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Automatic Assembly Planning based on 
Digital Product Descriptions 
 

Abstract 
This paper proposes a new concept in which a digital twin derived from a digital product description will 

automatically perform assembly planning and orchestrate the production resources in a manufacturing 

cell. Thus the manufacturing cell has generic services with minimal assumptions about what kind of 

product will be assembled, while the digital product description is designed collaboratively between the 

designer at an OEM and automated services at potential manufacturers. This has several advantages. 

Firstly, the resulting versatile manufacturing facility can handle a broad variety of products with minimal 

or no reconfiguration effort, so it can cost-effectively offer its services to a large number of OEMs. 

Secondly, a solution is presented to the problem of performing concurrent product design and assembly 

planning over the organizational boundary. Thirdly, the product design at the OEM is not constrained to 

the capabilities of specific manufacturing facilities. The concept is presented in general terms in UML 

and an implementation is provided in a 3D simulation environment using Automation Markup Language 

for digital product descriptions. Finally, two case studies are presented and applications in a real 

industrial context are discussed. 

Keywords: product-centric control; digital twin; AutomationML; IEC 62424; 3D simulation; assembly 

planning 

1 Introduction 
In the last few years, a growing volume of research has emerged on business networks involving 

manufacturers pursuing efficiency through agility and thus providing a new form of competition to 

manufacturers with low labor costs (e.g. [6][8][16]). The need for agile manufacturing arises not only 

from rapidly changing market demand but also from novel design approaches exploring larger parts of 

the design space [1]. A potential manufacturing concept to address the need for agility is product-centric 

control, in which the digital counterpart of the product requests its own manufacturing services [3]. 

However, the research is specific to an industrial partner’s business case of a single manufacturer 

serving several OEMs producing similar but customized products, and the focus is on the logistics level 

without investigating how the product-centric control can be applied to assembly planning. 

Our goal is to address these limitations by proposing a product-centric control concept that enables an 

OEM to flexibly contact potential manufacturers and involve them already in the product design phase. 

Such manufacturers will have the ability to support the designers at the OEM to perform virtual 

manufacturing of their design automatically and promptly according to a digital product description 

provided by the designer. Our proposed means to achieve this goal is through a new concept of agility 

illustrated in Figure 1, in which digital twin objects generated from the digital product descriptions drive 

the product-centric control. The digital twin will have the intelligence to perform assembly planning and 

to orchestrate the production resources in the manufacturing cell. Thus, these resources only need to 



provide generic services, resulting in great versatility to handle diverse digital product descriptions 

without a need to reconfigure the cell. 

 

Figure 1 Concept overview 

The following contributions are made. Firstly, a general framework is presented to realize the concept in 

shown Figure 1, independent of a particular product description technology. Secondly, an application to 

the AutomationML product description technology [38][42] is provided. Thirdly, an implementation in a 

3D simulation environment is described and demonstrated with two case studies. 

2 Previous work 
Previously the trend in manufacturing industries was to outsource manufacturing operations to low 

labor cost countries [7]. The more recent trend of Industry 4.0 targets the goal of making manufacturing 

sustainable in higher labor cost countries. Toward this goal, a number of recent publications on CPS 

(Cyber-Physical Systems), CPPS (Cyber-Physical Production Systems), Smart Manufacturing and Industrial 

Internet show a trend towards business networks of companies into which potential participants can 

offer their specialized services ([6][8][16]). One unresolved challenge for such networks is how they 

could be performing assembly planning already during the product design phase as this is significant for 

the efficiency of the eventual manufacturing [18][2], and existing approaches require considerable 

manual effort, such as using real operators in a virtual assembly environment [19]. To realize the 

potential of agile business networks, this article investigates how a designer could submit a digital 

product description to several potential manufacturers with the capability to perform fully automatic 



virtual assembly planning. Such a capability has not yet been proposed despite numerous manufacturing 

applications of CPS, Internet of Things (IoT), multi-agent systems, holonic systems and flexible 

manufacturing systems (e.g. [12][14][15][47]). Our proposal differs from approaches such as product 

configuration systems [10] and product family architectures [17], whose agility is limited by detailed a 

priori specifications about the range of product to be manufactured. 

