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ARTICLE

Time and classical equations of motion from
quantum entanglement via the Page and Wootters
mechanism with generalized coherent states
Caterina Foti 1,2,3✉, Alessandro Coppo1,2, Giulio Barni1, Alessandro Cuccoli 1,2 & Paola Verrucchi 1,2,4

We draw a picture of physical systems that allows us to recognize what “time” is by requiring

consistency with the way that time enters the fundamental laws of Physics. Elements of the

picture are two non-interacting and yet entangled quantum systems, one of which acting as a

clock. The setting is based on the Page and Wootters mechanism, with tools from large-N

quantum approaches. Starting from an overall quantum description, we first take the classical

limit of the clock only, and then of the clock and the evolving system altogether; we thus

derive the Schrödinger equation in the first case, and the Hamilton equations of motion in the

second. This work shows that there is not a “quantum time”, possibly opposed to a “classical”

one; there is only one time, and it is a manifestation of entanglement.
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The notion of time is deeply rooted into our perception of
reality, which is why, for centuries, time has entered
Physics as a fundamental ingredient that is not to be

questioned. Then, general relativity (GR) and quantum
mechanics (QM) intervened in opposite directions: GR gave time
the same status of position, while QM made time a parameter,
external to the theory and not recognizable as an observable.
While the introduction of “spacetime” in GR appears as an ele-
gant intuition, fully consistent with classical physics, the fact that
time cannot be treated as any other observable in QM is dis-
turbing. As a consequence, discussions about the role of time in
QM have been developed, leading to different proposals on how
to overcome what seems a serious inconsistency of the theory.
Reporting upon these discussions goes beyond the scope of this
paper; therefore, in what follows we will only refer to the proposal
that provides our starting point. This was introduced by D. N.
Page and W. K. Wotters in 19831 to formalize the idea that the
expression “at a certain time t” should be understood as “con-
ditioned to a clock being in a state labeled by a certain value t.”
This proposal, to which we will refer as the “Page and Wootters
(PaW) mechanism,” is based on three assumptions: (i) the clock
does not interact with the system to which it provides the para-
meter t, but (ii) it is entangled with it; moreover, (iii) clock and
system together are in an eigenstate of the total Hamiltonian
(with eigenvalue that can be set equal to zero, for the sake of
simplicity and without loss of generality). The PaW mechanism
has been extensively used, and its assumptions scrutinized, in the
recent literature, both from the theoretical and the experimental
viewpoint2–16. Discussing about the many questions and answers
on the PaW mechanism is not the scope of this work; however,
references throughout the paper should help the reader to navi-
gate the relevant literature, and our viewpoint on the contribution
that our results furnish to the overall discussion on the
mechanism itself is described in the concluding section.

Most discussions about time in QM are aimed at under-
standing what is the status of time in the quantum description, as
if there were no problem as far as one stays classical. However, if
one believes that there do not exist quantum systems and classical
ones, but rather that some quantum systems behave in a way that,
under certain conditions, is efficiently described by the laws of
classical physics, then there must be just one time. In other terms,
the procedure used to identify what time is in QM must have a
well-defined classical limit, fully consistent with classical physics
and the way time enters the classical equations of motion (e.o.m.).
We construct such a procedure, demonstrating that it consistently
produces not only the Schrödinger equation for quantum systems
but also the Hamilton e.o.m. for classical ones, with the parameter
playing the role of time being the same in both cases. We tackle
the quantum-to-classical crossover via the large-N approach
based on Generalized Coherent States (GCS) from refs. 17–21,
where it is demonstrated that the theory describing a quantum
system for which GCS can be constructed flows into a well-
defined classical theory if few specific conditions upon its GCS
hold in the N→∞ limit (N quantifies the number of microscopic
quantum components, sometimes referred to as the number of
degrees of freedom or dynamical variables, in the literature). By
“classical limit,” we will hereafter mean the large-N limit with the
above conditions on GCS enforced.

In this work, we consider a quantum composite system made
of two non-interacting and entangled objects, dubbed clock and
evolving system, whose quantum state is expressed via a para-
metric representation with GCS for the clock (see Fig. 1); from
this representation, a real parameter φ emerges, with features that
make it a good candidate for being recognized as time. We then
take the classical limit for the clock only (see Fig. 2) and derive an
equation for the physical states of the evolving system, which is

the Schrödinger equation, once the above-mentioned parameter φ
is given the role of time. We also obtain an inequality that pro-
vides relevant clues for understanding the origin, nature, and
meaning of the energy–time uncertainty relation. Finally, we
introduce GCS for the evolving system, take its classical limit (see
Fig. 3), and get to our most relevant result: the Hamilton e.o.m. of
classical physics are derived, with the same parameter φ as time.

Results
A quantum clock for a quantum system. We consider a com-
posite quantum system Ψ= C+ Γ, with C the clock and Γ the
evolving system; we assume that Ψ is isolated, with Hamiltonian
Ĥ, and in a pure state Ψj ii, which is entangled w.r.t. the partition
C and Γ; as in ref. 4, the double bracket indicates states in
HΨ ¼ HC �HΓ, with H� the Hilbert space of *=Ψ, C, Γ.

Referring to the PaW mechanism, we enforce

Ĥ Ψj ii ¼ 0 ; ð1Þ
and take C and Γ non-interacting, i.e.

Ĥ ¼ ĤC � ÎΓ � ÎC � ĤΓ ; ð2Þ
where the irrelevant minus sign in front of the term acting on Γ is
our choice for the sake of a lighter notation. As for the state Ψj ii,

Fig. 1 A quantum clock for a quantum system. The clock C and the
evolving system Γ make the isolated system Ψ, which is in the entangled
state Ψj ii.

Fig. 2 A classical clock for a quantum system. The state of the classical
clock C is identified by the real variables ϱ and φ, while jϕρðφÞi is the state
of the quantum system Γ that parametrically depends on (ϱ, φ).
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its most general expression is Ψj ii ¼Pγξcγξ ξj i � γj i, where
f ξj igC and f γj igΓ are orthonormal bases of HC and HΓ,
respectively; the coefficients cγξ 2 C are such that ∑γξ∣cγξ∣2= 1
due to the normalization of Ψj ii. Notice that if Ψj ii is entangled,
there cannot exist orthonormal bases f ξj igC and f γj igΓ such that
only one coefficient cγξ is different from zero.

