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Experimental studies on mechanical properties of

cellular structures using Nomex R© honeycomb cores

Alp Karakoç∗, Jouni Freund

Aalto University, School of Engineering, Department of Applied Mechanics, P.O.BOX
14300, FI-00076 AALTO, FINLAND

Abstract

An experimental method is presented to obtain the effective in-plane com-
pliance matrices of cellular structures using Nomex R© honeycomb cores with-
out a priori assumptions such as orthotropy, etc. In this method, firstly,
uni-axial tension tests are carried out for different material orientations.
The independent variables in these experiments are the material orienta-
tion and displacement of the actuator, while the main dependent variables
are positions of the marker points and the force acting on the specimens.
Marker tracking technique is used to determine the marker positions which
are processed to get strain of the measuring domain, while the stress is esti-
mated through external loading and core geometry. The analysis is confined
to the measuring domain under near homogeneous stress and strain fields.
The experiment results are processed with transformation and least squares
functions to obtain all effective in-plane elastic parameters, which are com-
pared with analytical solution based on deformation of idealized cell struc-
ture. Through this comparison, the effects of geometrical parameters of cell
structure are discussed in detail. By means of the introduced method, the
problem of lack of experimental studies on the effective in-plane compliances
of cellular structures in the literature is expected to be solved.

Keywords: Experiment, compliance, Nomex R©, honeycomb core, stress,
strain

∗Corresponding author. Tel.: +358 470 23442.
Email address: alp.karakoc@aalto.fi (Alp Karakoç)
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1. Introduction

Honeycomb cores are extensively used in different structural applications
such as aviation and automotive industries due to their high stiffness-to-
weight ratios. Various analytical techniques and numerical analysis methods
have been developed in order to predict in- and out-of-plane mechanical prop-
erties of these structures. In many analytical studies, predictions of in-plane
core properties have been limited to the assumptions of regular geometry and
constant mechanical properties. The approaches are mainly based on bend-
ing deformation of inclined walls of a hexagonal unit cell modeled as fixed
end-guided end beam [1, 2], while the axial deformation of the vertical walls
is neglected due to its minor effect on slender honeycomb cell walls [3, 4].
The studies related to in- and out-of-plane geometrical variations such as
core thickness are also available in literature [5, 6]. In contrast to abundance
of analytical approaches, there have been very few experimental studies ob-
serving the deformation and predicting the material behavior. Schwingschakl
et al. [7] made a broad investigation on fifteen analytical approaches and
proposed an alternative dynamic experimental method based on resonance
response frequencies. Balawi et al. [8] conducted series of uni-axial ten-
sion tests in order to understand the effect of relative densities on in-plane
elastic moduli of core structures. Despite these efforts, almost no experi-
mental investigations have been performed to calculate all effective in-plane
elastic parameters. The main reason is that the experimental calculations,
especially for in-plane shear modulus, require either more complicated setup
than uni-axial tension test setup or a very clever approach. However, in order
to understand the deformation of cellular solids, the experiments on in-plane
properties have great importance.

In order to complete this missing link in the literature, an experimental
method for the effective in-plane compliances of cellular structures is intro-
duced by testing Nomex R© honeycomb cores without a priori assumptions
such as orthotropy, periodicity, etc.. In order to understand the mechanical
behavior, uni-axial tension tests are carried out for different material ori-
entations and positions of the marker points on the material are precisely
measured through the presented marker tracking technique. These data are
processed to get strain of the measuring domain as function of stress and
thereby the compliance matrix describing the elastic properties of material.
Analysis is confined to a measuring domain under near homogeneous stress
and strain fields. Experimental results are further compared to analytical
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results based on an idealized cell structure. This comparison gives opportu-
nity to investigate the effects of the geometrical parameters such as cell wall
length, thickness, and corner angle on the effective in-plane elastic parame-
ters.

The present study is expected to advance the current state of the art
through simplicity and low cost of the experiment setup, the measurement
and analysis techniques, and the applicability of the introduced method to
wide range of cellular structures such as honeycomb cores and wood species.