One specific aspect of CPPS and Industry 4.0 is that data from virtual models of products and production 

resources is available for optimizing manufacturing operations [9]. In the Industry 4.0 age, approaches 

for exploiting this data to plan manufacturing operations can be grouped into the more conservative 

approach of extending MES systems [4][5][47] and to the radical approach of product-centric control. In 

the latter case, a digital counterpart of the product keeps track of its status and is able to participate in 

the planning of operations from supply chain management and logistics to routing on the factory floor 

[26][27][28][29][30][31] exploiting the flexibility from additive manufacturing (AM) [3]. In addition to 

product-centric control, a similar concept under the name of digital twin has shown active research in 

2016-2017 in a number of diverse communities such as CPS, IoT, Industry 4.0 and model-based systems 

engineering [25][32-36]. Both concepts are similar in the sense that a digital counterpart of the product 

maintains up to date information and can participate in operations involving some part of the lifecycle 

of the product. However, the research on digital twins opens new opportunities in the product design 

phase, in bridging design and operation and especially in 3D simulation of the assembly process [37]. 

Our proposal is thus extending the product-centric control to the lower level task of assembly planning 

as well as exploiting the digital twin concept in 3D simulation. Bridging the gap between these bodies of 

knowledge may lead to the various researches cited above finding broader application in more holistic 

concepts of agility in manufacturing, spanning supply chain management and product design. Our goal is 

to define the concept rather than to focus on protocols, service discovery mechanisms and ontologies 

for which a number of specific works exist [11][13][47][48]. 

A discussion on agile manufacturing would not be complete without addressing the potential of AM to 

shorten time to market [24]. As discussed in section 5, after virtual assembly has been performed 

satisfactorily, a physical assembly validation could be performed using AM to obtain the parts from CAD 

models provided by the designer. Thus the proposed concept would be poised to integrate with 

anticipated disruptive developments from AM including decentralized supply chain management [20] 

and hybrid approaches combining AM and conventional technology for reduced time to market and 

investment risk [21]. Although current costs for AM limit its application [22], decreasing costs and 

increasing market demand for customization result in conventional manufacturers facing increasing 

competition from entrants with AM technology [23]. 

Assembly planning is the process of creating a sequence of assembly motions to craft a product from 

separate parts considering the final product geometry and the production environment including 

resources and obstacles. Assembly planning can be divided into Assembly Sequence Planning (ASP), 

which considers the parts as free flying, and Assembly Path Planning (APP) that considers the 

trajectories those parts move along and the relevant manipulators. Automatic methods for ASP have 

been studied since 1980’s [56, 57, 58] and the study of robotic manipulation planning continues actively 

in the framework of integrated task and motion planning as the manipulation planning problem contains 

both discrete (which part next) and continuous (which continuous trajectory) components [59,60]. The 

planning is often hierarchical such that the geometric decisions are postponed (e.g. [61]). The 

continuous geometric planners involve often stochastic search approaches (e.g. [62]) using a simulation 



model for collision checking. The concept proposed in this paper is compatible with the current 

literature such that current ASP and APP methods can be used to implement those functionalities within 

the framework. 

3 Conceptual framework 
This section proposes a conceptual framework for the key entities of a manufacturing cell performing 

product-centric control down to assembly planning based on digital product descriptions. The 

framework is presented in UML, since as has been discussed in section 2, numerous alternative 

technologies, studies, standards, ontologies and interfaces exist related to various aspects of the 

framework. UML and its SysML extension have been applied to a hierarchical decomposition of 

industrial application data models [43] and to the mechatronic product design process [46], so assembly 

planning is a next step. This section does not aim to provide an exhaustive discussion of all aspects of 

the UML diagrams. A thorough explanation is provided in the supplementary materials document 

“UML_detailed_description”. 

Figure 2 shows the key classes and some of their members that are most relevant for this discussion. At 

first glance, it is evident that the DigitalTwin, which is instantiated from the digital product description, 

occupies the most central position. The purpose of this design is to have all product specific data and 

functionality in the DigitalTwin and in the classes on the left side of the figure, so that the Cell and all the 

classes under it only provide simple generic functionality, resulting in the kind of agile cell proposed in 

section 1. Through its association to the Cell class, the DigitalTwin is able to gain access to all production 

resources and to orchestrate them, thus realizing our proposed product-centric control concept. It is 

notable that the Connection class provides semantic information about which parts are actually 

connected as opposed to being adjacent – this information is not available in plain CAD models. Figure 2 

has significant detail, but abstracts away all information related to the product description technology 

and the 3D simulation or real manufacturing cell automation systems. 



 

Figure 2 Key classes in the framework 

Figure 3 shows the sequence diagram for reading the digital product description. UML2 combined 

fragments are used for the loop and alternatives. As can be seen from Figure 2, ProductDescription is an 

interface for which a separate implementation should be made for each supported digital product 

description format. The ProductDescription class processes the digital product description and forms a 

list of items, each of which is encoded as an array of strings. The first element in this array should be the 

“create”, “parameter” or “connection” used in Figure 3 to create a DigitalPart, a parameter or a 

Connection between two DigitalPart objects. The parameters are 3D coordinates of DigitalPart’s 

mechanical interfaces, so the parameter applies to all DigitalPart objects of a specific component type. 

