation act as pseudo indicators. The objective of this paper was to fill the gap between the 
previous research strands by combining the network dimension with an approach closer to the way PT users are experiencing the PTN 
complexity. The proposed analysis framework focuses on both the aggregate point of view of the PT system as a whole and on impacts 
from the users’ perspective, where journey-level navigability is understood through the diversity of travel alternatives that users 
experience as the result of PTN redesign. A range of new navigability measures was proposed, enabling a multidimensional under-
standing of navigability challenges. Results indicate that the implemented changes brought a mix of effects depending on the city, 
location within the city, and time of day. In general, all nine cities aimed at achieving a more hierarchical PTN, including strengthening 
the trunk-feeder system and changes in frequencies, as well as some additions of new PT modes. The analysis concludes that PTN 
redesigns studies brought important improvements for the navigability of PT users. Therefore, the change in the navigability from the 
user perspective must be considered and evaluated in future PTN redesign projects, including trade-offs with other decision criteria, for 
achieving equitable outcomes. 

The development presented in this paper opens up pathways for several future research directions of useful PT planning support 
systems, which are capable to support decisions around trade-offs inherent to PTN planning processes in practice. First, there is a need 
for furthering connections to route choice and travel experience modelling efforts that are bringing about a further understanding of PT 
users. In particular, there is a need to increase the understanding of how navigability impacts travel behavior in conjunction with 
other, more widely researched, travel impedance factors such as travel time, transfers, and fare structure. In addition, of particular 
interest is the relationship between the navigability at the network level and wayfinding at stops. Such research should also focus on 
drawing from user segmentation studies or developing own user types, including their travel behaviour criteria as part of the modelling 
framework. Second, there is a need for furthering the understanding of the long-term changes in PTNs in relation to navigability, but 
also mode change in general. While transforming into a more navigable PTN may make it easier to attract new passengers, changes in 
the PTN always require the existing users to relearn the system. Especially challenging are large-scale redesigns that often introduce 
changes in many areas ranging from route numbering to modes, often over a very short period. This raises the question of whether PTN 
redesigns in all cases are worthwhile considering the aims of the undertaking. Thus, further research should focus on comparing in-
cremental with more abrupt transition processes in practice. Finally, we need further in-depth case studies accounting for the depth 
and diversity of local contexts. Such case studies can relate to a multitude of local factors, such as topography, city structure, PT 
demand, planning cultures, and political economy. With the increase in case studies, it may be possible to draw further lessons 
regarding various trade-offs made in PTN planning practice across diverse planning cultures worldwide. 
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Liu, Y., Bunker, J., Ferreira, L., 2010. Transit userś route-choice modelling in transit assignment: A review. Transp. Rev. 30 (6), 753–769. 
Lowe, K., Hall, E., 2019. New starts, growing inequities: federal and local public transit funding. Public Works Manage. Policy 24 (3), 301–314. 
Lynch, K., 1960. The Image of the City. MIT Press. 
Magnanti, T.L., Wong, R.T., 1984. Network design and transportation planning: models and algorithms. Transport. Sci. 18 (1), 1–55. 
McLeod, S., Scheurer, J., Curtis, C., 2017. Urban public transport: planning principles and emerging practice. J. Plann. Lit. 32 (3), 223–239. 
Mees, P., 2010. Transport for Suburbia: Beyond the Automobile Age. Earthscan. 
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