2. Material and Methodology

2.1. Material

Experiments are carried out for Nomex R© honeycomb cores with thin cell
walls, which are produced from aramid fiber based Nomex R© paper dipped in
phenolic resin. Its mechanical behavior arises from both the nature of cell
wall material and manufacturing process of the core structure. It is known
that the cell wall material, Nomex R© paper, is produced from fibers aligned in
the direction of travel of the paper machine. Thus, it has anisotropy defined
with machine and cross (-machine) directions [9]. Besides this characteristic,
as shown in Fig. 1, manufacturing of the core structure using corrugation and
expansion processes results in directional dependence of mechanical proper-
ties [10].

——Preferred position for Fig. 1——

2.2. Theoretical background for in-plane compliance analysis

In order to calculate the effective in-plane mechanical properties of hon-
eycomb cores, various analytical studies have been conducted in which the
main strategy comprises core modeling and homogenization [2, 8]. Cell ge-
ometry is usually described in terms of cell wall thickness t, wall height h,
wall length l and corner angle θ as shown in Fig. 2, whereas cell deformation
is based on single cell wall deformation as a consequence of bending, shear
and/or axial loading. This mechanism is well described with the beam mod-
els and suitable boundary conditions. Thereafter, the effective properties are
determined through the behavior of regular cell collection [12].

——Preferred position for Fig. 2——
According to [5], the analytical compliance matrix [C] of honeycomb cores

with double thickness vertical walls based on bending deformation can be
expressed as

3
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[C] =
l3

Est3


sin2θ (h/l + sin θ)

cos θ
− cos θ sin θ 0

− cos θ sin θ
cos3θ

(h/l + sin θ)
0

0 0
cos θ (h3 + 4h2l)

4 (hl2 + l3 sin θ)

 (1)

in which Es is the cell wall elastic modulus. Comparison between Eq. (1)
and the compliance matrix for orthotropic materials in planar case

[C] =

 1/E
W

−ν
LW
/E

L
0

−ν
WL
/E

W
1/E

L
0

0 0 1/G
WL

 (2)

gives the effective in-plane elastic parameters in terms of cell geometry and
cell wall elastic modulus. In Eq. (2), E

W
, E

L
, ν

WL
, ν

LW
, and G

WL
are the

effective elastic moduli, shear modulus and Poisson’s ratios, respectively, for
which ν

LW
/E

L
= ν

WL
/E

W
[13].

Eq. (1) describes an orthotropic material having two axes of reflection
symmetry and, strictly speaking, applies only to idealized material with a
regular cellular structure and constant mechanical properties. However, in
the authors’ opinion, a priori restrictive assumptions like orthotropy, incom-
pressibility etc. should not be used in any material experiments. Instead,
the common approach should include the generalized engineering terms and
general anisotropic linear elastic materials because the alignment of princi-
pal material directions may not initially be known. In this case, the in-plane
compliance matrix is

[C] =

 1/E
W

−ν
LW
/E

L
η
WL,W

/E
W

−ν
WL
/E

W
1/E

L
η
WL,L

/E
L

η
WL,W

/E
W

η
WL,L

/E
L

1/G
WL

 (3)

in which η
WL,W

and η
WL,L

are called coefficients of mutual influence by Lekhnit-
ski and are characterizing the coupling between shearing and normal stresses
[14]. After obtaining the parameters of Eq. (3), one should analyze [C] pos-
terior to classify the material. For this purpose, different approaches such as
eigendecomposition of [C] can be employed [15].
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2.3. Theoretical background for experiments

As illustrated in Fig. 3, laboratory XY and material WL Cartesian co-
ordinate systems (hereafter, abbreviated as cs) are used. The first is used to
describe the experiment plane in the laboratory environment, whereas the
latter is for the principle plane formed on the material sheet with solid and
dashed lines.