As can be seen from Figure 2, the add3dParam() method adds the parameter to a static HashMap 

object. The keys of the HashMap are formed by appending the parameter name to the component type 

name, thus avoiding any ambiguity issues that might otherwise arise from using a static HashMap. 



 

Figure 3 Reading the digital product description 

Figure 4 shows the process of creating the assembly, resulting in the 3D coordinates of each part in the 

final assembly. Before this algorithm is executed, one part is selected arbitrarily, translated to the origin 

and then its “assembled” attribute is set true. The algorithm in Figure 4 has an outer loop that iterates 

through the collection of Connection objects until it finds one in which “part1” is assembled and “part2” 

is not assembled (please refer to the “part1” and “part2” associations of the Connection class in Figure 

2). How this connection is made is described in the “opt” combined fragment. From the Connection 

object “c”, the string name of the connection point of “part1” (which was obtained from the digital 

product description) is passed to the getConnectionPoint() method of part1, which returns a 3D 

coordinate point using the static HashMap of the DigitalPart class. The hitherto unconnected “part2” is 

now translated, using the “translateTarget” method, to this connection point of the already assembled 

“part1”. Now the center of part2 is at the connection point of part1, so it is necessary to perform one 

more translation so that the relevant connection point of “part2” (as specified in the digital product 

description and parsed into the attribute “c.connectionPoint2”) is translated by 

“translateConnectionPoint” to the said connection point of “part1”. 



 

Figure 4 Creating the assembly 

Now the 3D coordinates of all parts in the final assembly are known and can be used for ASP by 

DigitalTwin’s “nextUnassembledPart” method, which has the following proof-of-concept 

implementation: a list is made of the unassembled parts that will be placed on the assembly surface, 

and if the list is not empty, one arbitrarily selected part will be returned. Otherwise, a list is made of all 

unassembled parts that have a connection to an assembled part. From this list, the part with the lowest 

height coordinate is returned. As has been discussed in section 2, more sophisticated ASP algorithms 

have been published, and the goal of this paper is not to prose new such algorithms but rather a design 

where such algorithms can be inserted as alternative implementations of the “nextUnassembledPart” 

method. During virtual assembly, the returned DigitalPart object is added to the queue of the 

MobileRobot (see Figure 2), so that during physical assembly, parts will be delivered to the assembly 

station in the order in which they will be assembled. 

3D simulation environments typically have a cyclically executed update method that renders the screen 

graph, i.e. draws onto the 2D screen all 3D objects that are visible through the camera. The sequence 

diagram in Figure 5, responsible for virtual assembly planning and physical assembly, is called cyclically 

from this update method. Thus, over the course of assembling one DigitalPart object, the sequence is 

executed numerous times and the guards for the opt, alt and break fragments control which messages 

are sent in one particular execution; a detailed explanation is provided in the supplementary materials 

document “UML_detailed_description”. Figure 5 uses exclusively synchronous messaging, implying a 

single-threaded implementation, which can be used in an automation architecture with central control. 

An expert in distributed automation will be able to modify the sequence with asynchronous messaging if 



a decentralized event-based control is desired. The multi-agent control paradigm for decentralized 

control architecture can be applied following, for example [50-52]. It was exemplified in [53-55] how the 

control logic could be organized in a purely decentralized way and executed distributed on the Industrial 

Internet of Things based hardware infrastructure in the automation context using the IEC 61499 

architecture. 

The functionality of Figure 5 is available in existing assembly planning tools, and the contribution has 

been to incorporate this functionality into the product-centric control framework of Figure 2. Everything 

until the call to “nextUnassembledPart” is related to the simulation of assembling the “part” object 

along a trajectory “t”. “nextUnassembledPart” performs one step of ASP and returns the “part” object in 

Figure 5. Subsequently, APP for this part is performed in the “planAssemblyPath” method. 

“planAssemblyPath” has a proof-of-concept implementation for downwards assembly and some special 

cases where the part needs to be connected upwards. In the general case, APP returns a Trajectory 

object (“t” in Figure 5) which has a sequence of translational and rotational movements. More 

sophisticated APP algorithms have been discussed in section 2 and may be added as alternative 

implementations of the “planAssemblyPath” method. If a collision is detected, another call to 

“planAssemblyPath” results in a new trajectory or a fallback to ASP, in which “nextUnassembledPart” 

may perform a partial disassembly and then proceed with another assembly sequence. The fallback is 

not included in our proof-of-concept implementation. 