In view of dealing with a parameter that must be continuous to
represent time, we resort to a parametric representation (see
“Methods”) of Ψj ii with GCS for the clock, and write

Ψj ii ¼
Z
MC

dμðΩÞχðΩÞ Ωj i � ϕðΩÞj i ; ð3Þ

where Ωj i are GCS defined via the group-theoretical
construction22,23 for the Lie group GC associated with the algebra
gC to which the Hamiltonian ĤC belongs. TheM-tuples Ω= (Ω1,
Ω2. . .ΩM), with Ωm 2 C8m, identify points on MC , which is a
2M-dimensional manifold with a symplectic structure, and M
related to the dimension of gC . The measure dμ(Ω) is invariant w.
r.t. the elements of GC and ensures that GCS form a complete set
uponHC , thus providing a resolution of the identity. The element
ϕðΩÞj i 2 HΓ is normalized, and hence describes a physical state
of Γ, parametrically dependent on Ω. Notice that the Ω-
dependence of ϕðΩÞj i survives iff Ψj ii is entangled. As for χ
(Ω), it is defined24 (up to an arbitrary phase factor) through
χ2ðΩÞ ¼Pγj

P
ξcγξ Ωjξh ij2 ; and can hence be taken real without

loss of generality. The above function χ2(Ω) is a normalized
probability distribution on MC whose structure is strongly
related to the entanglement property of Ψj ii; in particular, if Ψj ii
is entangled, χ2(Ω) is a superposition of different un-normalized
distributions jPξcγξ Ωjξh ij2.

There is a certain degree of freedom in the group-theoretic
construction of GCS (see, for instance, Tables I and II in ref. 25),
due to the possibility of choosing an arbitrary state Gj i from
which to start the construction, the so called reference state, and
different sets of generators for gC . For the non-semisimple algebra
h4 defining the harmonic-oscillator coherent states, for instance, it
is customary to choose the set fây; â; âyâ; Îg. When the
semisimple Lie algebras suð2Þ or suð1; 1Þ, defining the spin or
pseudo-spin coherent states, respectively, are considered, the

standard choice is the set fŜ�; Ŝþ; Ŝzg in the first case and

fK̂�
; K̂

þ
; K̂0g in the second one, being Ŝz n K̂0 diagonal operators

and Ŝ
�
; Ŝ

þ n K̂�
; K̂

þ
raising ones. In fact, in the case of

semisimple algebras different choices of the generators are
generally embedded in a different choice of the Cartan decom-
position (and hence of the so called Cartan basis). To this respect,
we remind that the Cartan decomposition classifies generators
into diagonal, fD̂δg, and raising operators, fR̂m; R̂�mg, according
to ½D̂δ; D̂θ� ¼ 0; ½D̂δ; R̂m� ¼ dδmR̂m; ½R̂m; R̂�m� ¼

P
δdδmD̂δ , and

½R̂m; R̂m0 � ¼ cmm0 R̂mþm0 , where the coefficients fdδmg; fcmm0 g are
the so called structure constants. Referring again to the familiar
cases of suð2Þ and suð1; 1Þ, it is M= 1, with R̂1 ¼ Ŝ

�
and K̂

�
. If

spin squeezing is also considered, it isM= 2, with R̂2 ¼ ðŜ�Þ2. Let
us finally remind that the harmonic-oscillator algebra h4 is not
semisimple, and a Cartan decomposition cannot hence be defined
for it. Nevertheless, the usual choice of generators corresponds to
an analogous decomposition, with (âyâ; Î) diagonal and (ây; â)
creation/annihilation operators. Given the relevance of the
harmonic-oscillator coherent states, we have specifically addressed
their case at the end of the “Methods” section.

We choose the Cartan basis so that ĤC depends linearly on one
of its diagonal operators only, say ĤC ¼ ςD̂1 þkÎC , where k is a
real arbitrary constant and ς2= ±1 such that ϵ:= ςd1ℓ is real and
positive for some ℓ, which ensures ĤC is Hermitian. Notice that
ς2=+1 or −1 depending on whether MC is compact or non-
compact, respectively; consequently, ς is either 1 or i, and the
functions having argument proportional to ς have a different
nature, trigonometric or hyperbolic, respectively, throughout the
manuscript (see Sec.3C.1.a of ref. 25 for more details). As for the
parameter ϵ, due to the definition of ĤC it embodies both _ and
the energy scale of the clock. For the sake of a lighter notation, we
also normalize the raising and diagonal operators so that
ς2
P

δd
2
δ‘ ! 2. As for the reference Gj i, we set it as the minimal

weight state, R̂m Gj i ¼ 0 8m, which is easily seen to be an
eigenstate of the diagonal operators, D̂δ Gj i ¼ gδ Gj i. In particular,
hence, it is ĤC Gj i ¼ ϵ0 Gj i, with ϵ0:= ςg1+ k, and we will
hereafter take k so that ϵ0= 0.

Once the Cartan basis and the reference state are chosen, GCS
are generated via

Ωj i ¼ eΩ�R̂y�Ω��R̂ Gj i ; ð4Þ
where R̂ :¼ ðR̂1; R̂2:::R̂MÞ; notice that the index m runs from 1 to
M both in Ωm and in R̂m, by definition. GCS as from Eq. (4) are
normalized and non-orthogonal, and expectation values of
operators upon them, ΩjÔjΩ� �

, are often dubbed symbols,
indicated by O(Ω). For more technical details on this section, we
refer the reader to the “Methods” section.

We consider the set of GCS defined by Ωℓ= (0, 0, . . . ,Ωℓ, . . . 0),
with ℓ chosen at will among those for which ϵ is real and positive,
and χ(Ωℓ) ≠ 0. Given that Ω‘ 2 C, we will hereafter use

λ :¼ Ω‘ ¼ ϱe�iφ ; ð5Þ
with ϱ∈ [0,∞) and φ∈ (−∞,∞). Using the BCH formulas proper
to gC , and the definition (4), it can be easily shown that

λj i :¼ Ω‘j i ¼ Nϱe
ΛR̂

y
‘ Gj i ; ð6Þ

with Λ ¼ j tanðςϱÞje�iφ and Nϱ a normalization factor that does
not depend on φ. Furthermore, from the Cartan commutation rule
½D̂δ; R̂‘� ¼ dδ‘R̂‘ it follows ½ĤC; e

Λ�R̂‘ � ¼ ϵΛ�R̂‘e
Λ�R̂‘ , leading to

λh jĤC Ωj i ¼ Gh jNϱe
Λ�R̂‘ĤC Ωj i ¼ iϵ

d
dφ

λjΩh i: ð7Þ

Once defined the partial inner product h � �j ii : HC �HΓ ! HΓ
such that ζh j½hξ Ψj ii� ¼ ð ζh j � ξh jÞ Ψj ii ; 8ξ 2 HC , and 8ζ 2 HΓ,