——Preferred position for Fig. 3——
In XY -cs, the generic linear stress-strain relation for plane stress condi-

tion is constructed using the Voigt notation

{e} = [C] {s} (4)

because of practical difficulties in using high-order tensors [16]. Curly {} and
square brackets [ ] are operators for representing tensors as column vectors
and matrices, respectively. In Eq. (4), {e} and {s} are the column vector
representations of strain and stress tensors with assumption of symmetry
(eij = eji and sij = sji for i, j ∈ {X, Y }), whereas [C] is the square matrix
representation for the fourth-order compliance tensor C. Here, it should be
noted that [C] denotes the compliance in the basis of XY -cs, while [C] is
expressed in the basis of WL -cs. Eq. (4) can be expanded to the components
as


e
XX

e
Y Y

2e
XY

 =

 C1 C2 C3

C4 C5 C6

C7 C8 C9


s
XX

s
Y Y

s
XY

 (5)

involving 9 parameters, some of which may not be independent. As presented
in Eq. (3), for a general anisotropic linear elastic material, the number of in-
dependent parameters is equal to 6, which is due to the compliance symmetry
originated from the strain energy density [17]. For an orthotropic material,
which is invariant to reflection with respect to two certain perpendicular
axes, there exist 4 independent parameters where the coupling terms such as
η
WL,W

, η
WL,L

are zeros or in negligible orders [18]. In case of isotropy, where
the matrix is invariant to rotation, the number is further reduced to 2. The
compliance matrix [C] of Eq. (5) may well be singular. It is noteworthy that
generic notations e, s are used for the strain and stress tensors which may
differ from small strain tensor ε and Cauchy stress tensor σ, respectively.
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Transformation rules for stress and strain components of different basis
are given as


e
XX

e
Y Y

2e
XY

 = [T]T


e
WW

e
LL

2e
WL

 (6)

and


s
XX

s
Y Y

s
XY

 = [T]−1


s
WW

s
LL

s
WL

 (7)

in which superscripts T, -1 denote the matrix transpose and inverse, respec-
tively. According to [14],

[T] =

 cos2ϕ sin2ϕ sin 2ϕ
sin2ϕ cos2ϕ − sin 2ϕ
−1

2
sin 2ϕ 1

2
sin 2ϕ cos 2ϕ

 . (8)

where ϕ is the counterclockwise orientation angle between X - and W -axes,
which is demonstrated in Fig. 3.

These transformation rules are used to express [C] of any rotated coordi-
nate system in terms of [C] in WL -cs. Using Eqs. (5), (6) and (7),

 C1 C2 C3

C4 C5 C6

C7 C8 C9

 = [T]T

 C1 C2 C3

C4 C5 C6

C7 C8 C9

 [T]. (9)

Therefore, it is enough to measure the compliance in some convenient coor-
dinate systems.

In principle, the values of C1, .., C9 can be measured by using a minimum
of three linearly independent homogeneous stress states si

XX
, si

Y Y
, si

XY
(i =

1, 2, 3). Assuming that the corresponding strain components ei
XX
, ei

Y Y
, ei

XY

are measured in some manner,

[C] =

 e1
XX

e2
XX

e3
XX

e1
Y Y

e2
Y Y

e3
Y Y

e1
XY

e2
XY

e3
XY

 s1
XX

s2
XX

s3
XX

s1
Y Y

s2
Y Y

s3
Y Y

s1
XY

s2
XY

s3
XY

−1

. (10)
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This equation fulfills the basic requirements to obtain material parameters
[19, 20]. However, in order to be more precise, specimens should be tested for
more than three orientations relative to loading direction. In this case, the
parameters can be calculated as the minimizer of the least squares function

π(C1, .., C9) =
n∑

i=1

∥∥∥∥∥∥


ei
XX

ei
Y Y

ei
XY

−
 C1 C2 C3

C4 C5 C6

C7 C8 C9


si
XX

si
Y Y

si
XY


∥∥∥∥∥∥
2

(11)

in which the compliance is given by Eq. (9), the matrix norm ‖‖ is Euclidean.
Use of several angular measurements and repetitions makes it possible to
quantify the error in the fit which serves as an indicator in experiment or
processing data. For a unique minimizer, i.e. the values of the material
parameters, the number of independent equations in Eq. (11) should exceed
or be equal to that of the parameters.

3. Experiments on compliance

As illustrated in Fig. 3 and Fig. 4, uni-axial tension tests are conducted
on specimens with various orientations relative to loading direction. ASTM
C363 test method for sandwich constructions and cores is followed in the
specimen preparation and testing stages [21]. The experiments are carried
out with several repetitions in order to minimize the random measurement
errors. Thereafter, the measured data are processed to get strains of the mea-
suring domains as functions of stresses and thereby the compliance matrices
describing the elastic properties of Nomex R© honeycomb cores.

