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A Dynamic Model for Bearingless Flux-Switching
Permanent-Magnet Linear Machines

Maksim Sokolov, Seppo E. Saarakkala, Reza Hosseinzadeh, and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper deals with dynamic models for three-
phase bearingless flux-switching permanent-magnet (FSPM) lin-
ear machines. This machine type can be used to build a
magnetically levitating long-range linear drive system, whose rail
does not need any active materials apart from iron. A dynamic
machine model is developed by means of equivalent magnetic
models, taking into account air-gap variation and magnetic
saturation. The effects of these phenomena are analyzed using
finite-element method (FEM) simulations of a test machine. The
parameters of the proposed model can be identified using the
FEM or measured data. The model can be applied to real-time
control and time-domain simulations. The model is validated by
means of experiments.

Index Terms—Bearingless, flux-switching permanent-magnet
(FSPM) machine, linear least squares (LLS), linear motor,
magnetic levitation, magnetic model, modeling.

I. INTRODUCTION

AROTATING flux-switching permanent-magnet (FSPM)
machine has a very simple rotor structure, due to its per-

manent magnets (PMs) and three-phase concentrated winding
being located in the stator [1], [2]. This machine type has com-
paratively high power density. Its back-emf phase voltages are
almost sinusoidal. A typical configuration has 12 stator teeth
and 10 rotor poles (12/10). Recently, a bearingless version
of the FSPM machine has been developed [3]. In addition
to torque production, bearingless machines also produce a
radial force, which can be controlled to allow for contactless
operation of the machine. A multiphase winding structure is
used in bearingless machines to produce an uneven flux density
in the air gap, which creates an unbalanced magnetic pull on
the rotor [4].

Linear variants [5] of the FSPM machine have become an
interesting option for producing the thrust force in various
applications, such as traction [6], wave-energy generation [7],
urban rail transit [8], electromagnetic launch systems [9], and
elevator systems [10], [11]. The linear FSPM machine has both
magnets and windings in the same part of the machine. Hence,
in traction applications, the rail or track along which the mover
travels does not need any active materials apart from iron,
which significantly reduces the costs. The windings located in
the mover have to be energized, which requires implementing
energy transfer to the mover or using on-board batteries.
Like their rotating counterparts, FSPM linear machines can
be modeled and controlled using two-axis models [8]. Various
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Fig. 1. Example configuration of a bearingless linear drive system, consisting
of a beam with rails and a mover with eight machine units: (a) cross-
section in the xy plane; (b) cross-section in the yz plane; (c) decoupled
force controller for a single machine unit. The thrust-force reference Fx,ref

is obtained from the traction controller and the normal-force reference Fy,ref

from the levitation controller.

analytical and semi-analytical models have been presented for
machine design and analysis purposes [12], [13].

In addition to the thrust force, FSPM linear machines
produce the normal force that pulls the mover toward the
rail. Since this attraction force is large, the linear machines
typically have a double-sided or four-sided structure to balance
the magnetic pull on both sides of the rail [7]. A bearingless
version of the FSPM linear machine can be created by actively
controlling the attraction force to maintain a desired air gap
[14].

A magnetically levitating drive system may consist of bear-
ingless FSPM linear machine units [11], [15]. The machine
units can be arranged in various ways. Figs. 1(a) and (b)
illustrate an example configuration, where motion in the x
direction is produced and the remaining five degrees of free-
dom are stabilized. Fig. 1(c) shows an example force controller
for a single machine unit. Active magnetic levitation presents
a challenge from the control point of view. The open-loop
system is unstable and highly nonlinear due to varying air
gap and magnetic saturation. The development of the control
system requires suitable machine models, which take the air-
gap variation and magnetic saturation properly into account.



2

τ

x=
τ

2

x=0

x

α β α β

y

Fig. 2. Conceptual two-phase FSPM linear machine, the mover positioned at
x = 0 and at x = τ/2. The polarities of the PMs (placed between the coils)
are shown by the arrows. The crosses and dots define the positive direction
of the coil currents. The phases α and β are labeled above the corresponding
coils. The most significant flux paths due to the PMs are also sketched. The
flux paths marked with the dashed lines do not link with the coils.