 

Figure 5 Virtual assembly (if “actualAssembly” is false) or physical assembly (if “actualAssembly” is true) 



As can be seen from Figure 5, the product-centric control has the DigitalTwin object orchestrating the 

assembly robot, sending it commands to translate, rotate, connect and disconnect the part. In physical 

assembly, the first break fragment pauses the assembly robot if the part has not yet been delivered to 

the assembly station by the mobile robot. The mobile robot has also been under the control of the 

DigitalTwin, which has filled the queue of parts to be transported during the ASP phase. The mobile 

robot in turn queries the buffers for those parts. The buffer’s “givePart” method (see Figure 2) provides 

a DigitalPart object if a suitable part is present in the buffer, and DigitalPart has the 3D location 

information for the MobileRobot’s pick operation. The route planning of the MobileRobot is simple: all 

buffers and the assembly station are visited in sequence, but more sophisticated algorithms are 

available [44][45]. Thus the assembly station, the transportation system and the buffers have no 

hardcoded assumptions about what types of parts are processed or what kinds of ASP or APP should be 

performed. This intelligence is built into the DigitalPart, Trajectory, Connection and DigitalTwin objects 

automatically from the digital product description according to the algorithms in Figure 3, Figure 4 and 

Figure 5, thus realizing the concept of agility proposed in section 1. 

4 Implementation 
Several digital product description technologies are available. All CAD and PDM/PLM (Product 

Data/Lifecycle Management) systems have an internal format, and standards to exchange the 

information exist. For our purposes, an ideal technology is lightweight, open, standardized and XML 

based, so that it can be processed with standard W3C technologies. One such technology is 

AutomationML (Automation Markup Language) and especially the part of it that uses CAEX (Computer 

Aided Engineering Exchange) to describe the logical structure of products or production facilities. CAEX 

and AutomationML were introduced to the international academic community in 2008 [38][42]. Recent 

activity relevant to our proposed concept includes support from major tool vendors [40], securing the 

transmissions of the AutomationML content [41] (especially important for our idea of exchanging digital 

product descriptions from OEMs to potential manufacturers) and ongoing development of the CAEX 

standard [39]. The method in Figure 3 has been implemented with AutomationML and described in this 

section for proof-of-concept purposes. AutomationML gives significant freedom for the user to add all of 

the required information such as the 3D coordinates of the mechanical interfaces of the parts, so this 

section provides enough detail for an interested reader to replicate the setup. 

In order to apply the concept in section 3 to a specific digital product description technology, the 

following information from Figure 2 needs to be captured: the data for DigitalPart objects, Connection 

objects and 3D parameters for the DigitalPart types. Further, an implementation needs to be provided 

for the ProductDescription interface in Figure 2 and Figure 3. An XSLT-transformation (Extensible 

Stylesheet Language Transformation) was developed that parses the CAEX document and extracts the 

items in Figure 3 to a text file, which was then read by a Java class implementing the ProductDescription 

interface in Figure 2 and Figure 3. The XSLT file is available in supplementary material: 

AutomationML_XSLT. 

In this paper, digital product descriptions have been created with the free AutomationML Editor tool 

available from www.automationml.org , which saves the digital product description in an .aml file which 

is a regular XML file conforming to the CAEX schema that can be viewed with any XML editor or text 

editor. The Cranfield benchmark case study, which is elaborated in section 5.2, will be used to illustrate 

the application of AutomationML with snippets taken from the AutomationML file “Cranfield” which is 

http://www.automationml.org/


provided as supplementary material. Figure 6 shows several parts that are referred to in the following 

descriptions, including the pink faceplate back, yellow pendulum, green shaft in the center, angular bolts 

in the foreground and round bolts in the background. 