——Preferred position for Fig. 4——

3.1. Design of experiments

The experiments are designed in the way that material type, displacement
of the hydraulic actuator and specimen orientation angle ϕ relative to uni-
axial load are considered as the independent variables. The material type is
described in terms of cell geometry t, h, l, θ, cell wall elastic modulus Es,
and core thickness T . The dependent variables of the experiments are the
load vector ~F and position data of the markers in the measurement domain
which are used in the stress and strain calculations. Eventually, both stress
and strain data are employed in compliance calculations as the final output.

7
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In this section, the independent variables are explained in detail, while the
rest is clarified in the following sections.

As listed in Table 1 and presented in Fig. 4, three different cell sizes,
which are c1=5 mm, c2=6 mm, c3=13 mm, and two different core thicknesses
of T1 = 7 mm and T2 = 12 mm are used in order to evaluate the influences
of dimensional parameters on the effective in-plane mechanical properties.
Samples are formed based on these two parameters, whereas the specimens of
each sample are generated using four different orientations ϕ1 = 0◦, ϕ2 = 90◦

and ϕ3,4 = ±45◦ relative to uni-axial loading. In determining the width W
and length L of specimens, ASTM C363 is taken into consideration. For
precision of the measurements, each specimen is tested twice. The accuracy
of the results is then sought through the analytical solution in Eq. (1).

——Preferred position for Table 1——
For the comparison of experimental and analytical results in the following

sections, the arithmetic means of measured geometrical parameters are tab-
ulated in Table 1. These measurements are taken from various locations of
random specimens within each sample; therefore, they represent the general
characteristics of samples rather than individual specimens.

3.2. Experiment setup

The experiments are conducted in a steel frame of 920 × 920 mm2 with
wall thickness of 60 mm as shown in Fig. 5. The large frame gives flex-
ibility to test large specimens, which is important to prevent the artifacts
due to boundary conditions and provide suitable loading in the measure-
ment domain. The bottom section of the specimen is fixed using fixture
plates connected to a stationary joint, whereas the top section is adjusted to
move upwards and downwards along an axis. The aforementioned constraints
provide proper conditions for uni-axial loading of the specimens.

——Preferred position for Fig. 5——
Actuating system of the setup is designed so that a hydraulic servo cylin-

der with a pressure up to 16 MPa is driven at the speed of 0.1 mm/s by
a signal generator. The duration of the tests varies from 3 to 6 minutes
with a constant loading rate. Force is measured through a force transducer
with an upper limit of 10 kN, while the displacements of the core struc-
ture is measured with displacement transducer. Besides, marker positions
in the measurement domain are measured with image capturing and marker
tracking technique.

8
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4. Analysis

4.1. Marker tracking

The positions of the markers during the experiment are obtained with
marker tracking technique. The advantage of this technique, compared to
conventional displacement measurement equipments such as linear variable
differential transformer (LVDT), is that there is no need to select the mea-
suring domain beforehand. In this way, the experimenter has higher control
for defining the domain, which results in more precise results.

——Preferred position for Fig. 6——
For the marker tracking, an in-house code has been developed and verified

with rigid body motion tests. During the experiments, digital images of the
domain are captured every 4 seconds in synchronization with loading. Then,
each image is converted from RGB to grey-scale image after contrast and
brightness adjustments as seen in Fig. 6. This is followed by binary image
conversion using a histogram-based threshold method [22]. In binary images,
the markers are represented as sets of white pixels and by averaging the
positions of these pixels, marker center coordinates (Xi, Yi) are calculated.
This process is repeated for each image frame in order to generate marker
position data.