In this paper, we develop an analytical dynamic model for
bearingless three-phase FSPM linear machines. The model is
intended for control design, stability analyses, time-domain
simulations, and real-time control. The main contributions of
this paper are:

1) A magnetic equivalent circuit is proposed and used
to derive analytical equations describing the magnetic
model and the force production. The corresponding state
equations needed for the dynamic model are presented.

2) Using the finite-element method (FEM), the magnetic
characteristics of an example two-phase machine and a
prototype three-phase machine are analyzed, including
the influence of the air-gap variation, x-axis position
dependency, and magnetic saturation.

3) A simple method for estimating the parameters of the
proposed model from the FEM or measured data is
presented.

The proposed model is validated by means of experiments.
As compared to our earlier conference paper [16], we apply
a physically more feasible equivalent circuit, which leads to
improvements in the resulting magnetic model. The effect of
the air gap on the saturation state is studied in more detail.
Furthermore, we present new FEM and experimental results.
It is also to be noted that a control system based on the
developed model as well as experimental results of levitation
and propulsion tests were recently presented in [15].

II. GENERIC DYNAMIC MODEL

To provide a solid basis, we first introduce a generic
dynamic model based on the fundamental principles of elec-
tromechanical energy conversion [17], [18]. A three-phase
bearingless FSPM linear machine, consisting of a toothed rail
and a mover, is considered. The rail is composed of electric
steel sheets. The mover includes both the PMs and a three-
phase winding. The core losses of the machine are omitted
(but they could be taken into account separately, if needed).

A. αβ Coordinates

Since the three-phase winding is either delta-connected or
the star point is not connected, the zero-sequence current
cannot flow. Therefore, the zero-sequence components cannot
contribute to the power or forces, and an equivalent two-phase
αβ model can be used. Using the phase currents ia, ib, and
ic as an example, the αβ components are obtained as[

iα
iβ

]
=

√
2

3

[
1 −1/2 −1/2

0
√

3/2 −
√

3/2

]iaib
ic

 (1)

where power-invariant scaling is used. The same transforma-
tion applies to the flux linkages and the voltages.

Fig. 2 illustrates a conceptual model of a two-phase FSPM
linear machine with the simple 4-slot/5-pole configuration.
This model includes essentially the same phenomena as en-
countered in three-phase machines. Therefore, to avoid adding
too much complexity, we apply the conceptual model to
explain the key concepts. The dominant flux paths of the PMs
are sketched in Fig. 2. When the mover is positioned at x = 0,
the PM flux linking with the α-phase coils has its maximum
value, while no flux links with the β-phase coils. It can be
seen that the polarity of the phase flux linkage ψα is reversed,
as the mover travels from x = 0 to x = τ/2, where τ is
the pole pitch of the rail. It can also be seen that some PM
flux paths do not link with the windings. These PM leakage
fluxes cannot be observed from the electrical terminals, but
they contribute to the magnetic field energy.

Fig. 3(a) shows a generic lumped-element dynamic model
for the bearingless linear machine in αβ coordinates. The
voltage equations are

dψα

dt
= uα −Riα

dψβ

dt
= uβ −Riβ (2)

where ψα, ψβ are the flux-linkage components, uα, uβ are the
voltage components, and R is the resistance. In the general
case, the currents can be expressed as

iα = iα(ψα, ψβ , x, y) iβ = iβ(ψα, ψβ , x, y) (3)

where y is the air gap. Alternatively, the reciprocal relation-
ships ψα = ψα(iα, iβ , x, y) and ψβ = ψβ(iα, iβ , x, y) could
be used. However, choosing the flux linkages as independent
state variables in (3) simplifies inclusion of the magnetic
saturation in the model. Furthermore, this choice allows the
voltage equations to be kept in their simplest possible form.

In accordance with Fig. 3(a), the rate of change of the
magnetic field energy W is

dW

dt
= iα

dψα

dt
+ iβ

dψβ

dt
− Fx

dx

dt
− Fy

dy

dt
. (4)

Since the coupling magnetic field is assumed to be lossless,
the thrust and normal forces, respectively, are [17], [18]

Fx = −∂W (ψα, ψβ , x, y)

∂x
Fy = −∂W (ψα, ψβ , x, y)

∂y
. (5)

It is to be noted that the magnetic field energy W is generally
nonzero at ψα = ψβ = 0 due to the PM leakage fluxes.
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Fig. 3. Generic dynamic model for a bearingless linear machine: (a) equivalent
circuit model in αβ coordinates; (b) corresponding block diagram in dq
coordinates. Time derivatives are marked with the dots.