 

Figure 6 The Cranfield benchmark case study before the last part (the faceplate) is assembled 

Full details of the CAEX schema are available in IEC 62424 [49], but this presentation is aimed at giving 

the reader sufficient understanding of the schema without having to consult the standard. All italic 

names in this section refer to elements defined in the CAEX schema. CAEX consists of 4 parts: 

InterfaceClassLib, RoleClassLib, SystemUnitClassLib and InstanceHierarchy. InterfaceClassLib can be used 

to specify any kind of interfaces, including interfaces between CAD designed parts, such as holes in the 

faceplate where the angular bolts in the foreground of Figure 6 may be inserted (IBoltAngular in the 

following snippet). The following XML snippet has the InterfaceClassLib for our Cranfield benchmark 

case study: 

<InterfaceClassLib Name="InterfaceClassLib1"> 

 <Version>1.0.0</Version> 

 <InterfaceClass Name="IBolt" /> 

 <InterfaceClass Name="IBoltAngular" /> 

 <InterfaceClass Name="IShaft"></InterfaceClass> 

 <InterfaceClass Name="IPendulum" /> 

</InterfaceClassLib> 

 

RoleClassLib and SystemUnitClassLib are used to describe components types, so the vendor-

independent components are placed in the former and vendor specific components in the latter. Our 



case studies do not involve a multi-vendor scenario, so all component types are defined in the 

SystemUnitClassLib using the interface definitions from InterfaceClassLib and adding Attribute elements 

such as color and orientation of the part in the assembly. These Attribute elements will have a unique 

value for each instance of this SystemUnitClass. There are also other kinds of Attribute elements for 

which the value will be same for all instances, namely the 3D coordinates of the mechanical interfaces, 

so these coordinates are specified in the DefaultValue in a string format that the implementation of 

ProductDescription can parse into the Vector3f 3D coordinate data type used in Figure 2. From each 

such Attribute, a “parameter” item is generated in Figure 3 containing the Vector3f type coordinate and 

a HashMap key consisting of the SystemUnitClass name and the Attribute name; this key and coordinate 

can be given as arguments to the “add3dParam” method of DigitalPart in Figure 2. The following XML 

snippet has the definition of one SystemUnitClass, FaceplateBack, which has the above-mentioned color 

and orientation Attribute elements as well as 5 other Attribute elements with 3D coordinates in their 

DefaultValue. There are also 5 ExternalInterface elements typed by InterfaceClass elements from the 

InterfaceClassLib. Their Name matches with the Name of the Attribute that has the 3D coordinates of 

the interface in its DefaultValue. 

<SystemUnitClass Name="FaceplateBack"> 

 <Attribute Name="color" AttributeDataType="xs:string"> 

  <Description>color</Description> 

 </Attribute> 

 <Attribute Name="orientation" AttributeDataType="xs:string"> 

  <Description>orientation</Description> 

 </Attribute> 

 <Attribute Name="square_left"> 

  <DefaultValue>-0.656,0,1.151</DefaultValue> 

 </Attribute> 

 <Attribute Name="square_right" AttributeDataType="xs:string"> 

  <DefaultValue>0.664,0,1.151</DefaultValue> 

 </Attribute> 

 <Attribute Name="circle_left" AttributeDataType="xs:string"> 

  <DefaultValue>-1.021,0,-0.774</DefaultValue> 

 </Attribute> 

 <Attribute Name="circle_right" AttributeDataType="xs:string"> 

  <DefaultValue>1.019,0,-0.774</DefaultValue> 

 </Attribute> 

 <Attribute Name="shaft" AttributeDataType="xs:string"> 

  <DefaultValue>-0.006,0,0.226</DefaultValue> 

 </Attribute> 

 <ExternalInterface Name="circle_left" 

RefBaseClassPath="InterfaceClassLib1/IBolt" ID="5c244537-0fea-46a5-bf81-7c81252e232e" 

/> 

 <ExternalInterface Name="circle_right" 

RefBaseClassPath="InterfaceClassLib1/IBolt" ID="041ad697-85aa-4c55-8f74-f81c279655b2" 

/> 

 <ExternalInterface Name="shaft" RefBaseClassPath="InterfaceClassLib1/IShaft" 

ID="b430fdb5-6397-438a-b080-1d0f41d67b9e" /> 

 <ExternalInterface Name="square_left" 

RefBaseClassPath="InterfaceClassLib1/IBoltAngular" ID="91946ab4-5e02-4c2c-b90a-

6484c342bfcc" /> 

 <ExternalInterface Name="square_right" 

RefBaseClassPath="InterfaceClassLib1/IBoltAngular" ID="5c0dd7bb-adee-423f-8d69-

7387a65d05d1" /> 

</SystemUnitClass> 

 



The InstanceHierarchy has InternalElement elements, each of which corresponds to a DigitalPart object, 

so the ProductDescription interface’s implementation generates a “create” item as in Figure 3 with 

attributes including the type (i.e. the SystemUnitClass), the instance name, as well as the above-

mentioned color and orientation attributes. The following XML snippet has the first lines of the 

InstanceHierarchy. There is one InternalElement with Name “CranfieldBenchmark”, and all other 

InternalElement elements are children of it. The snippet includes the first few lines of the 

InternalElement with Name “back”. The value of RefBaseSystemUnitPath  refers to the SystemUnitClass 

description in the previous snippet. The only Attribute that is shown is “color” which is here assigned the 

value “pink”. ID is a RFC4122 UUID (Universally Unique IDentifier) automatically generated by the 

AutomationML Editor. 