Fig. 3 A classical clock for a classical system. The state of the classical
clock C is identified by the real variables ϱ and φ, while couples of
canonically conjugated variables (q, p) are used to describe the state of the
classical system Γ.
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we project the constraint (1) in the form

λh jĤ Ψj ii ¼ 0 ; ð8Þ
with Ĥ and Ψj ii as in Eqs. (2) and (3), and find, by virtue of the
result (7),

iϵ
d
dφ

ΦϱðφÞ
�� E

¼ ĤΓ ΦϱðφÞ
�� E

; ð9Þ

where

ΦϱðφÞ
�� E

:¼ hλ Ψj ii ¼
Z
MC

dμðΩÞχðΩÞ λjΩh i ϕðΩÞj i ð10Þ

is an un-normalized element of HΓ, and we have introduced a
notation that highlights the different meaning that the dependence
on ϱ will have in what follows, w.r.t. that on φ. Reminding that ϵ is
real and positive, Eq. (9) has the same form of the Shrödinger
equation, with the real parameter

_

ϵ
φ ð11Þ

playing the role of time, as found resorting to other parametric
representations1,4,14,26. However, Eq. (9) is not the Schrödinger

equation, as ΦϱðφÞ
�� E

is not normalized. This is most often

considered an amendable fault, as from Eq. (9) it follows
d
dφ ΦϱðφÞjΦϱðφÞ
D E

¼ 0 meaning that, should ΦϱðφÞ
�� E

have a

non-vanishing and finite norm, Eq. (9) would also hold for its
normalized sibling. Before considering this point, let us collect some
more clues on the meaning of ϱ and φ.

Getting back to the operator R̂‘ introduced at the beginning of
this section, one can define27,28 the so called “phase-operator” ϕ̂,
via

R̂‘ ¼ ðR̂‘R̂
y
‘Þ

1=2
e�iϕ̂ : ð12Þ

From the commutation rules between elements of the Cartan
basis, reminding that ĤC ¼ ςD̂1 þ kÎC and ϵ ¼ ςd1‘ 2 Rþ, it
follows

½ĤC; sin ϕ̂� ¼ iϵ cos ϕ̂ ; ð13Þ
and hence (see, for instance, ref. 29)

ΔĤCΔ sin ϕ̂≥
ϵ

2
cos ϕ̂
� ���� ��� ; ð14Þ

with ΔB̂ :¼ ðhB̂2i � hB̂i2Þ1=2 for any Hermitian operator B̂.
Noticing that Eqs. (1) and (2) imply a relation between ĤC and
the energy of the system, while Eqs. (5) and (12) relate ϕ̂ with φ,
one might say that the inequality (14) is the ancestor of the
time–energy uncertainty relation for Γ, after setting φ≪ 1 and the
parameter (11) precisely as time, a statement that is made clear in
the next section. We also remind that the choice of ℓ is arbitrary,
as long as it ensures ϵ real and positive, and χ(Ωℓ) ≠ 0. So, the
freedom left by this mild request allows one to further ask that
time can be read by observing the clock. This means that there
must exist Hermitian linear combinations of the operators R̂‘ and

R̂
y
‘ that are experimentally accessible observables for C, and such

that the results of their measurements carry information upon the
coordinate φ.

Summarizing, we have so far collected results that point to _φ/ϵ
as “the time” for the evolving system, but the overall picture is not
that provided by QM, where the quantum character of the clock
is totally absent; this is the reason why we take our next step.

A classical clock for a quantum system. We now assume that the
quantum theory describing C satisfies the conditions ensuring it
flows into a well-defined classical theory when the clock becomes
macroscopic, according to the large-N quantum approach based
on GCS, as briefly described in the “Introduction” section. In
particular, we use that GCS are the only quantum states that
survive the quantum-to-classical crossover, insofar doing
becoming orthogonal

lim
N!1

ΩjΩ0� �! δðΩ�Ω0Þ ; ð15Þ
and defining the classical states identified by the corresponding
points Ω on the classical phase-space M. As for the observables,
the only ones that stay meaningful throughout the crossover must
obey

lim
N!1

ΩjÂjΩ0� �
ΩjΩ0h i <1 ; ð16Þ

so as to transform into well-defined functions on the classical
phase-space. Using Eq. (15), one can easily show that
hΦϱðφÞjΦϱðφÞi ! χ2ðλÞ in the classical limit for the clock;
moreover, it is χ2(λ)≡ χ2(ϱ) due to Eq. (9). Therefore, reminding
that χ2(ϱ) is a normalized probability distribution, any ϱ for
which χ2(ϱ) ≠ 0 defines a physical state

jϕϱðφÞi :¼
jΦϱðφÞiffiffiffiffiffiffiffiffiffiffiffi

χ2ðϱÞp ; ð17Þ

whose dependence on φ is ruled by

iϵ
d
dφ

jϕϱðφÞi ¼ ĤΓjϕϱðφÞi ; ð18Þ

which is the Schrödinger equation with t= _φ/ϵ. In fact, the
above result is a derivation of the Schrödinger equation akin to
that suggested in the original work by Page and Wootters1, with
state normalization ensured by construction, for a classical clock.
We notice, though, that as a byproduct of having specifically
addressed the normalization issue, the state (17) has a further
dependence on the real parameter ϱ. In order to understand its
meaning as far as the evolving system is concerned, we get back to
the constraint (1) and its projection upon a GCS λj i of the clock,
Eq. (8), with Ψj ii as in Eq. (3). Considering that λjΩh i is finite for
finite N, we write

0 ¼ λh jĤ Ψj ii

¼
Z
M

dμðΩÞχðΩÞ λjΩh i λjĤCjΩ
� �

λjΩh i � ĤΓ

 !
ϕðΩÞj i ð19Þ

that becomes, in the classical limit for C where Eqs. (15) and (16)
hold and for any ϱ such that χ2(ϱ) ≠ 0,

ĤΓjϕϱðφÞi ¼ EΓðϱÞjϕϱðφÞi ; ð20Þ
with

EΓðϱÞ ¼ λjĤCjλ
� �

; ð21Þ
the r.h.s. of the above equation, which is the symbol of ĤC on λj i,
can be calculated and reads (see in “Methods”)