4.2. Displacement analysis

As the first step of displacement calculations, each marker is paired with
the closest one in the following image frame by using nearest neighbor query.
Then, the marker displacements associated with frame f are obtained as

{
ufi
vfi

}
=

{
Xf+1

i −Xf
i

Y f+1
i − Y f

i

}
. (12)

Here, u and v are the displacements along X - and Y -axes, respectively.
The displacements are considered as values of continuous linear displace-

ment field ~uf which is obtained through the analysis of position data. In
component form, it is expressed as

{
uf

vf

}
=

[
afu bfu cfu
afv bfv cfv

]
1
X
Y

 . (13)

9
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in which au, bu,.., cv are the polynomial coefficients. In Eq. (13), higher order
polynomials may well be used but the experiments are designed to produce
homogeneous strains in the domain. Here, au, bu,.., cv are the minimizers of
least squares function

π(au, bu, . . . , cv) =
n∑

i=1

∥∥∥∥∥∥
{
ufi
vfi

}
−
[
afu bfu cfu
afv bfv cfv

]
1

Xf
i

Y f
i


∥∥∥∥∥∥
2

(14)

in which the sum is over n markers. These coefficients are separately calcu-
lated for each frame. Hereafter, superscript f is excluded for simplicity in
the notation.

The outcome of displacement analysis is the deformation gradient F. Ac-
cording to [23],

[F] =

[
1 + u,X u,Y
v,X 1 + v,Y

]
=

[
1 + bu cu
bv 1 + cv

]
(15)

in which ,X and ,Y are the partial derivative operators.

4.3. Strain measure

For any material body, deformation is decomposed into three operations:
translation, rotation and stretch. The first two define rigid body motions,
while the latter is used to calculate the strain measure, e.g. the Green-
Lagrange strains

[E] =
1

2
([U]2 − [I]) (16)

which is invariant to rotation [24]. Here, I is identity tensor and U is the
right stretch tensor of which square is given as

[U]2 = [F]T[F]. (17)

As seen in Fig. 7, the deformation due to cell wall bending results in the
structural linear elasticity, which also fulfills the small strains ε assumption.
Hence, substituting [U] = [ε] + [I] in Eq. (16) and omitting the second order
term give

10
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[E] =
1

2
([I] + 2[ε] + [ε]2 − [I]) ≈ [ε]. (18)

——Preferred position for Fig. 7——

4.4. Stress measure

For the constitutive modeling, the stress measure is selected to be invari-
ant to rotations and symmetric because of the strain measure characteristics
in Eqs. (16) and (17). According to [25], these can be satisfied with the
first and second Piola-Kirchhoff stress tensors. In order to calculate the first
Piola-Kirchhoff stress tensor P, the infinitesimal load vector d~F in the de-
formed configuration is directly transferred to the initial configuration based
on vector invariance. Then, P is expressed in terms of d~F , unit area dA and
unit surface normals ~N1, ~N2 in the initial configuration as presented in Fig.
8. The components of P in the basis of XY -cs can be calculated through{

dF i
X

dF i
Y

}
=

[
P

XX
P

Y X

P
XY

P
Y Y

]{
N i

X

N i
Y

}
dA; i ∈ {1, 2}. (19)

The calculations are carried out for two unit surfaces of the infinitesimal
element in order to solve four unknown components P

XX
, P

Y Y
, P

Y X
and

P
XY

.
However, P is a two-point tensor and not symmetric, which is not con-

venient to operate with the symmetric strain tensor E. Instead, the second
Piola-Kirchhoff stress tensor S, which is symmetric and energy conjugate to
E, is preferred. According to [23], the transformation between S and P is
given in the matrix form as

[S] = [F]−1[P]. (20)

Eventually, the components of S and E are replaced with s and e of
Eq. (11) in order to calculate the compliance matrix components as the
minimizers of the least squares function.

5. Results and discussions

As observed in Fig. 7, cell wall deformation starts with cell wall bending
in the linear elastic region. However, during the later stages of the experi-
ment, densification and other mechanisms start to dominate the deformation,
leading to nonlinear elasticity and consequently, cell wall separations. Since
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the main purpose is to calculate the compliance matrices, the study is limited
to small displacements of cell walls under bending mechanism.

——Preferred position for Fig. 7——
The first notable outcomes of these experimental compliances are the

coefficients of mutual influence η
WL,W

and η
WL,L

which are used to classify
the material. If these are equal to zero in the planar case, material is called
as orthotropic, which represents a particular type of anisotropy. As seen
in Table 2, η

WL,W
and η

WL,L
are close to zero, which means that the tested

honeycomb cores can also be classified as orthotropic materials.
The limitation for the cell wall deformation and material classification

posterior to the experiments lead the authors to make a proper comparison
between the experimental results and analytical solution in Eq. (1) which
is derived based on the same conditions. Through this comparison, the in-
fluences of geometrical parameters of cell structures on the effective elastic
properties are investigated. Here, it is noteworthy that the cell wall elastic
modulus Es ≈ 7.9 GPa, which was measured through uni-axial tension tests
of unit cell structure beforehand.