<InternalElement Name="CranfieldBenchmark" ID="bbe6b4c5-43ad-43cc-9cf8-594fe7e255bb"> 

 <InternalElement Name="back" RefBaseSystemUnitPath= 

"SystemUnitClassLib1/FaceplateBack" ID="2ddc2cf5-1127-471f-b174-dc5b088c9d23"> 

  <Attribute Name="color" AttributeDataType="xs:string"> 

   <Description>color</Description> 

   <Value>pink</Value> 

  </Attribute> 

 

Finally, the CAEX needs to include information about logical connections between components in order 

to create the Connection objects in Figure 2 and Figure 3. This information is specified in InternalLink 

elements. The following code snippet is part of the InternalElement with Name CranfieldBenchmark that 

was introduced in the previous snippet. It states that the “square_left” interface of the InternalElement 

with Name “back” is connected to the “bottom” interface of the InternalElement with Name “boltA1”. 

The value for RefPartnerSideA and RefPartnerSideB is a string that is obtained by appending the 

following: the ID of the InternalElement, the character ‘:’ and the said name of the interface. 

<InternalLink Name="InternalLink1" RefPartnerSideA="2ddc2cf5-1127-471f-b174-

dc5b088c9d23:square_left" RefPartnerSideB="2778cfbb-0567-47a4-938a-

bfcb5cdec422:bottom" /> 

The framework described in section 3 has been implemented in the Java 3D simulation environment 

JMonkeyEngine3, which provides functionality such as translational and rotational movement, importing 

of CAD and collision detection based on bounding boxes and spheres. When assembling box-like parts 

such as Lego blocks, this results in satisfactory detection of collisions between the robot arm, a part 

attached to the arm and the existing assembly. For proof of concept, collision detection is demonstrated 

in the Lego tower case study. Collision detection of arbitrary CAD objects has not been implemented, 

but is a standard feature in 3D mechanics simulators such as Bullet. For the same reason, collision 

detection between the assembly robot arm and the mobile robot arm has not been implemented. The 

implemented robot is a Cartesian robot with an additional two rotating joints, so that it can rotate the 

parts and perform upwards assembly of parts with suitable dimensions such as Lego blocks. 

5 Results and discussion 

5.1 Lego tower case study 
The concept in section 3 and its implementation in section 4 result in a manufacturing cell that can 

flexibly manufacture a high number of possible products from square and rectangle legos. The range of 

possible products is less explicitly constrained than in the case of other approaches such as product 



configuration systems [10] and product family architectures [17]. The AutomationML digital product 

description of one example Lego product is the “Lego” file provided in supplementary material. Figure 7 

shows a screenshot of the assembled product. The grey surface is the AssemblyStation from Figure 2 

and the orange mechanism is its RobotArm, which has just performed an upwards assembly of the last 

pink lego. Figure 8 shows a screenshot from the virtual assembly phase where the robot arm has 

collided with the assembly when it was attempting an assembly into the direction of the negative X-axis. 

It will then attempt another assembly into the direction of the positive X-axis and succeed. 

 

Figure 7 The assembled lego example and the assembly station's robot arm 

 



 

Figure 8 Collision between the robot arm and assembly 

Figure 9 shows a screenshot of the physical assembly phase, including the following objects introduced 

in Figure 2 which were not visible in previous screenshots: the MobileRobot platform with a magenta 

RobotArm and two Buffer objects in the background: one for rectangular block on the left and another 

for square block on the right. 



 

Figure 9 Screenshot from the physical assembly phase showing the entire manufacturing cell. 

[INSERT LINK TO VIDEO FILES LegoTower_Android.mp4, LegoTower_iPhone.mp4 

Caption: Video of virtual and physical assembly for the lego tower case study] 

A video file titled LegoTower_Android.mp4 is included as an electronic attachment, which has been 

tested with Windows computer and Android Phone. Another video with exact same content is provided 

with name LegoTower_iPhone.mp4, which has been tested with iPhone and MacOS. The video starts 

after the procedures in Figure 3 and Figure 4 have been completed. The video illustrates the behavior 

captured in Figure 5, first for virtual assembly and then for physical assembly. As has been justified in 

section 4, collision detection between the assembly robot arm and the mobile robot arm has not been 

implemented. The reader is strongly encouraged to view the video, since figures can only provide a very 

partial and static view into the workings of the implemented concept. 