HCðϱÞ :¼ λjĤCjλ
� � ¼ ϵ

2
b2 cosð2ςϱÞ � 1ð Þ ; ð22Þ

with ς2b2= ∑δgδdδℓ. It is relevant that Eq. (22) follows from
algebraic properties, and therefore holds in general, regardless of
the details of the theory that describes the clock. Furthermore,
HC(ϱ) does not depend on φ, which justifies the use of the
notation EΓ(ϱ) in Eq. (21) and allows one to consistently relate
Eq. (20) with the stationary Schrödinger equation for Γ, with ϱ
the parameter that sets its energy.
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Let us now consider what happens when making measure-
ments on the clock. We know that GCS are the only quantum
states that survive the quantum-to-classical crossover according
to Ωj i ! Ω, as described above and thoroughly discussed in the
literature30–34. This means that performing a quantum measure-
ment upon a system whose behavior can be effectively described
as if it were classical is tantamount to select one GCS Ωj i to be
the ancestor of the observed classical state or, which is the same,
say that the combined effect of a measurement and the classical
limit is to make χ2(Ω) become a Dirac-δ around the point Ω on
MC that identifies the observed classical state. Let us now take
such state to be one of the GCS λj i, consistently with the task of
making measurements of observables that characterize it as a
clock, such as ĤC or sin ϕ̂ in Eq. (13). When taking the classical
limit of the clock, it can be demonstrated27,28 that

λj sin ϕ̂jλ� �! sinφ ; λj cos ϕ̂jλ� �! cosφ ; ð23Þ
this result, together with the definition ΔEΓ(ϱ):= ΔHC(ϱ) (that
follows from Eqs. (20) and (21)) and a small-φ approximation,
provides

ΔEΓðϱÞΔφ≥
ϵ

2
; ð24Þ

where Δφ is related to the mean square fluctuation of the operator
φ̂ for the clock via the classical limit of the clock itself. If the
parameter _φ/ϵ is identified with time, the above inequality has
the form of an energy–time uncertainty relation for Γ. However,
Δφ is not a time interval, and the way the result (24) is obtained
suggests an altogether different interpretation, w.r.t. the usual
one, of the elements entering the energy–time uncertainty
relation. We will further comment upon this result in the
concluding section.

Collecting all the clues so far obtained, we conclude this section
maintaining that the parameter (11) is what we call “time” in QM,
a statement that we express as

tQM ¼ _

ϵ
φ ; ð25Þ

where the apex QM indicates that this is the parameter that enters
the quantum description of evolving systems.

This is not the end of the story, though, because it is now
necessary to demonstrate that when the system Γ undergoes the
quantum-to-classical crossover, the above results lead to the
Hamilton e.o.m., with the parameter _φ/ϵ still playing the role of
time. To this purpose, in the next section we take the classical
limit also for the evolving system, thus moving into a completely
classical setting.

A classical clock for a classical system. Let us now consider what
happens when the system Γ becomes macroscopic in a way that
makes its behavior amenable to the laws of classical physics. As in
the previous section, the problem is tackled in terms of GCS in
the large-N limit. Therefore, besides the GCS for the clock f Ωj ig,
here we also use the GCS for the system, i.e., those relative to the
Lie algebra gΓ proper to the quantum theory that describes Γ.
These will be indicated by fjγig, where γ= (γ1, γ2, . . . γJ) with
γj 2 C 8j, and J related to the dimension of gΓ. Each jγi
univocally identifies one point on the manifold MΓ, whose (real)
dimension is 2J.

Using the resolution of the identity upon HC and HΓ in terms
of the GCS f Ωj ig and fjγgi, respectively, we write the state Ψj ii
of the overall system as

Ψj ii ¼
Z

MC

dμðΩÞ
Z

MΓ

dμðγÞβðΩ; γÞ Ωj i � γj i ; ð26Þ

where

βðΩ; γÞ :¼ ð Ωh j � γh jÞ Ψj ii ¼ χðΩÞhγ ϕðΩÞj i ð27Þ
is a function on MC ´MΓ whose square modulus,
χ2ðΩÞj γjϕðΩÞh ij2, is the conditional probability for Γ to be in the
state γj i when C is in the state Ωj i, given that the global system Ψ is
in the pure state Ψj ii. In other terms, β(Ω, γ) is different from zero
only on those pairs ðΩ; γÞ 2 MC ´MΓ that define states
Ωj i � γj i 2 HC �HΓ, which are present in the decomposition of
Ψj ii in terms of GCS, Eq. (26).
Projecting the constraint (1) upon one specific state Ω

�� �� γj i,
we write

0 ¼ Ω
� ��� γh jĤ Ψj ii

¼
Z

MC

dμðΩÞ
Z

MΓ

dμðγÞβðΩ; γÞ ΩjΩ� �
γjγh i

´
ΩjĤCjΩ
� �

ΩjΩ� � � γjĤΓjγ
� �

γjγh i

" # ð28Þ

that becomes, in the classical limit for C and Γ, i.e., assuming Eqs.
(15) and (16) hold not only for the GCS and the Hamiltonian of
the clock but also for those of the system,

HCðΩÞ ¼ HΓðγÞ ð29Þ
for (Ω, γ) such that β(Ω, γ) ≠ 0, meaning that the configurations
(Ω, γ) into which the original quantum state Ψj ii can flow when
clock and system behave according to the rules of classical
physics, must obey Eq. (29). In particular, if one considers the
configurations among those for which β(Ω, γ) ≠ 0 that have Ω=
(0, 0, . . .Ωℓ, . . . 0), corresponding to the GCS λj i introduced
above and identified by the complex variable λ= ϱe−iφ, these will
belong to a submanifold ðUC � CÞ ´ ðUΓ � MΓÞ such that a map
F : UC ! UΓ exists, defined by

λ 2 UC �!
F

u 2 UΓ : HΓðu ¼ FðλÞÞ ¼ HCðϱÞ : ð30Þ
As the explicit form of F is arbitrary, we fix it as follows. We

consider that MΓ has a symplectic structure, which means that it
exists a Darboux chart

D : γ 2 MΓ ! ðq; pÞ :¼ ððq1; p1Þ; ðq2; p2Þ:::ðqJ ; pJÞÞ 2 R2J ;

such that fqi; pjgΓ ¼ h�1δij with h ¼ const: ;

where f�; �gΓ are Poisson brackets on MΓ ;

8><
>:

ð31Þ
that relates the parametrization of GCS via J-dimensional
complex vectors {γ} with that obtained via J pairs of real,
canonically conjugated, variables (qj, pj). For these pairs, referring
to ref. 25, we choose

qj � iς2pj ¼ vj
ffiffiffi
2

p
bς sinðςϱÞe�iφ ð32Þ

with v!2 RJ constant unit vector, i.e.,
P

jv
2
j ¼ 1. As far as

condition (30) is fulfilled, other choices are possible, without
affecting the overall scheme and the subsequent results. Once F is
given, the so called “pullback-by-F” map, sometimes indicated by