B. dq Coordinates

FSPM machines can be effectively modeled in dq coordi-
nates, as demonstrated in the pioneering paper [1]. The model
in αβ coordinates can be transformed to dq coordinates with
no loss of information. As an example, the current components
are transformed to dq coordinates using[

id
iq

]
=

[
cos(ϑm) sin(ϑm)
− sin(ϑm) cos(ϑm)

] [
iα
iβ

]
(6)

where the position x of the mover with respect to the rail is
expressed in radians as ϑm = 2πx/τ . The flux linkages and
the voltages are transformed similarly.

The voltage equations (2) transformed to dq coordinates are

dψd

dt
= ud −Rid + ωmψq (7a)

dψq

dt
= uq −Riq − ωmψd (7b)

where ψd, ψq are the flux-linkage components, ud, uq are
the voltage components, and ωm = (2π/τ) · (dx/dt) is the
electrical angular speed. The currents can be expressed as
functions of the new state variables,

id = id(ψd, ψq, x, y) iq = iq(ψd, ψq, x, y). (8)

Applying the coordinate transformations to (4) leads to

dW

dt
= id

(
dψd

dt
− ωmψq

)
+ iq

(
dψq

dt
+ ωmψd

)
− Fx

dx

dt
− Fy

dy

dt
(9)

which directly yields the expressions for the thrust and normal
forces, respectively,

Fx = −∂W (ψd, ψq, x, y)

∂x
+

2π

τ
(ψdiq − ψqid) (10a)

Fy = −∂W (ψd, ψq, x, y)

∂y
(10b)

expressed by means of dq variables. Fig. 3(b) shows the
block diagram representation of the generic model in dq
coordinates. The coordinate transformations between the αβ
and dq coordinates are also shown. This electrical subsystem
model is easy to supplement with a mechanical subsystem
model: the forces Fx and Fy are the inputs and the speeds
dx/dt and dy/dt are the outputs of the mechanical subsystem
model.

In well-designed linear machines, the spatial harmonics and
the end effects are minor and can be omitted in the dynamic
models.1 Correspondingly, the remaining part of this paper
assumes that the model in dq coordinates is independent of x.
Therefore, the currents are of the form

id = id(ψd, ψq, y) iq = iq(ψd, ψq, y) (11)

and the field energy is of the form W = W (ψd, ψq, y). The
thrust-force expression reduces to

Fx =
2π

τ
(ψdiq − ψqid). (12)

The expression for the normal force reduces to

Fy = −∂W (ψd, ψq, y)

∂y
. (13)

Even if the air gap y is not directly visible in (12), the thrust-
force production of the bearingless machine depends on the
air-gap value via the current components in (11).

C. Example Two-Phase Machine

To illustrate some characteristics of bearingless FSPM linear
machines, a simple two-phase machine is used as an example
in this subsection. Fig. 4(a) shows the flux density at x = 0 and
iα = iβ = 0, solved using the FEM. At this position, the flux
linkage ψα has its maximum value and the flux linkage ψβ =
0. Fig. 4(b) shows the phase flux linkages as a function of x.
It can be seen that the flux linkages vary almost sinusoidally
even for this simple machine.

Fig. 4(c) shows the flux linkages as a function of the air
gap y at constant currents and constant x. At small air-gap
values, the PM flux saturates the parts of the iron that the
q-axis flux passes through, as can be seen in Fig. 4(a). As
the air gap increases from zero, the saturation caused by the
PM flux decreases, which explains the increase in ψq. After
approximately y = 4 mm, the iron comes out of the saturation
and the effect of the decreasing ψq with increasing air gap
becomes predominant. In the d-axis, this effect is not visible,
since the PM flux is contributing to ψd, which always has a
negative slope with respect to the air gap. In Fig. 4(c), the

1This assumption underlies most dynamic machine models presented in the
literature [18], including the model for regular FSPM machines [1] and the
textbook models for various bearingless machines [4].
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Fig. 4. FEM results for an example two-phase machine: (a) flux density
produced by the PMs at x = 0 and iα = iβ = 0; (b) αβ flux linkages as
a function of the position x at iα = iβ = 0; (c) flux linkage components at
constant currents plotted as a function of the air gap y (increasing far beyond
the nominal value for illustration purposes). In (c), the dashed lines show the
flux linkages obtained with a linear BH curve for iron.

dashed lines show the FEM results produced with a linear BH
curve for the iron. This comparison highlights the effect of
the saturation on the flux linkages especially at low air-gap
values.