5.2 Cranfield benchmark case study 
The framework in section 3 is not specific to legos. Any CAD models can be used for the DigitalPart 

objects, which has an implementation that only needs to be provided the name of the CAD model, 

which has been preprocessed and imported to the 3D simulation environment. The preprocessing 

involves scaling, translation and conversion from CAD format to Wavefront (.obj) format, which can be 

performed in a CAD or 3D content creation tool, including free tools such as FreeCAD and Blender.  

The Cranfield assembly benchmark [63] is chosen as our second case study, but the implementation can 

handle other designs of similar complexity, and the concept in section 3 can handle more difficult 

assemblies when the current assembly planning implementation is replaced for example with some of 

the solutions referenced in section 2. Figure 10 shows a sequence of screenshots. As described in 

section 3, the implemented ASP uses the heuristic of assembling the lowest part with a connection to an 

already assembled part. Thus in the top-left, the green shaft is assembled to the faceplate, followed by 



the yellow pendulum in the top-right. In physical assembly, it is important to insert the shaft before 

inserting the pendulum, since inserting the shaft after placing the pendulum would have much lower 

margin for error. However, the undesirability of the latter sequence will not be evident in the 3D 

simulation environment, since no collision will occur. In our implementation, the “Cranfield” file has 

been designed in such a way that the shaft has a CAEX InternalLink to the faceplate and the pendulum 

has an InternalLink to the shaft, so the ASP algorithm in section 3 will ensure that the pendulum can only 

be assembled after the shaft is in place. This is one advantage of using CAEX instead of plain CAD files: 

the semantics can be used to distinguish connected parts from adjacent parts, with implications to ASP. 

In the bottom-right of Figure 10 the remaining bolts are assembled only after the pendulum, but this 

ordering was not constrained by the CAEX but is rather an implementation detail of the chosen heuristic 

for ASP. In the bottom-right, the top faceplate was assembled only after all five green parts were 

assembled – this ordering was not fully constrained by the CAEX; rather it emerges as the result of the 

CAEX definitions and the ASP solution, implying that the product designer should have awareness of 

ASP. 

 

Figure 10 Sequence of screenshots from the assembly of the Cranfield benchmark: clockwise starting 
from top-left 



As discussed in section 1-2, the designer is expected to influence the assembly sequence by a well-

designed digital product description and then send it to a potential manufacturer for virtual assembly, 

which can provide video feedback capturing findings such as in Figure 10. Currently, the only manual 

engineering work from the manufacturer is a few mouse clicks to import the AutomationML and CAD 

files and to create the video, but software professionals could fully automate this process without 

further research, so that the designer could get the response in minutes. 

A CAD model includes information about what parts are adjacent to each other, but it does not explicitly 

specify which parts are assembled together and what are the mechanical interfaces by which they 

should be connected. For example, in Figure 10 the pendulum is adjacent to the faceplate and the shaft, 

so the internal links in the product description in section 4 are examined to determine that the shaft is 

assembled first. A well-designed product description has such linkages to ensure that the design is 

practical from the assembly perspective. It is not expected that the product designer can specify such a 

description on the first attempt. One application of the proposed system is to provide rapid video 

feedback to the designer regarding how a specific production facility would assemble the design. The 

designer can update the linkages in the product description to constrain the ASP. 

[INSERT LINK TO VIDEO FILES Cranfield _Android.mp4, Cranfield _iPhone.mp4 

Caption: Video of virtual and physical assembly for the Cranfield benchmark case study] 

A video file titled Cranfield _Android.mp4 is included as an electronic attachmentand has been tested 

with Android Phone and Windows. Another video with exact same content is provided with name 

Cranfield_iPhone.mp4, which has been tested with iPhone and MacOS. The video starts after the 

procedures in Figure 3 and Figure 4 have been completed. The video illustrates the behavior captured in 

Figure 5 starting with the virtual assembly and then continuing to the physical assembly. 

Since all DigitalPart objects have been created from CAD files, it is possible to use AM technology to 

physically obtain these parts at the manufacturing facility. The framework in section 3 is equally 

applicable to a 3D simulation environment and a real environment. Our implementation includes details 

specific to 3D simulation which would need to be replaced with code that interfaces to the real 

production resources. The robotics related code would also need to be updated to handle real world 

robotics issues that can be ignored in a virtualized environment. 