F*, is also defined, according to F� : ωðκÞ
Γ �!ωðκÞ

C , where ωðκÞ
ΓðCÞ are

κ-forms on UΓðCÞ. In particular, for κ= 0, i.e., when considering
functions, it is (F*fΓ)(λ)= fC(λ), with F*fΓ= fΓ(u= F(λ)). Apply-
ing F* on the symplectic 2-form defining the standard Poisson
brackets in (31), we obtain the Poisson brackets onMC , that read
(see in “Methods”)

ff C; gCgC ¼ 1

hb2ς sin 2ςϱð Þ
∂f C
∂ϱ

∂gC
∂φ

� ∂gC
∂ϱ

∂f C
∂φ

� �
ð33Þ
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∀ fC, gC generic functions on MC . On the other hand, qj and pj
are by all means functions on MC , as seen in Eq. (32);
therefore, using Eq. (33) with gC=HC(ϱ) from Eq. (22) we
evaluate fqj;HCgC and fpj;HCgC , and find (see in “Methods”)

fqj;HCgC ¼ ϵ
h

d qj
d φ, and fpj;HCgC ¼ ϵ

h

d pj
d φ. Finally, using

ff CðλÞ; gCðλÞgC ¼ ff ΓðuÞ; gΓðuÞgΓ ; we obtain
fqj;HΓgΓ ¼ ϵ

h

d qj
d φ

fpj;HΓgΓ ¼ ϵ
h

d pj
d φ

8<
: ð34Þ

i.e., the Hamilton e.o.m. ruling the dynamics of classical systems,
once time is recognized as the parameter

tCL ¼ h

ϵ
φ ; ð35Þ

where the apex CL indicates that this is the parameter that enters the
classical description of evolving systems. Getting back to Eq. (25)
and setting the arbitrary constant h in the Poisson brackets of the
Darboux chart (31) equal to _, consistently with the fact that ϵ is
defined as _ times a quantity that sets the energy scale of the clock,
we finally obtain

tQM ¼ tCL ¼ _

ϵ
φ ; ð36Þ

This last equation, together with the derivation in one same
framework of both the quantum-mechanical Schrödinger equa-
tion (18) and the classical Hamilton e.o.m. (34), represents the
main result of this work, which is discussed in the next and last
section.

Discussion
In the past decades, we have learnt that when quantum macro-
scopic systems can be effectively studied as if they were classical
(which is what should be meant by “classical”), their geometrical
properties follow from the algebraic structure of the quantum
theory originally describing them (see, for instance, the way a
specific phase-space emerges as the symplectic manifold involved
in the GCS construction for one assigned quantum Lie algebra).
This is by itself quite a breakthrough, as it allows to establish a
dialog between classical and quantum physics without resorting
to disjointed interventions such as quantization or, in the oppo-
site direction, non-unitary state reduction.

When considering more than one system, things become ever
more interesting. In fact, when a quantum system interacts with a
classical environment (be that a magnetic field, or a thermal bath,
or some macroscopic environment), the pure states of the former
acquire a parametric dependence that testifies the existence of the
latter and gives rise to geometrical effects such as the quantum
Berry phase24,35–37. Awe comes, though, as these effects emerge
even without interaction, as far as the systems are entangled and
some physical constraint is enforced, such as Eq. (1) in the PaW
mechanism. Indeed, this is how states of a quantum system come
to depend on time according to the Schrödinger equation, as also
shown in this work. In such setting, coordinates of points in
manifolds and elements of Hilbert spaces (e.g., ϱ, φ and jϕϱðφÞi in
this work) relate to each other via rules, such as the Schrödinger
equation or the time–energy uncertainty relation, whose gen-
erality is that of the physical principles. To this respect, we like to
comment upon two of our results: First, we notice that the energy
of the system Γ, i.e., EΓ(ϱ) in Eq. (20), does not depend on time,
i.e., on φ, consistently with the fact that the Hamiltonian of an
isolated system cannot depend on time. Then we underline that
the inequality (24) does not follow from the non-commutativity
between ĤΓ and some other operator acting on HΓ: it is rather an
indirect consequence of the inequality (13), which regards

operators acting on the clock, plus the constraint (1) and the
possibility, given by the use of GCS, of describing the clock as a
classical object without wiping out the effects of one of the most
relevant quantum feature, namely, entanglement. It is also worth
reminding that Δφ in the inequality (24) does not emerge as a
time interval, which suggests that such inequality, despite having
the same form of the customary energy–time uncertainty relation,
is of a somewhat different nature and origin. This relevant point
will be further investigated in future work.

Overall, it is indeed remarkable that effects of a genuinely
quantum feature such as entanglement survive in a completely
classical setting, there continuing to cause, via the correlation
established between clock and system, the emergence of such a
fundamental ingredient of our everyday life as time, which is what
we have here demonstrated by deriving the Hamilton e.o.m (34).
Indeed, the fact that fundamental laws of classical Physics be
derived within a completely quantum framework with the PaW-
mechanism assumptions enforced substantiates the mechanism
itself. Moreover, our results in the fully classical setting unravel
another tangle of classical physics, namely, the relation between
phase-space and spacetime. This relation emerges from the fact
that, when the global system is in the pure state Ψj ii, the only
configurations that survive its classical limit are those identified
by points ðΩ; γÞ 2 MC ´MΓ where the probability ∣β(Ω, γ)∣2 is
different from zero. Therefore, while the phase-space of Γ is the 2J
dimensional symplectic manifold MΓ defined by the GCS γj i, its
spacetime is the (J+ 1)-dimensional real hypersurface defined by
Eqs. (29) and (32), whose points are identified by the coordinates
(_φ/ϵ; q), with φ ¼ � arg λ 2 R from Eq. (5) and q ¼ qðγÞ 2 RJ

from the Darboux chart (31), such that βðϱ;φ; q; pÞ is different
from zero for some ϱ (i.e., energy of the clock) and p (i.e.,
momentum of the system). For instance, if Γ is a particle in a 3-
dimensional space, it is q= (x, y, z), J= 3, and one finds the J+ 1
= 4-dimensional spacetime. Notice that, if C and Γ were not
entangled, i.e., Ψj ii ¼ Cj i � Γj i, it would be βðϱ;φ; q; pÞ ¼
χðϱÞhðq; pÞ Γj i, with no relation between instants of time _φ/ϵ and
position in space q. In other terms, as emerged in different
contexts (see, for instance, ref. 38) not only quantum entangle-
ment is what makes physical systems to evolve but it also provides
their spacetime with a causal structure.