Fig. 4(a) also shows that some PM flux paths do not link
with the coils but cross the air gap, as already mentioned
in connection with the conceptual machine in Fig. 2. Since
these PM leakage fluxes depend on the air-gap length y, they
contribute to the magnetic field energy and the normal-force
production.

φr

am
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bty

φr φr

am

φr

id id iq iq id id iqiq

am am

bsy

as as as

bsybtybsy bsy bty bty

Fig. 5. Simplified magnetic equivalent circuit of the conceptual machine. This
circuit is used to derive the proposed magnetic model. The reluctance of the
tooth is bty and the reluctance of the slot is as + bsy, where as, bs, and bt
are assumed to be constants. For simplicity, unity turns are assumed in the
circuit.

III. PROPOSED MAGNETIC MODEL

The proposed magnetic model is developed in dq coordi-
nates, where the voltage equations are given by (7). As already
mentioned, the spatial harmonics are omitted. Since the PM
flux links only with the d-axis winding, the currents (11) can
be expressed in a more specific form

id = Γd(ψd, ψq, y)ψd − im(y) (14a)
iq = Γq(ψd, ψq, y)ψq (14b)

where Γd and Γq are the inverse inductances and im is the
equivalent magnetomotive force (MMF) of the PMs seen from
the terminals. The inverse inductances and the equivalent
MMF depend on the air gap y. The inverse inductances
may also depend on the flux linkages due to the magnetic
saturation. The magnetic field energy at ψd = ψq = 0 depends
on the air gap and is denoted by w0 = w0(y). This field energy
is nonzero due to the PM leakage fluxes. In order to find
suitable algebraic forms for the functions Γd, Γq, im, and w0,
magnetic equivalent circuits are considered in the following
subsection.

A. Magnetically Linear Case

First, the magnetic saturation is omitted. A simplified
magnetic equivalent circuit shown in Fig. 5 is considered.
This circuit is formed based on the dominant flux paths of
the conceptual machine shown in Fig. 2. Without loss of
generality, unity turns for the coil MMFs are assumed. The
PMs are modeled using the Norton equivalent circuit [19],
consisting of the internal reluctance am and the remanent
flux φr of the magnet, which are both constant. The constant
reluctance as models the reluctance between the rail poles.
The reluctances bsy and bty depend on the air gap, bs and bt
being constants.

For the circuit in Fig. 5, the inverse inductances Γd(y) and
Γq(y) and the equivalent MMF im(y) are rational functions
of the air gap y, as shown in the Appendix. Using (14), the
total magnetic field energy can be solved [17], [18]

W =
Γd(y)ψ2

d + Γq(y)ψ2
q

2
− im(y)ψd + w0(y). (15)
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The magnetic field energy w0 at ψd = ψq = 0 is of the form

w0(y) =
Γd(y)ψd0(y)2

2
+

fy

1 + cy
(16)

where c and f are constants and ψd0(y) is the d-axis flux
linkage at id = 0, i.e.,

ψd0(y) =
im(y)

Γd(y)
. (17)

The last term in (16) is the field energy at id = iq = 0. It is
worth noticing that the equivalent MMF im has an effect on
both the total field energy W in (15) and the field energy
term w0 in (16). The analytical expression for the normal
force can be calculated using (13) and (15). However, the
force expression becomes very long in the case of rational
functions.