In order to understand the effects of the tabulated geometrical parame-
ters in Table 2, the comparisons are classified into two parts: comparisons
between samples and the same cell size samples. It is important to under-
line that three different cell sizes c1=5 mm, c2=6 mm, c3=13 mm and two
different core thicknesses T1=7 and T2=12 mm have been investigated.

——Preferred position for Table 2——
Comparison between samples of the same thicknesses shows that EW , EL,

GWL and νLW have high dependency on the corner angle θ for both T1=7
and T2=12 mm, whereas νWL is less sensitive to θ for T1=7 mm. As seen in
Table 2, EL, GWL and νLW are directly proportional to θ; however, EW and
νWL are inversely proportional. This is mainly related to the contribution of
the inclined cell walls [4]. When θ has greater value than 30◦, more material
is oriented along L-axis. Therefore, material gets stiffer along this axis; on
the contrary, softer along W -axis. As a result, there are drastic raises or
drops on the in-plane elastic moduli for even small angular changes. On the
other hand, it is very difficult to mention about individual effects of the cell
wall thickness t and length l. However, their combined effect t/l shows that
when t/l decreases, cell walls become more slender and less resistant. As a
consequence, all effective in-plane moduli decrease, which has been investi-
gated in literature [2, 3, 4]. The same effect can also be observed through
the comparison between samples S-5-7 and S-13-12, which have almost the
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same corner angles.
Efforts are put into understanding the effect of T in same cell size sample

comparisons. Nevertheless, its effect seems trivial in regard to the dominant
effect of cell geometry.

6. Conclusions

In this study, an experimental method is presented for measuring the
effective in-plane compliance matrices of cellular structures using Nomex R©

honeycomb cores. In contrast to previous studies in the literature, a prior
assumptions regarding to geometrical and mechanical characterizations are
avoided. Instead, general anisotropic linear elastic material relationship in
two dimensional space is used and material classification is done based on the
measured effective in-plane elastic parameters. Besides the effective in-plane
elastic moduli and Poisson’s ratios, shear modulus and coefficients of mutual
influence characterizing the coupling between shearing and normal stresses
are measured. In this respect, the problem of lack of experimental studies
on this issue is expected to be solved with the present method.

In order to obtain these effective parameters, uni-axial tension testing of
Nomex R© honeycomb cores with various material orientations relative to load-
ing direction are carried out in the first step. In these experiments, the data
is gathered for small displacement of cell walls under bending mechanism
because linear elasticity is taken into consideration. The results are given
in terms of the stress and strain measures and processed with transforma-
tion and least squares functions. It is noteworthy that measurement errors
are tried to be minimized with the proposed marker tracking technique for
honeycomb cores in replacement of conventional equipments such as linear
variable differential transformer (LVDT), while analysis errors are minimized
with several repetitions of the experiments. As a result, the effective in-plane
compliances are calculated with the minimum practical error. Analyses of
these compliances show that the tested honeycomb cores can be classified as
orthotropic materials.

The limitation for the cell wall deformation and material classification
posterior to the experiments lead the authors to make a proper comparison
between the experimental results and analytical solution which is derived
based on the same conditions. For this purpose, firstly, the geometrical
parameters of cell structure such as corner angle, wall length and thickness
are measured. Then, through the comparison study, the influences of these
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parameters on the effective in-plane elastic properties are investigated. This
study reveals that the corner angle and the ratio of cell wall thickness to
length have drastic effects.

The present study provides direct access to all effective parameters and
coupling terms by means of the introduced experiment and analysis tech-
niques. Eventually, it is expected to advance the current state of the art
through simplicity and low cost of the experiment setup, the measurement
and analysis techniques, and the applicability of the method to wide range
of cellular structures such as honeycomb cores and wood species.
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Table 1: The arithmetic means of measured geometrical parameters. These are measured
for all the specimens in each sample denoted with prefix S-. Each sample consists of
specimens with orientation angles of ϕ1 = 0◦, ϕ2 = 90◦ and ϕ3,4 = ±45◦ relative to
uni-axial loading. The tabulated parameters are represented for clarification in Fig. 4.