Despite effects of entanglement without interaction being
already phenomenal, we think that taking possible interactions
into account will lead to substantial developments of this work.
One might first consider adding a quantum environment with
which Γ starts interacting while being already entangled with the
clock. This should describe the dynamics of the density operator
of Γ and show how, and under what conditions, the
Liouville–VonNeumann equation emerges, with clues about the
non-unitary evolution of non-isolated systems. The presence of
multiple clocks, possibly interacting among themselves, also
seems an intriguing enrichment, particularly in view of some
recent works by other authors11,16. However, the most compelling
follow-up of this work, in our opinion, is that of relating the
picture it proposes with that provided by relativity. In fact, we
expect relativistic quantum mechanics and quantum field theory
to find their place in the hybrid setting described in the section “A
classical clock for a quantum system,” where studying how the
expectation values of operators on HΓ get to depend on (ϱ, φ) via
the parametric dependence of the states jϕϱðφÞi, might help
understanding some unclear aspects of the way special relativity
encounters quantum mechanics. Moreover, having connected the
classical formalism that set the scene for general relativity and
gravity with a full quantum description, we think we have ideal
tools for breaking through some of the obstacles that make
quantum gravity so difficult to process. In particular, we believe
that studying the probability distribution ∣β(λ; q, p)∣2 in relation
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to the original Lie algebras gC and gΓ and/or the specific form of
the quantum Hamiltonian Ĥ may provide a link between the
geodesic principle and the Schrödinger equation; furthermore,
taking into account a possible interaction between evolving sys-
tem and clock, as suggested in ref. 11, or between different clocks,
as in ref. 16, might explain spacetime deformation, and hence
gravity, from a quantum viewpoint. Work in this direction is in
progress, particularly referring to the case of Schwartzschild black
holes and Hawking radiation.

Methods
Generalized Coherent States. GCS are an extension of the field coherent states
firstly introduced by R. Glauber in 196339. The group-theoretic construction was
derived ten years later by A. Perelomov22 and R. Gilmore23, independently. GCS
are normalized elements of Hilbert spaces which are in one-to-one correspondence
with the points of a smooth manifold, that has all the properties requested to a
classical phase-space. In the following, we briefly introduce GCS according to the
procedure described by Gilmore and co-workers in ref. 25.

In order to construct GCS, three inputs are necessary:
(i1) a Lie algebra g, or the related Lie group G,
(i2) a Hilbert space H, which is the carrier space of an irreducible

representation of g, and
(i3) a normalized element Gj i of H.
Referring to a specific system for which GCS are to be constructed, the inputs

are as follows: H is the Hilbert space of the system; g is the Lie algebra whose
representation via operators on H contains the Hamiltonians of the system,
meaning that the representation of the related Lie group G contains all its
propagators, which is why G is often dubbed dynamical group. The normalized
element Gj i of H is a physically accessible state of the system, usually called
reference state. For the sake of clarity, we will hereafter identify g and G with their
respective representations on H. Once the inputs are given, the procedure returns
three outputs:

(o1) the subgroup F � G whose elements leave Gj i unchanged apart from an
irrelevant overall phase, and the associated coset G=F , such that every ĝ 2 G can be
written as a unique decomposition of two group elements, one belonging to F and
the other to G=F , i.e., ĝ ¼ Ω̂f̂ with ĝ 2 G; f̂ 2 F ; Ω̂ 2 G=F ;

(o2) the GCS

Ωj i :¼ Ω̂ Gj i ; 8Ω̂ 2 G=F ; ð37Þ

(o3) a measure dμðΩ̂Þ on G=F , which is invariant under the action of the
elements of G, and therefore dubbed invariant measure, such that a resolution of
the identity upon H is provided

Z
G=F

dμðΩ̂Þ Ωj i Ωh j ¼ ÎH : ð38Þ

The GCS are normalized, hΩjΩi ¼ Gh jĝ�1ĝ Gj i ¼ hGjGi ¼ 1, 8 ĝ 2 G, but
non-orthogonal,

hΩjΩ0i ¼ Gh jΩ̂�1
Ω̂0 Gj i ¼ Gh jĝ�1ĝ0 Gj ieiθ ¼ Gh jĝ00 Gj ieiθ ≠ 0;

8 ĝ; ĝ0; ĝ00 2 G, and Ω̂; Ω̂0 2 G=F . For this reason, they are said to provide an
“overcomplete” set of states forH, where “complete” refers to Eq. (38), while “over”
means that they are too many for being all orthogonal to each other.

As for the reference state Gj i, a common, yet not mandatory, choice is that of
taking it as an extremal state; for instance, one can choose Gj i as the minimal-
weight state such that R̂m Gj i ¼ 0 8m, with R̂m defined below.

Getting an explicit expression for the operators Ω̂, and hence of the GCS via Eq.
(37), requires a characterization of the algebra. In particular, if g is semisimple, one
can consider its Cartan decomposition, which classifies the generators as diagonal,
fD̂δg, or raising, fR̂m ; R̂�mg, operators, according to

D̂δ ; D̂θ

� 	 ¼ 0 ; D̂δ ; R̂m

� 	 ¼ dδmR̂m ;

R̂m; R̂�m

� 	 ¼ X
δ

dδmD̂δ ; R̂m; R̂m0
� 	 ¼ cmm0 R̂mþm0 : ð39Þ

where {dδm}, fcmm0 g are the so called structure constants, while m;m0 and δ, θ go
from 1 to some upper value M and D, respectively, that depend on the algebra itself
(in the case of suð2Þ, for instance, it is M=D= 1, and if spin-squeezing is also
considered, it is M= 2 and D= 1). In any irreducible representation of g, it is

possible to choose the raising operators such that R̂
y
m ¼ R̂�m 8m, and, consistently,

Hermitian or anti-Hermitian diagonal operators D̂
y
δ ¼ þð�ÞD̂δ 8 δ, depending on

the structure constants {dδm} being real or imaginary. The diagonal operators have
the reference state among their eigenstates, i.e., D̂δ Gj i ¼ gδ Gj i ∀ δ. Once the
Cartan decomposition is available, it can be shown that the elements of G=F in the

definition (37) take the form

Ω̂ ¼ exp
X
m

ΩmR̂
y
m �Ω�

mR̂m

 !
; ð40Þ

where the coefficients Ωm 2 C are coordinates of one point Ω of the differentiable
manifold M, which is associated with G=F via the quotient manifold theorem40.
Using a complex projective representation of G=F , GCS can also be written as

Ωj i ¼ NðjβðΩÞjÞ e
P

m
ηmR̂

y
m Gj i ð41Þ

where the normalization constant N(∣η(Ω)∣) and the relation between the ηm-
coordinates and the Ωm ones can be obtained via the BCH formulas.