To simplify and generalize the model, we approximate the
rational functions Γd(y), Γq(y), and im(y) with their series ex-
pansion at y = 0. Typically, the first-order expansion suffices
for the inverse inductances and the second-order expansion is
required for the equivalent MMF, i.e.,

Γd(y) = ad + bdy (18a)
Γq(y) = aq + bqy (18b)

im(y) = im0 + bmy + b′my
2 (18c)

where ad, aq, bd, bq, im0, bm, and b′m are constants. The
constants can be fitted based on the FEM or measured data.
Alternatively, they could be approximated by means of a
magnetic equivalent circuit, whose reluctances are calculated
using the geometry. Applying (13), (15), and (18), the normal
force expression becomes

Fy = −
bd
[
ψ2
d − ψd0(y)2

]
+ bqψ

2
q

2

+ (bm + 2b′my)[ψd − ψd0(y)]− f

(1 + cy)2
. (19)

The voltage equations (7) together with the magnetic model
consisting of (12), (14), (18), and (19) describe the dynamic
model of the bearingless FSPM linear machine in the mag-
netically linear case. Furthermore, the block diagram shown
in Fig. 3(b) is valid and directly applicable with the above-
mentioned magnetic model.

B. Inclusion of the Magnetic Saturation

The effects of the magnetic saturation are modeled as a
function of the flux linkage magnitude by adding the same
nonlinear reluctance term to the d- and q-axis inverse induc-
tances, i.e.,

Γd(ψd, ψq, y) = ad + bdy + ac(ψ
2
d + ψ2

q) (20a)

Γq(ψd, ψq, y) = aq + bqy + ac(ψ
2
d + ψ2

q) (20b)

im(y) = im0 + bmy + b′my
2 (20c)

where ac is constant. Similar saturation models have been used
in [20], [21]. It can be shown that the reciprocity condition
∂id/∂ψq = ∂iq/∂ψd holds, i.e., the nonlinear magnetic circuit
is lossless [17]. If needed, the saturation model could be

Fig. 6. Inverse inductances and equivalent MMF at constant flux linkages as
functions of the air gap for the two-phase example machine. The dashed lines
show the FEM results. The solid lines show the results from the model (20),
fitted to the FEM data.

elaborated by including separate reluctance terms for self-axis
and cross-axis saturation [21].

The total magnetic field energy corresponding to (20) can
be expressed as

W =
Γd(ψd, ψq, y)ψ2

d + Γq(ψd, ψq, y)ψ2
q

2
− im(y)ψd

−
ac(ψ

2
d + ψ2

q)2

4
+ w0(y) (21)

where the field energy function w0 at ψd = ψq = 0 generally
differs from the magnetically linear case, cf. (15). However, for
simplicity, we assume w0 equal to the linear case. Under this
assumption, the normal force expression (19) is still valid, if
ψd0(y) is calculated using the linear inverse inductance Γd(y)
given in (18a). It is worth noticing that the nonlinear magnetic
circuit is physically consistent despite this assumption. In case
ac = 0 is chosen, the nonlinear model reduces to the linear
model.2

For illustrative purposes, the model (20) was fitted to the
FEM data of the two-phase example machine, cf. Fig. 4(a).
Fig. 6 shows the inverse inductances Γd and Γq and the
equivalent MMF im at constant flux linkages as functions of
the air gap. The characteristics obtained both from the FEM
directly and from the fitted model are shown. It can be seen
that the model (20) matches very well with the FEM results
up to the air gap of about y = 2.5 mm. The selected order
of the series expansion used in the model is sufficient to
predict the behavior up to the air-gap values, which can be
expected during operation. At larger air gaps, the behavior
changes significantly due to the decreasing saturation effect,
as demonstrated in Fig. 4(c).

2If desired, ψd0(y) could be solved from Γd(ψd0, 0, y)ψd0 − im(y) = 0
in the saturated case. With (20), this is a cubic equation, leading to a
complicated expression for Fy.



6

√√√√√− 1

Fy +
bd[ψ2

d − ψd0(y)2] + bqψ
2
q

2
+ (bm + 2b′my)[ψd − ψd0(y)]

= θ1 + θ2y (24)

Fig. 7. Geometry of a prototype three-phase FSPM machine. The crosses and
dots define the positive direction of the coil currents. This design is used in
the FEM analysis and experiments.