In Table 2, specimens are designated so that SW- or SL- express W- or L-direction of tensile testing; whereas, 
consecutive numbers are for cell size and honeycomb core thickness. 
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Table 2: Comparison between experimental and analytical results. Prefix An- is used for
predicted results obtained through analytical solution in Eq. (1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 
l 

[mm] 
t 

[mm] 
θ 

[˚] 
EW 

[kPa] 
EL 

[kPa] 
GWL 

[kPa] 
vWL 

 
vLW 

 
-ηWL,W 

 
-ηWL,L 

 

S-5-7 
An-S-5-7 

 
 

2.5 0.05 32 
121.0 
124.1 

158.5 
157.7 

92.6 
90.7 

1.12 
0.89 

1.47 
1.13 

0.019 
--- 

-0.103
--- 

S-5-12 
An-S-5-12 

 
 

2.5 0.05 34 
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0.97 
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Figure 1: Production process of honeycomb core [11].
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2. Methodology 
 
2.1. Analytical studies 
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Figure 2: Geometrical parameters for honeycomb cores and cell walls. Here, W, L, T refer
to transverse, longitudinal and thickness directions, respectively [2, 11].
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Laboratory and material coordinates. Dashed lines represent laboratory X-axis and solid lines are for Y-axis. 
WL-system represents the material coordinate system.     
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Figure 3: Specimens taken out from the sheet based on predefined angles. The dashed
horizontal lines correspond to W -axis, while the solid vertical lines are for L-axis which
are drawn on the sheet. Here, ϕ is the counterclockwise orientation angle between X - and
W -axes.
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In Table 2, specimens are designated so that SW- or SL- express W- or L-direction of tensile testing; whereas, 
consecutive numbers are for cell size and honeycomb core thickness. 
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Figure 4: Geometrical parameters for the honeycomb cores and the cells. On the right
side, specimen of different orientations ϕ1 = 0◦, ϕ2 = 90◦ and ϕ3,4 = ±45◦ relative to
uni-axial loading are illustrated.
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Figure 5: Uni-axial tensile test setup.
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a)             b)              c)      
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 mm 10 mm 

Figure 6: Marker detection in the measurement domain: a) Three-channel input image,
b) Grey-scale image, c) Binary image and marker position data formation. For better
visibility, markers are indicated using dashed circles.
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5. Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stress-strain curve
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Figure 7: Deformation of Nomex R© honeycomb core with cell size c=5 mm and ϕ = 0◦:
a) Undeformed structure, b) Deformation due to cell wall bending, c) Deformation during
densification, d) Stress-strain curve for the core under uni-axial tensile load along Y -axis.
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m
 E U I    (19) 

 
is a one parameter measure of difference between  and . The Biot U I 1/ 2m   and Green-Lagrange 

 strain measures are given by  1m 
 

T 1/2( )   ε U I F F I     (20) 
 

T T1 1 1
( ) ( ) [( )

2 2 2
     E U U I F F I I ε I2 ]

    

(21)  

 
In practice, the square roots are calculated by using eigenvalue decomposition. 
 
3.5 Stress 

 
 In the experiment, stress acting on the measuring domain is estimated from external forces and known 
geometry. In principle any three independent stress combinations suffice for determining the values of the 
material parameters 1C C 9 . In the present set-up, the force acting on the specimen is of the form 

yF Fe
 

    

 
 
 
 
 
 
 
 
Second Piola-Kirchhoff stress  can be obtained by dividing the force by the area of the initial geometry 
cross-section. Therefore we consider PK2 as the primary stress measure and express Cauchy stress and  
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Figure 8: Infinitesimal material element in initial (left) and deformed (right) configura-
tions. Here, dΩ, dA, dL represent the material body, unit surface area and unit length
in the initial configuration, respectively, while dω, da, dl are for the same parameters in
deformed configuration. Surface normal vectors are denoted with ~N i and ~ni, for which
i ∈ {1, 2}.
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