The chain of biunivocal relations

Ω̂ 2 G=F () Ω 2 M () Ωj i 2 H: ð42Þ
is one of the most distinctive feature of the group-theoretic construction, as it
establishes that any GCS is univocally associated with a point onM, and vice versa.
As a consequence, the invariant measure dμðΩ̂Þ induces a measure dμ(Ω) uponM.
In fact, it can be demonstrated25 that M is endowed with a natural metric that can
be expressed in the ηm-coordinates as

ds2 ¼
X
mm0

gmm0 dηm dη�m0 where gmm0 :¼ ∂2log h~Ωj~Ωi
∂ηm ∂η�m0

; ð43Þ

with ~Ω
�� � :¼ Ωj i =N in (41). After ds2, one can define a canonical volume form on

M, i.e., the above-mentioned measure on M, via

dμðΩÞ ¼ const ´ detðgÞ
Y
m

dηm dη�m : ð44Þ
The manifold M is also equipped with a symplectic structure that allows one to

identify it as a phase-space. In particular, the symplectic form on M has the
coordinate representation

ω ¼ �i
X
mm0

gmm0 dηm ^ dη�m0 ; ð45Þ

that can be used to define the Poisson brackets

f ; gf gPB :¼ i
X
mm0

gmm0 ∂f
∂ηm

∂g
∂η�m0

� ∂f
∂η�m0

∂g
∂ηm

� �
; ð46Þ

with
P

ngmng
nm0 ¼ δm

0
m .

In the case of non-semisimple algebras, such as h4 and h6 for the harmonic and
squeezed-harmonic oscillator, respectively, where a Cartan decomposition (39) is
not available, analogous decompositions exist, and the same procedure can be
adopted. This is explicitly done for h4 at the end of this material, where we show
that the results are the same as those obtained in the semisimple case.

Parametric representation with GCS. Parametric representations of composite
systems can be built whenever a resolution of the identity upon the Hilbert space of
one of the subsystems is available. In ref. 4, for instance, the representation is
introduced via

R
dx xj i xh j ¼ ÎC , where xj i are the eigenstates of the position

operator for one of two subsystems, and the integral is over the real axes. Our
choice, which is pivotal to get to our final result, is based on the fact that parametric
representations with GCS inherit from the group-theoretic construction some
properties that are essential in order to follow the quantum-to-classical crossover
and formally define a classical limit of a quantum theory, according to the large-N
quantum approach.

The representation is defined as follows. Consider an isolated bipartite system
Ψ= C+ Γ with Hilbert space HΨ ¼ HC �HΓ , where Γ is the principal system and
C its environment. The most general expression for a pure state of Ψ is

Ψj ii ¼
X
γξ

cγξ γj i � ξj i with
X
γξ

jcγξ j2 ¼ 1 ; ð47Þ
where f γj igΓ and f ξj igC are orthonormal bases for HΓ and HC respectively.
Inserting the above-mentioned resolution of the identity upon HC , for which we
choose the one provided by GCS, Eq. (38), one gets

Ψj ii ¼
Z
M

dμðΩÞ χðΩÞ Ωj i � ϕðΩÞj i ; ð48Þ

where χ(Ω) is a function that can be chosen real, being defined via
χ2ðΩÞ :¼Pγj

P
ξcγξ Ωjξh ij2. The element ϕðΩÞj i of HΓ is normalized, and hence

describe a pure state of Γ. Due to the normalization of Ψj ii, it isZ
M

dμðΩÞχ2ðΩÞ ¼ 1 ; ð49Þ

meaning that χ2(Ω) can be interpreted as a probability distribution on M. The
above expressions have a clear physical interpretation: reminding that each point
Ω 2 M is in one-to-one correspondence with a GCS Ωj i 2 HC , we can say that
ϕðΩÞj i is the state of Γ conditioned to C being in the GCS Ωj i, a circumstance that
occurs with probability χ2(Ω) when Ψ is in the pure state Ψj ii. This interpretation
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is consistent with the following relations41

χ2ðΩÞ ¼ Ωh jρC Ωj i ; ð50Þ

and

ρΓ ¼
Z
M

dμðΩÞχðΩÞ2 ϕðΩÞj i ϕðΩÞh j ; ð51Þ

where ρΓðCÞ :¼ TrCðΓÞ Ψj ii h Ψh j. Notice that the diagonal-like form (51) of ρΓ is not
generally granted for parametric representations such that the identity resolution is
in terms of non-orthogonal states, as in the GCS case. In fact, it is the specific
overcompleteness of GCS that ensures Eq. (51) to hold.

Finally, it is important to remind that, despite parametric representations allow
one to use pure states ϕðΩÞj i to describe Γ, this should by no means be intended as
if Γ were in a pure state. In fact, due to the parametric dependence of ϕðΩÞj i on Ω,
the density operator ρΓ in Eq. (51) is not a projector, reflecting that C and Γ are
entangled, as far as the form (47) of Ψj ii stays general. To this respect, it is easily
verified that when Ψj ii is separable the above parametric dependence dies out.

Derivation of the symbol of ĤC . In this part, we express the symbol λh jĤC λj i of
the clock Hamiltonian, in terms of the complex parameter λ:=Ωℓ= ϱe−iφ that
defines the GCS λj i via λj i :¼ eŴ Gj i with Gj i the clock reference state satisfying

R̂m Gj i ¼ 0 8m, D̂δ Gj i ¼ gδ Gj i, and Ŵ :¼ Ŵ‘ :¼ Ω‘R̂
y
‘ � Ω�

‘ R̂‘. Recalling that

ĤC ¼ ςD̂1 þ kÎC with k:=− ςg1 and ς2= ± 1 such that ϵ:= ςd1ℓ is real and
positive, we write

λh jĤC λj i ¼ kþ ς Gh je�Ŵ D̂1e
Ŵ Gj i

¼ kþ ς Gh jD̂1 þ ½Ŵ; D̂1� þ
1
2!
½Ŵ; ½Ŵ; D̂1��

þ 1
3!
½Ŵ; ½Ŵ; ½Ŵ; D̂1���

þ 1
4!
½Ŵ; ½Ŵ; ½Ŵ; ½Ŵ; D̂1���� þ ::: Gj i

¼ kþ ς Gh jD̂1 þ ½Ŵ; D̂1� þ
X
δ

1
2!
ð�2d1ldδ‘ϱ

2D̂δÞ



þ 1
3!
ð�2d1‘dδ‘ϱ

2½Ŵ; D̂δ �Þ

þ 1
4!