TABLE I
FITTED MODEL PARAMETERS FOR

THE PROTOTYPE THREE-PHASE MACHINE

Parameter Value Unit

ad 4.4 1/H
aq 4.1 1/H
ac 7.1 1/[H·(Vs)2]
bd −0.32 1/(H·mm)
bq −0.21 1/(H·mm)
im0 3.8 A
bm −1.4 A/mm
b′m 0.17 A/(mm)2
f 6.0 kN
c 0.34 1/mm

IV. PARAMETER ESTIMATION

The parameters of the model depend on the machine geome-
try. However, the aim is not to calculate these parameters based
on the dimensions of the machine, but rather to estimate them
using the data from the FEM or from experiments. There are
different methods to fit the model parameters. As an example,
one fitting procedure is briefly explained in this section.

The model (20) is linear in parameters and it can be
reformulated as a regression model

i = ϕTθ (22)

where the regressed variable is i = [id, iq]T. The regressors
and the parameter vector, respectively, are

ϕ =



ψd 0
0 ψq

(ψ2
d + ψ2

q)ψd (ψ2
d + ψ2

q)ψq

yψd 0
0 yψq

−1 0
−y 0
−y2 0


θ =



ad
aq
ac
bd
bq
im0

bm
b′m


. (23)

Linear least squares (LLS) can be used to solve the parameter
vector, if the data set {id(n), iq(n), ψd(n), ψq(n), y(n)}, n =
1 . . . N , is available. The number of samples N should be

larger than the number of parameters. Thus, the parameter
estimation problem reduces to solving a set of linear equations.
Neither initial values nor cost functions are needed. As an
alternative, fitting could be performed in multiple consecutive
steps, as described in [21].

The normal-force expression (13) can also be reformulated
as a regression model (24), shown at the top of this page.
Hence, if the samples of Fy are known, the remaining two
unknown parameters are obtained as f = 1/θ21 and c = θ2/θ1
by means of the LLS method.

V. RESULTS

In this section, a prototype three-phase machine is analyzed
by means of the FEM and experiments. Fig. 7 shows a part of
the machine cross-section. The geometry is the result of the
machine design optimization, aimed to improve the efficiency
and material usage. The rail teeth shape is chosen to improve
the thrust force generation in one x-axis direction (2.6%
increase). This effect is small and thus not taken into account
explicitly in the model. One machine unit consists of 12 mover
slots and 14 rail poles. There are also additional teeth at both
ends of the mover to minimize the end effects and to reduce
the cogging force [22]. The additional teeth are included in
the FEM model.

The flux linkages (ψd, ψq) and the force components
(Fx, Fy) were solved as functions of the currents (id, iq) and
the air gap y in predefined operating points using the static
FEM [23]. The operating points were chosen to cover the
whole operating range of the machine in terms of allowable
currents and possible air-gap variation. The results of the FEM
computation were used for estimating the parameters of the
proposed model as described in Section IV. Table I gives the
resulting parameters for the prototype three-phase machine.
In the following subsections, the proposed model is invariably
parametrized using the parameters of Table I.

A. Comparison of the Proposed Model to the FEM Data

The results predicted by the proposed model are compared
to the FEM data in Figs. 8, 9, and 10. Most notable dependen-
cies are shown. Fig. 8 shows the relationship between the flux
linkages and the currents at selected constant air gaps. In the
case of the proposed model, these characteristics are obtained
from (14) and (20). Based on the FEM results, it was found out
that both the d- and q-axes of the machine saturate strongly.
It can be seen that the proposed model matches the FEM data
very well.

Fig. 9 shows the presence of cross-saturation in the machine.
The operating points simulated with the FEM are shown with
blue markers. The 3D surfaces show that the proposed model
is able to adequately take into account the cross-saturation
phenomena, when fitted into the FEM data.
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(a) (b)

Fig. 8. Flux linkages as function of currents at constant air-gap values: (a) ψd as a function of id at iq = 0; (b) ψq as a function of iq at id = 0. The
markers show the FEM results, and the solid lines show the results from the proposed model.

(a) (b)

Fig. 9. Currents as function of flux linkages at constant air gap y = 1.25 mm: (a) id ; (b) iq as a function of ψq and ψd. The blue circles represent the
FEM results and the surfaces show the results from the proposed model. The red lines show the differences between the model and the FEM data.

Figs. 10(a) and 10(d) show the nonlinear dependency of the
forces Fy and Fx on the current components id and iq. It is
also worth noticing that the forces were not fitted into the FEM
force data, but rather calculated with (12) and (19) based on
the fitted magnetic model parameters shown in Table I.