5.3 Generalization to other cases 
The case studies in sections 5.1 and 5.2 are based on a proof-of-concept implementation of the system 

defined in section 3; the implementation includes a simple ASP and APP solution that is able to 

manufacture a wide range of products with the constraint that the parts are inserted to the assembly 

with a vertically downward or upward movement. This is obviously a serious limitation for real products. 

However, any other ASP or APP implementation may be substituted without changes to the UML 

specifications in section 3, since the change is limited to the implementation of the methods 

“nextUnassembledPart” and “planAssemblyPath” of the “DigitalTwin” class, as explained in section 3. A 

more realistic implementation could be achieved by applying methods from knowledge representation 

and reasoning for combining ASP and APP, e.g. as in the KnowRob framework [64]. An APP solution e.g. 

with OMPL (Open Motion Planning Library) [65] can be used to test the feasibility of a particular 

sequence; as long as the test results are negative, the ASP will continue to generate alternative 

sequences.  



However, there is one limitation towards generality, which would require an extension to the 

specifications in section 3. Currently the range of ASP solutions is limited by the assumption that parts 

are added to the assembly one at a time. In order to support ASP involving subassemblies, the sequence 

in Figure 5 would need to be executed for each subassembly. For products with several subassemblies 

involving other subassemblies, this raises significant research challenges about the optimal ordering of 

the subassemblies, which would require modelling aspects related to enterprise resource planning and 

manufacturing operations management beyond the scope of this paper. Thus this problem is left for 

further research; the solution to this problem can result in establishing a stronger linkage to the existing 

body of research on product centric control on supply chain management and logistics, referenced in 

section 2. 

Further limitations to the specifications in section 3 will be encountered for assemblies with require 

tools e.g. for screwing. However, such an extension would be possible in further work, if the required 

tool for the assembly operation can be determined based on the type of the part to be assembled: for 

example, a screw can be assembled by screwing. In order to achieve industrywide standard solutions, 

catalogue standards such as eCl@ss should be applied; efforts are underway [66] for integrating eCl@ss 

and the digital product description technology AutomationML used in section 4. 

6 Conclusion 
This research has been motivated by the observation that much of the literature cited in sections 1-4 has 

paved the way for disruptive developments in agile manufacturing networks, resulting in quick and 

inexpensive mechanisms for OEMs and potential manufacturers to investigate partnerships in the 

product design stage. This paper has proposed a concept for this purpose, involving an automated 

virtual assembly that the manufacturer could perform automatically exploiting semantic part 

connections information in the product descriptions. Further extension of this concept could lead to a 

collaborative and interactive network-centric process of product design and manufacturing planning, 

where manufacturing constraints would lead to product modification as it is being designed. 

In order to bring the proposed concept to real industrial applications, further work is required. Although 

much relevant work for service discovery, integration mechanisms, architectures and interfaces exists, it 

needs to be adapted to the proposed framework. The implemented robotic solution in the 3D 

simulation environment also needs to be upgraded using libraries for ASP and APP as required by the 

type of product in question. 

The proposed concept also opens new opportunities for product-centric control in the area of supply 

chain management and logistics. It is now possible for agents at the OEMs and manufacturers to 

determine which are the potential manufacturers and to then identify the manufacturer with which the 

OEM can obtain the most profitable partnership according to criteria such as lowest time to market and 

cost. In this case, the partnering would be driven by the designer at the OEM performing concurrent 

product design and assembly planning over the organizational boundary with several potential 

manufacturers. 
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Glossary 
Assembly Path Planning (APP): a sub-process of AP, in which collision-free paths for adding parts to a 

subassembly are computed 

Assembly Planning (AP): the process of creating a detailed assembly plan to craft a whole product from 

separate parts considering the final product geometry, available resources, tool 

descriptions, etc. 

Assembly Sequence Planning (ASP): a sub-process of AP, in which a sequence of collision-free operations 

is computed for bringing assembly parts together 

AutomationML (Automation Markup Language) is a neutral data format based on XML for the storage 

and exchange of plant engineering information 

CAEX (Computer Aided Engineering Exchange) is a neutral data format that allows storage of hierarchical 

object information, e.g. the hierarchical architecture of a plant. CAEX has been published as 

part of the IEC 62424. CAEX serves as top-level data format for the new neutral data 

exchange format AutomationML. 

Digital twin: a near-real-time digital image of a physical object or process that helps optimize business 

performance 

Product-centric control: an approach for materials handling and control, customization, and information 

sharing in the supply chain based on the unique identification of physical objects to which 

control instructions are then linked 

XML (Extensible Markup Language) is a markup language that defines a set of rules for encoding 

documents in a format that is both human-readable and machine-readable 

 

 