X
θ

ð�2d1‘dθ‘ϱ
2Þð�2dθ‘dδ‘ϱ

2D̂δÞþ:::� Gj i

¼ ς
X
δ

gδ
1
2!
ð�2ϱ2d1‘dδ‘Þ




þ 1
4!

X
θ

ð�2ϱ2d1‘dθ‘Þð�2ϱ2dθ‘dδ‘Þþ:::�

¼ ςd1‘
X
δ

gδdδ‘
X1
n¼1

ð�1Þn
ð2nÞ! ð

ffiffiffi
2

p
ϱÞ2na2n�2

 !

¼ ϵa�2ς2b2 cos a
ffiffiffi
2

p
ϱ

� �
� 1

� �
:¼ HCðϱÞ;

ð52Þ

where a2 ¼Pθd
2
θ‘ and ς2b2= ∑δgδdδℓ. For the sake of a lighter notation, in what

follows and in the main work we set ς2a2= 2, which means that the raising and
diagonal operators are multiplied by

ffiffiffiffiffiffiffi
2ς2

p
=a, and their eigenvectors are rescaled

accordingly. We thus finally get

λh jĤC λj i ¼ ϵb2

2
ðcosð2ςϱÞ � 1Þ : ð53Þ

The pullback-by-F and the Poisson brackets on MC . In this part, we will
explicitly calculate the Poisson brackets {⋅, ⋅}C induced on MC via the pullback-by-
F. We recall that, given the manifolds MC and MΓ for the clock C and the
evolving system Γ as from the GCS construction, the map
F : UC � MC ! UΓ � MΓ , is defined as

qj ¼
ffiffiffi
2

p
b ς sin ςϱð Þ cosðφÞ vj;

pj ¼
ffiffi
2

p
b

ς sin ςϱð Þ sinðφÞ vj;

(
ð54Þ

with
P

jv
2
j ¼ 1. We remind that the Poisson brackets are defined on a generic sym-

plectic manifold M starting from its symplectic form ω ¼ 1
2

P
μνωμνdx

μ ^ dxν , via
ff ; gg ¼Pμνω

μν ∂xμ f ∂xν g with
P

σωμσ ωσν ¼ δνμ , and xμðμ ¼ 1; :::; 2n ¼ dimMÞ,
f, g are some coordinates and generic functions onM, respectively. In fact, the Darboux
theorem guarantees that there exists local coordinates xμ= (q1, . . . , qn, p1, . . . , pn) such

that ω ¼ h
Pn

j¼1 dpj ^ dqj and ff ; gg ¼ h�1 Pn
j¼1 ∂qj f ∂pj g � ∂pj f ∂qj g
� �

, with

h ¼ const:. This said, being (qj, pj) in Eq. (54) Darboux coordinates, i.e.,

fqj; pjgΓ ¼ h�1δij, the symplectic form ωΓ on UΓ � MΓ is

ωΓ ¼ h
X
j

dpj ^ dqj : ð55Þ
We can now calculate the pullback-by-F of ωΓ as

ðωΓÞ� ¼ h
X
j

ffiffiffi
2

p
b cos ςϱð Þ sinðφÞ vj dϱ

h

þ
ffiffiffi
2

p
b

ς
sin ςϱð Þ cosðφÞ vj dφ




^
ffiffiffi
2

p
bς2 cos ςϱð Þ cosðφÞ vj dϱ

h
�

ffiffiffi
2

p
bς sin ςϱð Þ sinðφÞ vj dφ

i
¼ h

X
j

�b2 ς sin 2ςϱð Þ v2j
h

sin2φ dϱ ^ dφ

þ b2 ς sin 2ςϱð Þ v2j cos2φ dφ ^ dϱ
	

¼ hb2ς sin 2ςϱð Þ dφ ^ dϱ:

ð56Þ

Finally ðωΓÞ� defines Poisson brackets on MC via

ff C ; gCgC ¼ 1

hb2 ς sin 2ςϱð Þ
∂f C
∂ϱ

∂gC
∂φ

� ∂f C
∂φ

∂gC
∂ϱ

� �
: ð57Þ

We clarify that our choice (54) for the map F follows from the one suggested in
ref. 25, but other choices are possible.

The Heisenberg algebra h4 . When the Lie algebra g, to which the clock Hamil-
tonian ĤC belongs, is semisimple, the GCS are built starting from the Cartan
decomposition. However, a similar construction can be put forward for the non-
semisimple algebra h4. The latter is defined by the set fn̂ ¼ âyâ; â; ây; Îg with
commutation relations ½â; ây� ¼ Î; ½â; Î� ¼ ½ây; Î� ¼ 0. The GCS αj i, usually
called harmonic-oscillator coherent states or just coherent states, are in one-to-one
correspondence with the points of the complex plane C and can be equivalently

defined as αj i ¼ eαâ
y�α� â Gj i ¼ e�jαj2=2 eαâ

y
Gj i with n̂ Gj i ¼ â Gj i ¼ 0, or as â αj i ¼

α αj i with α 2 C. When the clock C admits a proper classical limit, the Schrödinger
equation for the evolving system Γ can be obtained, as shown in the main work,
implementing the PaW mechanism via the parametric representation with GCS,

and considering a fixed GCS λj i ¼ eλâ
y�λ� â Gj i ¼ Nϱe

λây Gj i with λ= ϱeiφ, for

which, being ½n̂; eλ� â� ¼ �λ�âeλ
� â , it is λh jĤC αj i ¼ iϵ d

dφ hλjαi, where ĤC ¼ ϵn̂.

Again, the temporal parameter tQM turns out to be tQM= (_/ϵ)φ. Moreover, since
it is trivial to show that HCðλÞ ¼ λh jĤC λj i ¼ ϵϱ2, the considerations concerning
the parameter ϱ and the stationary Schrödinger equation for Γ still apply. For what

concerns the uncertainty relation, a phase-operator can be defined via â ¼ n̂1=2eiϕ̂ .
Finally, when Γ becomes macroscopic and presents a completely classical behavior,
its dynamics is ruled by the Hamilton equations according to a temporal parameter
tCL= tQM. This result can be obtained following the same line of reasoning of the
main work and choosing the map F to be qj � ipj ¼ vj

ffiffiffi
2

p
ϱeiφ with

P
jv

2
j ¼ 1.
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