Figs. 10(b) and 10(e) show the forces Fx and Fy as
functions of the air gap at constant dq currents. It can be
seen that the model is able to predict the forces at close to
zero air gap and at more than twice the nominal air gap.
Figs. 10(c) and 10(f) show the forces Fx and Fy as functions
of the mover position x at constant air gap y = 1.25 mm
and at constant dq currents [which correspond to sinusoidally
varying phase currents as a function of x, cf. (1) and (6)].
Based on the FEM, the effect of the x position on the forces
is insignificant. Thrust force ripple is low, which is a common
feature in FSPM machines [24]. It can also be seen that the
proposed model predicts the force values with good accuracy.
Overall, the characteristics of the proposed model are smooth,
predictable, and physically consistent, which is important in
control applications. The model was also fitted to the FEM

data of another FSPM linear machine design, and the fitting
showed equally good results.

B. Experiments

Fig. 11 shows the experimental setup. The mover consists of
two converter-fed prototype machine units, whose geometry is
shown in Fig. 7. The machine units are mounted in a double-
sided configuration with the rails fixed on a stationary vertical
beam. The nominal air gap of the system is 1.05 mm. The
total mass of the mover is 100 kg. The maximum continuous
current is 10 A. The nominal thrust force of each machine is
600 N. The nominal travel speed is 1 m/s.

The induced phase voltages of the prototype three-phase
FSPM machine were measured at a constant mover velocity
in a no-load condition (id = iq = 0) at two mechanically
fixed air-gap positions (y = 0.5 mm and y = 2 mm). Fig. 12
shows the corresponding phase flux linkages, calculated from
the measured phase voltages. As expected, the phase flux
linkages vary almost sinusoidally and depend on the air
gap. Furthermore, the phase flux linkages include a clearly
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Forces obtained from the FEM results (shown with markers) and from the model (shown with solid lines): (a) Fx as a function of iq at id = 0;
(b) Fx as a function of the air gap y at x = 0 and id = 0; (c) Fx as a function of the mover position x at y = 1.25 mm and id = 0; (d) Fy as a function
of id at iq = 0; (e) Fy as a function of the air gap y at x = 0 and iq = 0; (f) Fy as a function of the mover position x at y = 1.25 mm and iq = 0.

visible zero-sequence component, which originates from the
additional flux-guiding teeth at both ends of the prototype
machine unit [22]. However, since the zero-sequence current
cannot flow in the three-phase winding without the neutral
wire, the zero-sequence flux linkage does not contribute to the
force production, and it does not need to be taken into account
in the model. Fig. 12 also shows the corresponding phase flux
linkages computed with the FEM (where the flux-guiding teeth
were included) and with the proposed model. It can be seen
that the results from the model match comparatively well with
the measured and FEM results. The αβ components match
even better, since the zero-sequence component disappears in
the transformation (1).

Fig. 13 presents the machine configuration that is used for
measuring the attraction force. The mover could be levitated
in the y direction by adjusting the currents of the two machine
units. However, for the purposes of the force measurements,
the mover was fixed into desired constant y positions using the
four load cells, mounted at each corner of machine unit 1, and
the differential normal force ∆Fy = Fy1−Fy2 was measured
at different d-axis currents. The d-axes currents are selected
to be id1 = −id2 and varied between 0 and 12 A. The q-axis
currents were kept at zero, iq1 = iq2 = 0.

The movement in the x direction was mechanically disabled
by using a counterweight for compensating the gravitational
force acting on the mover. In addition to ∆Fy, the air-gap
lengths and the currents of both machine units were measured.
The differential air gap is defined as ∆y = y2−y1. Naturally,

the differential air gap is zero at the nominal air gap.
Fig. 14 shows the measured forces together with the forces

from the FEM and from the proposed model at three dif-
ferential air gaps (∆y = −0.2 mm, ∆y = −0.8 mm, and
∆y = −1.4 mm). It can be seen that the results from the
experiments, FEM, and model match well. The forces from the
FEM data and from the model differ more from the measured
forces in the case of the largest air gap. The larger discrepancy
between the measured and FEM-based forces at id1 = 3 A
are due to the difference in the magnetic properties of the
soft magnetic material used in the prototype and in the FEM
model. Inaccuracies in the force measurement procedure and
manufacturing tolerances also contribute to the discrepancy.
However, the accuracy of the proposed model should be
sufficient for model-based real-time control, as can be seen,
e.g., from the results in [15].

VI. CONCLUSIONS

The magnetic characteristics of a linear bearingless FSPM
machine were analyzed. Based on the magnetic equivalent
circuit, a set of analytical equations in dq coordinates was
derived to describe the currents and the force production of
the machine. The effects of the air-gap variation and magnetic
saturation were taken into account. The proposed model can be
used for real-time control and estimation in bearingless drive
systems. Due to its generality, the model can be easily applied
to different machine designs. The model parameters can be
estimated from the FEM or measured data. As an example, the
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Fig. 11. Photo of the experimental setup showing a vertical double-sided rail
with a mover composed of bearingless FSPM machines. The gravitational
force acting on the mover is compensated with a counterweight.

proposed model was fitted to the FEM data computed for the
three-phase prototype machine. The validity of the FEM data
and the proposed model was evaluated by measuring the no-
load flux linkages and normal forces of the prototype machine
at different air-gap values.

APPENDIX
ANALYTICAL EXPRESSIONS FOR THE CONCEPTUAL

TWO-PHASE MACHINE

The simplified magnetic equivalent circuit shown in Fig. 5
is considered. Since as � bsy, we assume bs = 0 in the
following derivation for simplicity. Using the standard circuit
theory, all the fluxes of the circuit are solved as functions of id,
iq, and y. Then, the flux linkage ψd is obtained by summing
the fluxes going through the d-axis MMF sources, assuming
the two d-axis coils to be connected in series. The flux linkage
ψq is solved similarly. These flux linkages expressions yield
the inverse inductances (25), shown at the top of the next
page.

From Fig. 5, the magnetic field energy w0 at ψd = ψq = 0
can be derived using the circuit theory, as explained in [19].
The result is (16) with the constants

f = 8φ2r bt c =
am + 4as
amas

bt. (26)

The total field energy is given by (15). The analytical expres-
sion for the normal force could be calculated using (13), (15),

(a)

(b)

Fig. 12. Measured phase flux linkages as function of the mover position x
at two air-gap values: (a) y = 0.5 mm; (b) y = 2 mm. For comparison, the
results from the FEM and from the proposed model are also shown.

∆Fy = Fy1 − Fy2

∆y = y1 − y2

y2 y1

Fy2

Rail

Fy1

Top view

Side view

x

Load cell
Unit 1Unit 2

Fig. 13. Experimental configuration for measuring the differential normal
force ∆Fy of a double-sided bearingless FSPM machine, using four load
cells located at each corner of machine unit 1. The differential air gap ∆y
and the d-axis currents id1 = −id2 were varied.

and (25). However, this expression is very long and valid only
for the geometry of the conceptual model without the magnetic
saturation.

The expressions for the constant coefficients appearing in
the series expansion (18) could be calculated from (25). The
constants ad, aq, bd, bq, and b′m are positive, while the constant
bm is negative for the conceptual model.
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(a) ∆y = −0.2 mm, id1 = −id2 (b) ∆y = −0.8 mm, id1 = −id2 (c) ∆y = −1.4 mm, id1 = −id2

Fig. 14. Measured differential normal force ∆Fy as a function of the d-axis current: (a) ∆y = −0.2 mm; (b) ∆y = −0.8 mm; (c) ∆y = −1.4 mm. For
comparison, the results from the FEM and from the proposed model are also shown.

Γd(y) =
a2ma

2
s + 2amas(am + 3as)bty + (a2m + 6amas + 8a2s )b2ty

2

2[amas(2am + 3as) + 2(a2m + 5amas + 4a2s )bty + (3am + 8as)b2ty
2]

(25a)

Γq(y) =
ama

2
s + 2as(am + as)bty + (am + 2as)b

2
ty

2

2[as(2am + as) + 2(am + 3as)bty + b2ty
2]

(25b)

im(y) =
2[ama

2
s + 2a2s bty − (am + 2as)b

2
ty

2]amφr
amas(2am + 3as) + 2(a2m + 5amas + 4a2s )bty + (3am + 8as)b2ty

2
(25c)
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